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W Check for updates

Precision healthcare aims to tailor disease prevention and early
detection toindividual risk. Prostate cancer screening may benefit from
genomics-informed approaches. We developed and validated the P-CARE

model, a prostate cancer risk prediction tool combining a polygenic score,
family history and genetic ancestry, using data from over 585,000 male
participants in the Million Veteran Program. The model was externally
validated in diverse cohorts and implemented via ablended genome-
exome assay for clinical use. Here we show that the P-CARE model identifies
clinically meaningful gradients of prostate cancer risk among men, with
higher scores associated with increased risk of any, metastatic and fatal
prostate cancer. The model is now being used in a clinical trial of precision
prostate cancer screening. This work demonstrates the potential for
genomics-enabled health systems to improve prostate cancer screening and
preventionin men. ClinicalTrials.gov registration: NCT05926102.

Preventive healthcare is moving from a one-size-fits-all approach to
more personalized, risk-adapted strategies. Individual risk predictionis
animportantstep for developing tailored strategies for disease preven-
tionand early detection. Risk prediction models can nowincorporate
larger and more complex arrays of clinical, genetic, environmental
and other risk factors from more diverse populations’. Genomics
specifically is increasingly demonstrating its potential to inform
risk stratification and preventive strategies for several diseases”™;
however, this potential clinical utility remains only theoretical in the
absence of prospective intervention studies demonstrating improved
patient outcomes.

Healthcare systems linked to genomic biobanks thus have the
opportunity both to generate knowledge about the clinical validity
of genomic risk prediction and to demonstrate the clinical utility of
implementing that knowledge in care®. These genomics-enabled learn-
ing healthcare systems can leverage knowledge-generatinginfrastruc-
ture to determine whether genomics and other novel risk predictors
improve the effectiveness of disease screening and prevention within
the healthcare system. Theresultis not only improved care for patients
within that system but also potentially generalizable knowledge for
patientsin other settings.

Prostate cancer screeningis one clinical context where agenomics-
enabled learning healthcare system approach might be particularly
beneficial. Prostate cancer is one of the most heritable cancers, and
recent genomic discoveries have characterized the rare and com-
mon genetic variation underlying much of this heritability”®. At the
same time, clinical guidelines differ on which patient populations are
most likely to experience net benefit from prostate cancer screening,
including Black men or those with a family history of the disease’ .
Universal screening with prostate-specific antigen (PSA) reduces
prostate cancer mortality but can also overdiagnose indolent disease
and lead to unnecessary procedures and treatments™ . The result is
substantial variation in prostate cancer screening practices'". Clini-
cal consensus is even less developed on whether genotype should
play arolein prostate cancer risk stratification, despite the discovery
of robust associations between risk and both single rare variants and
polygenic scores®.

Given this context, genomics-enabled learning health systems
can lead the development of genomics-tailored approaches to pros-
tate cancer screening and then evaluate the effectiveness of those
approaches in clinical care. This evidence generation is an impor-
tant step toward the development of clinical guidelines. Here, we

e-mail: jvassy@bwh.harvard.edu; tseibert@health.ucsd.edu

Nature Cancer


http://www.nature.com/natcancer
https://doi.org/10.1038/s43018-025-01103-0
http://clinicaltrials.gov/ct2/show/NCT05926102
http://crossmark.crossref.org/dialog/?doi=10.1038/s43018-025-01103-0&domain=pdf
mailto:jvassy@bwh.harvard.edu
mailto:tseibert@health.ucsd.edu

Article

https://doi.org/10.1038/s43018-025-01103-0

Rare variant analysis validation
validation of BGE platform for
rare variant analysis

P-CARE model clinical laboratory validation
validation of BGE platform for P-CARE model
against WGS, using population-level data (All of Us).

m i i i m NCCN guidelines
WGS samples All of Us _ Report development
Broad clinical Iabs: develop clinical reports
i BGE sequenc;, Combined report and
g recommendations
e \L‘m P-CARE report
@ Rare variant
External @] report
validation . .
of P-CARE Genomics learning
Replicate in healthcare system: ProGRESS
diverse cohorts model development Clinical trial

implementation

e Conduct
del-informed
a ﬂ 1,000+ © e

clinical trials

MVP Consortium Hospitals

Model development , ProGRESS

and internal validation: Z= : S A A Prostate cancer

P-CARE . L R <~ - ’
=2 ) genetic risk &

y equitable screening
@ Train polygenic score 088 w\ ) /-ﬁ«:’.:\\
(PHS ) m iIi < iigii

@ Develop P-CARE model

Fig. 1| Translating prostate cancer genomicrisk discovery to clinical trial
implementation. A prostate cancer polygenic score (PHS,,) is trained in the
MVP biobank of the VA using known prostate cancer and other prostate trait-
associated loci (1). The P-CARE model is developed in MVP from PHS,,, genetic
principal components and prostate cancer family history (2). Both PHS,, and
P-CARE are replicated in external multi-ancestry datasets from the PRACTICAL
Consortium (3). ABGE platformis validated for the P-CARE model, including
imputation, analytic validation of PHS, against WGS and clinical laboratory
validation of P-CARE in AoU Research Program data (4). BGE platformis validated
for gene panel annotation, filtering and analysis of rare variants in guideline-
informed prostate cancer-associated genes (5). Clinical P-CARE and rare variant
reports with summary recommendations are developed (6). Clinical laboratory
analysis and reporting pipeline isimplemented in a pragmatic clinical trial of
precision prostate cancer screening across the VA (7).

describe the development, validation and clinical implementation of
agenomics-informed prostate cancer risk model, developed to enable
arandomized clinical trial of precision prostate cancer screeningin a
large national healthcare system (Clinicaltrials.gov NCT05926102).

Results

Overview of risk prediction model development

Figure 1illustrates our discovery-to-implementation approach. The
Prostate CAncerintegrated Risk Evaluation (P-CARE) model was devel-
oped and validated to enhance genomic risk assessment for prostate
cancer. Using data from the Million Veteran Program (MVP), a large
biobank linked to the US Veterans Health Administration, we refined
aprostate cancer polygenic score and integrated it with family history
and genetic ancestry to create P-CARE. This model was externally vali-
datedinfour diverse prostate cancer cohorts fromthe PRACTICAL Con-
sortium. Tofacilitate clinicalimplementation, we developed a blended
genome-exome (BGE) assay to assess both P-CARE and rare monogenic
variants associated with prostate cancer risk. The assay is now being
deployed in arandomized clinical trial (ProGRESS, NCT05926102) to
evaluate genomics-informed prostate cancer screeninginareal-world
healthcare setting.

Association of polygenic score with prostate cancer outcomes

We assessed whether a polygenic hazard score (PHS,,) was signifi-
cantly associated with prostate cancer risk, metastasis and mortal-
ity in both MVP and PRACTICAL as well as across ancestry groups.

We hypothesized that PHS,,, would show a strong, consistent associa-
tion with these outcomes across diverse populations.

The final model included 601 of the 707 unique candidate vari-
antsevaluated (Supplementary Data). The resulting polygenic hazard
score (PHS,,,) was associated with age at diagnosis of prostate cancer,
metastatic prostate cancer and prostate cancer deathin MVP (Table1).
Among the overalMVP cohort, the hazard ratio (HR) per s.d.increase
in PHS,, for prostate cancer, metastatic prostate cancer and prostate
cancer death were 2.02 (95% C11.97-2.07), 2.07 (95% CI1.95-2.17) and
1.96 (95% C11.75-2.18), respectively. The associations between PHS,,
and prostate cancer outcomes were similar in each ancestry-stratified
analysis with >100 events in MVP and within each ancestry-specific
PRACTICAL dataset (Table 1). Among the East Asian subgroup in MVP,
which had small case numbers, associations with metastatic and fatal
prostate cancer were not statistically significant but had consistent
directions of effect; the association with clinically significant disease
was statistically significantin the Asian cohortin PRACTICAL (HR 2.11
95% C11.90-2.39). Among the American subgroup in MVP, the associa-
tionwith fatal prostate cancer was not statistically significant but had
aconsistent direction of effect (HR 2.22, 95% C10.98-4.25).

Association of P-CARE with prostate cancer outcomes
We evaluated whether P-CARE, whichintegrates a polygenicrisk score
with genetic ancestry and family history, improves prostate cancer
risk stratification and correlates with disease severity. Family his-
tory was independently statistically significant for prostate cancer
risk stratification (Supplementary Table 1) and inclusion of genetic
ancestry improved performance of our previous PHS™, so both were
included in the model a priori. As hypothesized, the P-CARE model
that integrated PHS,,,;, genetic ancestry and family history described
astrong gradient of risk for any, clinically significant, metastatic and
fatal prostate cancer across MVP and PRACTICAL datasets (Table 2
and Supplementary Tables 2-5). Among the overall MVP cohort, the
HR pers.d.increasein P-CARE for prostate cancer, metastatic prostate
cancer and prostate cancer death were 2.04 (95% C11.99-2.08), 2.05
(95% C11.93-2.16),and 1.95 (95% Cl11.76-2.15), respectively. Across the
MVP and PRACTICAL datasets, compared to men with median P-CARE
values, menin the lowest P-CARE quintile had HR 0.35-0.46 for the four
prostate cancer outcomes (HR,(,50), whereas menin the highest P-CARE
quintile had HR 2.48-4.03 (HRg/s; Table 2). The direction and magni-
tude of association between P-CARE and the prostate cancer outcomes
were similar in analyses of subgroups defined by genetic ancestry
(Supplementary Table 6) and, alternatively, by self-reported race and
ethnicity (Supplementary Table7), in each subgroup withadequate case
counts. Asadditional validation, time-dependent area under the curve
analysis, sensitivity and specificity of defined P-CARE risk-category
thresholds, and random forest survival modeling confirmed consistent
model discrimination and robustness (Supplementary Tables 8-10)

Within the ProtecT (Prostate Testing for Cancer and Treatment)
dataset, the positive predictive value (PPV) of a PSA value >3 ng ml™
for clinically significant prostate cancer was 0.13 (95% C10.12-0.14) in
the overall dataset and 0.19 (95% CI 0.16-0.21) and 0.23 (0.17-0.28) in
the subsets in the top 20% and top 5% of P-CARE values, respectively
(Fig.2, stratified by PSA level in Extended Data Fig.1). The percentage of
true positive cases within the ProtecT dataset that fallinto high P-CARE
categoriesis shownin Extended DataFig. 2.

We defined P-CARE risk categories by HR thresholds (HR 0.75and
HR 1.5 for metastatic prostate cancer) and evaluated both cumulative
incidence and risk-equivalent age for any, metastatic and fatal prostate
cancer. Overall, the model categorized 25.1%, 37.3% and 37.6% of MVP
participants as low, average and high risk, respectively (Table 3). The
model categorized 68.7% of participants with positive family history as
high risk and only 5.6% as low risk. Among participants self-reporting
Black or African-Americanrace, only 2.8% were categorized as low risk.
Figure 3 shows cumulative prostate cancer incidence curves in MVP
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Table 1| Association of polygenic score with prostate cancer outcomes in MVP and PRACTICAL cohorts

Clinical end point n Event, n HR (95% Cl)
HRgp HRgo/20 HR30/50 HRgo/50 HRgs/50

MVP development and validation

Any prostate cancer
All 585,418 68,618 2.02(1.97-2.07) 6.27 (5.85-6.72) 0.43 (0.41-0.45) 272(2.62-2.82) 4.06 (3.86-4.29)
African 105,014 16,178 1.94 (1.84-2.06) 5.81(5.06-6.79) 0.48 (0.45-0.52) 2.81(2.59-3.08) 3.74 (3.37-4.23)
European 420,722 48178 2.04 (1.97-2.11) 574 (5.26-6.20) 0.43(0.41-0.45)  2.46 (2.35-2.55) 378 (3.54-4.03)
American 50,590 3,775 2.03 (1.83-2.26) 5.55 (4.24-7.07) 0.44(0.39-0.50)  2.44(213-2.79) 3.72(3.06-4.52)
East Asian 9,092 487 210 (1.59-2.81) 5.81(2.90-10.65) 0.44(0.32-0.60)  2.41(1.72-3.36) 3.83(2.31-6.04)

Metastatic prostate cancer
All 585,418 6,606 2.07 (1.95-2.17) 6.69 (5.70-7.62) 0.42 (0.40-0.45) 2.81(2.58-3.01) 4.27(3.78-4.71)
African 105,014 1,726 1.90 (1.65-2.19) 5.60 (3.81-7.84) 0.50 (0.43-0.58) 2.73(2.18-3.39) 3.62(2.70-4.77)
European 420,722 4,467 1.96 (1.80-2.19) 5.20 (4.19-6.83) 0.45(0.39-0.50)  2.33(2.08-2.68) 3.50(2.97-4.29)
American 50,590 369 2.07 (1.42-2.64) 6.02 (2.33-10.47) 0.44 (0.32-0.67) 2.51(1.55-3.40) 3.92(1.91-6.08)
East Asian 9,092 44 - - - - -

Fatal prostate cancer
All 585,418 1,709 1.96 (1.75-2.18) 5.81(4.31-7.65) 0.45 (0.40-0.51) 2.60(2.22-3.03) 3.82(3.06-4.72)
African 105,014 365 1.62 (1.16-2.12) 3.81(1.49-7.26) 0.61(0.44-0.85) 215 (1.27-3.22) 2.68 (1.35-4.45)
European 420,722 1,250 1.92 (1.60-2.20) 4.99 (3.18-6.86) 0.47(0.39-0.57) 2.27(1.81-2.69) 3.39(2.41-4.32)
American 50,590 87 2.22(0.98-4.25) 8.45 (0.95-32.23) 0.48 (0.19-1.03) 2.78 (0.97-6.14) 4.81(0.96-14.32)
East Asian 9,092 8 - - - - -

PRACTICAL replication

Any prostate cancer
COSM 3,415 2,298 2.27 (211-2.46) 918 (6.66-12.93) 0.36 (0.31-0.42) 3.34(2.97-3.98) 5.35 (4.26-6.92)
ProtecT 6,41 1,583 1.87 (1.78-2.01) 5.67 (4.75-6.73) 0.44 (0.40-0.48) 2.78 (2.47- 3.05) 3.78 (3.31-4.29)
African 6,253 3,240 1.84 (1.72-1.98) 8.55 (6.64-11.08) 0.41(0.36-0.46) 3.47 (2.93-3.99) 4.49 (3.71-5.37)
Asian 2,320 1164 215 (1.92-2.38) 8.80 (6.73-11.09) 0.35(0.30-0.39) 3.02(2.63-3.39) 5.26 (4.24-6.48)

Clinically significant prostate cancer
COSM 3,415 1,487 2.30(2.09-2.53) 9.35(7.32-12.20) 0.36 (0.31-0.41) 2.81(2.58-3.01) 4.27(3.78-4.71)
ProtecT 6,411 628 2.02(1.88-2.21) 7.02 (5.65-8.42) 0.40 (0.36-0.44) 2.73 (2.18-3.39) 4.45 (3.76-5.11)
African 6,253 1,424 1.85 (1.69-2.02) 8.61(6.50-11.61) 0.41(0.35-0.47) 2.51(1.55-3.40) 3.92(1.91-6.08)
Asian 2,320 716 2.11(1.90-2.39) 7.88 (5.94-10.68) 0.36 (0.32-0.42) 2.85(2.44-3.32) 4.83(3.84-6.09)

Fatal prostate cancer
COSM 3,415 278 1.91(1.65-2.28) 5.88 (3.51-9.19) 0.45(0.36-0.56)  2.58(1.97-3.32) 3.82(2.59-5.35)

Association of PHSg,, with any, metastatic and fatal prostate cancer in MVP (total and genetic ancestry-stratified groups) and with any, clinically significant, and fatal prostate cancer in four
PRACTICAL Consortium datasets. Results with fewer than 50 events per subset were excluded given the unstable nature of the HR estimates. COSM, Cohort of Swedish Men; PHS, polygenic

hazard score.

both by P-CARE percentile groups and by P-CARE risk category. As
shown in Table 4, by age 80 years, men in the high-risk P-CARE group
had a cumulative risk of any, metastatic and fatal prostate cancer of
37.4%,4.4% and 0.8%, respectively. The expected age of any and meta-
static prostate cancer occurred 5 years earlier in the high-risk group
compared to the men in the standard risk; specifically, a manin the
high-risk group reached a prostate cancer detection risk equivalent
tothe 55-year standard at an age of 50 years and a metastatic prostate
cancer risk equivalent to the 70-year standard at an age of 63.5 years
(Supplementary Table 11).

Development and validation of clinical laboratory assay for
genetic prostate cancer risk

We then used the BGE platform to develop a clinical laboratory assay for
inherited prostate cancer risk by combining P-CARE, which evaluates
polygenicrisk, with targeted testing for 12 genes known to be associated

with hereditary prostate cancer. First, both PHS,; and the integrated
P-CARE model were again externally validated in the All of Us (AoU)
cohort, demonstrating strong associations with prostate cancer across
diverse ancestry groups. Within the AoU dataset, the PHS,,, was asso-
ciated with prostate cancer with an odds ratio per s.d. 0of 1.91 (95% CI
1.85-1.98).In the same dataset, for the full P-CARE model (PHS,,, plus
genetic principal components and family history) we found an odds
ratio of 2.41(95% CI12.25-2.60) for individualsin the high-risk category
to be diagnosed with prostate cancer, compared to individuals clas-
sified as average risk. Similarly, individuals in the low-risk category
showan oddsratio of 0.48 (95% C10.44-0.54), compared to individuals
classified as average risk. Notably, this strong association holds across
different ancestries. (Extended Data Fig. 3).

Next, the accuracy and reliability of the BGE assay in detecting
both polygenic and rare monogenic variants associated with prostate
cancer risk were evaluated against known reference samples; the BGE
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Table 2 | Association of P-CARE model with prostate cancer outcomes in MVP and PRACTICAL cohorts

Clinical end point n HR (95% CI)
HRgp HRgo/20 HRy0/50 HRgg/50 HRgs/50

Any prostate cancer
MVP 585,418 2.04(1.99-2.08) 6.33 (5.95-6.71) 0.43 (0.42-0.45) 275 (2.66-2.84) 4.09 (3.89-4.29)
COSM 3,415 2.33(214-2.58) 9.40 (6.88-13.20) 0.37(0.31-0.42) 3.43(2.91-4.08) 5.45 (4.31-7.00)
ProtecT 6,411 1.87 (1.77-2.01) 5.53 (4.60-6.66) 0.45 (0.41-0.49) 2.48 (2.27-2.73) 3.71(3.23-4.23)
African 6,253 2.00 (1.86-2.16) 9.68 (7.55-12.49) 0.40 (0.36-0.46) 3.88 (3.35-4.42) 516 (4.35-6.03)
Asian 2,320 217 (1.95-2.42) 8.74 (6.60-11.28) 0.35(0.30-0.40) 3.06 (2.65-3.46) 5.23 (4.09-6.47)

Clinically significant prostate cancer

9.39(7.25-12.27)

0.37(0.32-0.42)

3.43(2.98-3.99)

5.47 (4.47-6.76)

6.81(5.42-8.20)

0.40 (0.36-0.44)

277(2.48-3.04)

4.35(3.71-4.12)

10.30 (7.66-13.47)

0.39(0.36-0.44)

4.03 (3.39-4.86)

5.41(4.38-6.77)

COSM 3,415 2.34(212-2.55)
ProtecT 6,41 2.01(1.87-2.18)
African 6,253 2.04(1.86-2.23)
Asian 2,320 2.11(1.91-2.35)

760 (5.70-10.15)

0.38(0.33-0.43)

2.84 (2.42-3.31)

4.68 (3.71-5.73)

Metastatic prostate cancer

6.50 (5.51-7.38)

0.43(0.40-0.46)

2.78 (2.54-2.99)

4.7 (3.68-4.59)

5.71(4.33-7.30)

0.45 (0.41-0.52)

2.59(2.22-2.97)

3.77 (3.05-4.57)

MVP 585,418 2.05 (1.93-2.16)
Fatal prostate cancer

MVP 585,418 1.95 (1.76-2.15)

COSM 3,415 1.95 (1.66-2.37)

5.95 (3.61-9.29)

0.46 (0.37-0.56)

2.65(2.03-3.41)

3.87 (2.69-5.49)

Association of P-CARE model with any prostate cancer, clinically significant prostate cancer, metastatic prostate cancer, and fatal prostate cancer in MVP and four PRACTICAL Consortium
datasets. As described, P-CARE model consists of PHS,, first-degree family history of prostate cancer and genetic principal components.

platform produced nearly identical results for polygenic risk scores
and ancestry estimates, with Pearson correlations exceeding r > 0.998
for PHS,,; and r > 0.999 for both principal components. For the 12
genesrelated to hereditary prostate cancerrisk, the assay met quality
thresholds for coverage and variant detectionin 11of 12 genes. The one
exception was PMS2, atechnically challenging gene due toits similarity
toanearby pseudogene, which caninterfere withaccurate sequencing.
Withinthe PMS2gene, exons 13,14 and 15 were undercoveredin asubset
of samples, with 80% and 20% of samples missing full coverage in those
regions, respectively. Of the 18 samples assessed for monogenic rare
variants, all 18 variants of interest were successfully detected, includ-
ing seven single-nucleotide variants (SNVs), five insertions/deletions
(indels) and six copy-number variants (CNVs); however, three of the
CNVs were classified as low quality based on prespecified thresholds
for clinical reporting (QUAL = 50 for duplications, QUAL =100 for het-
erozygous deletions and QUAL > 400 for homozygous deletions) and
would have not been clinically reported in areal-world setting. This is
consistent with known limitations in detecting small CNVs involving
fewer than three exons. Despite this, the platform showed excellent
technical performance with100% precision across repeated tests, both
within and between sequencing runs.

Clinical P-CARE and monogenic reports

Here we describe the implementation of the P-CARE and monogenicrisk
reportsin clinical use, linking them to personalized screening recom-
mendations inthe ProGRESS trial. An example of the resulting labora-
tory report package is shownin the Supplementary Information. The
cover page summarizes the results of both the monogenic and P-CARE
analyses and provides an overall risk category for the individual based
on these results. Anindividual with a pathogenic or likely pathogenic
variantinone of the 12 prostate cancer-associated genes is categorized
as high risk, regardless of P-CARE results. Individuals without such a
variant are categorized as low, average or high risk according to their
P-CARE result, with thresholdsat HR = 0.75and HR = 1.5, as described in
the Methods. The cover page also links these risk categories to tailored
prostate cancer screening recommendations for the individual. After

PPV performance
0.30 —

0.20 -

015

PPV

010

0.05 -

0 | | |
Standard P-CARE,, P-CARE,

Fig. 2| Positive predictive value of PSA in ProtecT by P-CARE values. lllustrated
are mean PPV (95% CI) for a PSA value > 3 ng ml™ for clinically significant prostate
cancer among three groups of men in the ProtecT study (n = 6,411): allmen
(regardless of P-CARE value), men in the top 20% of P-CARE values (P-CAREg,) and
menin the top 5% of P-CARE values (P-CARE,;).

this cover page summary, separate P-CARE and rare variant reports
provide further detail about these individual result types, including
informationabout P-CARE model development and validation, techni-
cal descriptions of the analyses performed, relevant gene and disease
informationand literature references. These reports are now being used
in the national ProGRESS randomized clinical trial, in which 5,000 VA
patients who are prostate cancer screen-eligible are randomly assigned
to usual care versus precision screening recommendations informed
by P-CARE and rare variants.
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Table 3 | Characteristics of P-CARE risk categories for metastatic prostate cancer among 585,418 MVP participants

P-CARE risk category, n (%)

n Low risk (HR<0.75) Average risk (HR 0.75-1.5) High risk (HR>1.5)
Total 585,418 146,826 (25.08) 218,530 (37.33) 220,062 (37.59)
Positive family history 28,358 1,595 (5.62) 7,270 (25.63) 19,493 (68.73)
Genetic ancestry groups
African 105,014 2,607 (2.48) 19,314 (18.39) 83,093 (79.12)
European 420,722 128,096 (30.44) 173,774 (41.30) 118,852 (28.24)
American 50,590 12,842 (25.38) 21,518 (42.53) 16,230 (32.08)
East Asian 9,092 3,281(36.08) 3,924 (43.15) 1,887 (20.75)
Self-reported race/ethnicity groups
American Indian or Alaska Native 5,507 1,346 (24.44) 2,236 (40.60) 1,925 (34.95)
Asian 6,210 2,403 (38.69) 2,684 (43.22) 1123 (18.08)
Black or African American 101,920 2,812 (2.75) 18,986 (18.62) 80,122 (78.61)
Hispanic white 26,037 6,871(26.38) 11,067 (42.50) 8,099 (31.10)
Native Hawaiian or Pacific Islander 3,042 755 (24.81) 1,259 (41.38) 1,028 (33.79)
Non-Hispanic white 418,387 126,633 (30.26) 172,661 (41.26) 119,093 (28.46)
Other 8,077 1,938 (23.99) 3,303 (40.89) 2,836 (35.11)
Unknown 16,238 4,068 (25.05) 6,334 (39.00) 5,836 (35.94)

P-CARE risk categories are defined by thresholds of HR 0.75 and HR 1.5 for metastatic prostate cancer. Participants with a HR for metastatic prostate cancer <0.75 and >1.5 are defined as low and

high risk, respectively.

Discussion
We used genomic, clinical and survey data from alarge national biobank
todevelop agenomics-informed prostate cancer prediction model con-
sisting of family history, genetic principal components and anupdated
polygenic score of 601 prostate trait-associated loci. Patients in the
lowest and highest 20% of values under this model have 0.4-fold and
2.7-fold risk of prostate cancer, respectively, compared to those with
median values; replication in external multi-ancestry cohorts con-
firmed these associations. Men at highest risk of developing advanced
prostate cancer are most likely to benefit from screening; the P-CARE
modelisassociated withrisk of all, clinically significant, metastaticand
fatal prostate cancer. When low and highrisk were definedas HR < 0.75
and HR > 1.5, respectively, for metastatic prostate cancer, the cumu-
lative incidence of metastatic prostate cancer by age 80 years in the
biobank was 0.8% in the low-risk group and 4.4% in the high-risk group.
Unlike our previous PHS (PHS,,,), both P-CARE and PHS,,; have
relatively similar performance at a population level to discriminate
prostate cancer risk; family history and agnostic genetic ancestry have
less prognostic value in the current multivariable model than in our
previous model. However, the effect of family history is substantial for
individuals soinclusion of family history could make a difference at an
individuallevelin clinical decision-making. While ancestry seems to be
mostly accounted for by PHS,,,, we opted not to exclude this post hoc.
Wethendeveloped and validated a clinical assay on a cost-efficient BGE
platformfor both the prediction model and rare pathogenic variantsin
known prostate cancer genes. This assay and associated clinical reports
arenow enablingaclinical trial of precision prostate cancer screening
among patients receiving care from the national healthcare system
from which the biobank data were derived. This approach illustrates
the power of genomics-enabled learning health systems to generate
translatable discoveries forimplementationin preventive healthcare.
We designed the P-CARE model and ongoing prostate cancer
screening trial to examine how the routine collection and interpreta-
tion of genomic data in preventive care might improve upon exist-
ing screening practices in a large integrated health system. Prostate
cancer is highly prevalent, but despite randomized controlled trial
evidence that screening with PSA testing can reduce prostate cancer

mortality"", guidelines vary by organization and country" on how to

balance the benefits of screening (early detection and treatment, result-
inginlowerincidence of advanced and lethal disease) and its potential
risks (overdiagnosis of apparently indolent disease and morbidity from
unnecessary procedures and treatments). As aresult, screening prac-
ticesare highly variable'®”*°>, Better models are needed to distinguish
men most likely to benefit from screening from those for whom its
risks might outweigh its benefits. A learning health system approach
isideal to improve prostate cancer screening for a few reasons. First,
risk prediction models thatinform the net benefit of cancer screening
dependinlarge partonmodel calibration within a population; relative
and absolute risk estimates derived from a healthcare system-linked
biobank are thus particularly informative for patients receiving care
inthat system. In particular, age is a critical factor not only in the risk
of advanced prostate cancer but also for the competing health risks
that might make prostate cancer early detection lessimportant; our
time-to-event analysis and age-specific cumulative incidence curves
account for age and allow physiciansto balance these with age-related
competing risks for a given individual to guide age-based screening
decisions. Second, the effect sizes of polygenic scores themselves,
including for prostate cancer, can vary between biobanks*?*. Third,
the net benefit of prostate cancer screening in a population is highly
dependent on the downstream diagnostic and therapeutic manage-
ment of elevated PSA values and abnormal prostate biopsy results”?;
nesting the evaluation of a new screening paradigm within its target
healthcare delivery system helps ensure that system-specific clinical
practice patterns areincluded.

Ourapproachalso seeks to address controversiesin prostate can-
cer screening that are intimately intertwined with health disparities. In
the United States, Black men are more likely to be both diagnosed with
and die from prostate cancer”. Possible causal factorsinclude genetic,
environmental and social determinants of health, including struc-
tural factors including access to screening and other healthcare®* %,
Black men are highlighted in prostate cancer guidelines as a group
whose high risk merits earlier screening®. This recommendation is
appropriate toaddress racial disparitiesin prostate cancer outcomes;
however, at the same time, the use of race in medical decision-making
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end point by P-CARE risk category: high, average and low risk.

can inappropriately ascribe to biology effects that arise from a com-
plex social construct confounded by myriad social determinants of
health; it also ignores the complex multiracial and multi-ancestry
backgrounds of individualsin modern healthcare system populations.
Wethus set out to develop a prostate cancer risk prediction model that
did notinclude discrete race or genetic ancestry categories, favoring
instead, principal components as a continuous measure of genetic
variation. At the same time, we confirmed that the resulting model
performed well across categories of socially defined populations (race
and ethnicity groups in MVP and external cohorts). Initial genome
studies predominantly included individuals with European ancestry,
but more recent work has improved genetic discovery and risk strati-
ficationinmore diverse populations, including African ancestry'®**",

The P-CARE model extends this work, confirming that most Black men,
but notall, have high risk. While the model does not fully disentangle
the confounded associations between genetic ancestry and social
determinants of prostate cancerrisk, it represents an advance toward
amoreequitable, tailored approach torisk stratification and screening
that does not treat race as abiological construct.

Family history of prostate cancer and certain rare genetic variants
are also known prostate cancer risk factors, independent of ances-
try and polygenic score'®*****’, We designed the P-CARE model to
build upon, not replace, these clinical risk factors, similar to breast
cancer-screening models®®*’. Rare variants in several genes, including
BRCA2and MSH2, are known to increase prostate cancer risk and thus
have separate screening guidelines for carriers®’. Carrier status of
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Table 4 | Prostate cancer cause-specific cumulative
incidence in MVP by P-CARE category

Clinical end point Cumulative incidence (%)

Low risk Average risk High risk
(HR<0.75) (HR 0.75-1.5) (HR>1.5)
Prostate cancer
By age 70 4.02 8.38 21.22
By age 80 917 17.68 3743
By age 90 14m 25.29 47.87
Metastatic prostate cancer
By age 70 0.18 0.46 1.4
By age 80 0.77 1.64 4.38
By age 90 1.96 4.29 9.34
Fatal prostate cancer
By age 70 0.02 0.06 0.21
By age 80 0.13 0.34 0.82
By age 90 0.81 1.58 3.61

these variantsis presently unknown for the vast majority of prostate
cancer screen-eligible patients and yet might play a more prominent
rolein preventive careinafuture when genomic testing is more com-
monplace. Despite aggregate analyses suggesting that polygenic
scores can modify the effects of these rare variants***, we deter-
mined that these modified associations are not yet robust enough for
individual variant-level clinical reporting and should not supersede
National Comprehensive Cancer Network (NCCN) guidelines for the
clinical management of rare variants. We therefore chose a genomic
analysis platform that could detect and interpret these important
rare variants and will report them according to established clinical
guidelines to participants. By combining high-coverage exome and
low-coverage whole-genome sequencing (WGS) data, the new BGE
technology provides a cost-efficient, scalable and accurate platform
forimplementing the P-CARE modelin clinical care. In the ProGRESS
trial (ClinicalTrials.govID NCT05926102) participants and their health-
care providers are now receiving clinical reports with P-CARE results
and the results of rare variant analysis, enabling an evaluation of a
precision screening approach on prostate cancer in the US Veterans
Health Administration.

Previous modeling studies suggest that the use of polygenic
scores can improve the cost-effectiveness of prostate cancer screen-
ing pathways with and without MRI****; the ProGRESS trial will provide
additional empiric datato determine the costs and cost-effectiveness
of such an approach in real-world implementation. Even if the
cost-effectiveness of a polygenic approach to screening is marginal
forsingle cancers*>*¢, multiplex platforms such as the BGE enable both
monogenic variant screening and polygenic risk stratification with one
test. Modeling studies already suggest that population genomic screen-
ing for aselect number of monogenic diseases is cost-effective**. More
complex modelsincorporating polygenic risk for multiple diseases are
needed, butitis plausible that as the costs of genomic testing decrease,
theincremental cost-effectiveness of adding polygenic approachesto
genomic medicine programs will be favorable, depending on patient
population, healthcare setting and country.

Ourwork has some limitations. Despite the strengths of our learn-
ing healthcare systemapproach described above, this system-specific
model may not generalize to other settings with different population
risks and screening practices. Model replication in the diverse PRAC-
TICAL and AoU datasets mitigates this concern, but other healthcare
systems should examine model calibration in their own data before
implementation. In addition, while the inclusion of family history,

polygenic score, genetic principal components and rare variants
improves upon existing clinical prostate cancer screening approaches,
the P-CARE model cannot disentangle the effects of genetic predisposi-
tion fromenvironmental exposures and other social determinants that
shape prostate cancer risk. Ongoing and future work should examine
how to model and include other important risk factors in a clinically
implementable risk stratification tool, including the consideration of
other machine-learning-based prediction approaches®***°, Finally,
BGE has many benefits, including genome-level variant information
for polygenic scores as well as an exome backbone for monogenic
reporting, but there are limitations that come with an exome-based
approach that a purpose built capture panel may overcome, includ-
ing lower sensitivity around complex regions of genes like PMS2 and
reduced sensitivity of small CNVs below 3 exons in size.

In summary, a healthcare system-linked biobank has enabled
the development, replication and clinical laboratory validation of an
updated prostate cancer risk model, now implemented in a clinical
trial of precision prostate cancer screening. This approach exemplifies
the power of genomics-enabled-learning health systems to accelerate
the discovery and translation of precision technologies to improve
population health outcomes.

Methods

Study overview

The VA Central Institutional Review Board approved this study (IRB-
Net 1735869 and 1735136). As described in detail below, we used data
fromalarge biobank linked to a national healthcare system to update
a previous prostate cancer polygenic score', We then developed and
cross-validated a prostate cancer prediction model based on the com-
bination of that score and family prostate cancer history, now termed
the P-CARE model. We further validated the P-CARE model in four
external prostate cancer cohort datasets before the development and
validation of aclinical BGE assay both for the P-CARE model and also for
rare prostate cancer-associated monogenic variants. This assay is now
beingimplementedinarandomized clinical trial of genomics-informed
prostate cancer screening in anew cohort of patients from the national
healthcare system in which the P-CARE model was first developed
(ProGRESS; ClinicalTrials.govID NCT05926102).

Participants and phenotype definitions
Genotype and phenotype data were analyzed from the following
cohorts®*"*? (also summarized in Supplementary Tables 12 and 13).

Million Veteran Program. Data from the MVP were used to update a
previous predictionmodel' to develop the new P-CARE model. MVP is
amega-biobank linked to the national Veterans Health Administration
healthcare system of the US Department of VA®.. Participants provide
biospecimens, consent to research access to their VA health records
and complete surveys about family health history, health behaviors,
military and environmental exposures and other health-related fac-
tors. For the present analyses, we used data from 585,418 male MVP
participantsto develop and cross-validate the P-CARE model. All study
participants provided blood samples for DNA extraction and genotyp-
ing using a custom Affymetrix Axiom biobank array containing 723,305
variants, enriched for low-frequency variants in African and Hispanic
populations®, Family history was defined as the presence or absence
of paternal history of prostate cancer, asreported on the MVP survey.
Prostate cancer diagnosis, age at diagnosis and date of last follow-up
wereretrieved from the VA Corporate Data Warehouse based on Inter-
national Classification of Diseases diagnosis codes and VA Central
Cancer Registry data'®**. Age at diagnosis of metastasis (nodal and/or
distant, regardless of whether metastases were detected at diagnosis
or at recurrence) was determined via a validated natural language
processing tool developed in the VA system', Cause and date of death
were obtained from the National Death Index. Fatal prostate cancer

Nature Cancer


http://www.nature.com/natcancer
https://clinicaltrials.gov/ct2/show/NCT05926102
https://clinicaltrials.gov/ct2/show/NCT05926102

Article

https://doi.org/10.1038/s43018-025-01103-0

was defined by ICD9 code 185 or ICD10 code C61 as the underlying
cause of death.

PRACTICAL Consortium. Data from four external cohorts from the
PRACTICAL Consortium were used to externally validate the P-CARE
model. Data from 18,457 men previously genotyped via OncoArray or
iCOGs arrays®*” were divided into four datasets, as described in pre-
vious studies evaluating polygenic scores: (1) men of African ances-
try (n=6,253); (2) men of Asian ancestry (n=2,320); (3) the COSM
population-based cohort withlong-term outcomes (n = 3,415); and (4) the
population-based ProtecT screeningtrial (n = 6,411)**. Family history was
defined as the presence or absence of afirst-degree relative with a pros-
tate cancer diagnosis. Clinically significant prostate cancer was defined
as any case with Gleason score >7, PSA >10 ng ml™, T3-T4 stage, nodal
metastases or distant metastases®. The COSM dataset additionally had
ageatprostate cancer death®® and the ProtecT dataset had prostate biopsy
results for both cases and controls with screening PSA > 3 ng mI™5%¢°,

All of Us Research Program

Datafromthev.7 release of the AoU Research Programwere used asan
additional external validation cohort. Excluding samples flagged for
failing quality control criteria, for being related or for lack of available
electronic health record data, 74,331 samples with short-read WGS data
and male sex assigned at birth were analyzed. Samples were classified
ascases (n =4,473) and controls (n = 69,858) based on the presence or
absence of ‘Malignant neoplasm of prostate’ or ‘Personal history of
malignant neoplasm of prostate’ in the AoU electronic health record
data. Family history was determined based on AoU survey data as
positive (responses ‘Father, ‘Sibling’ or ‘Son’ to the question ‘Includ-
ing yourself, who in your family has had prostate cancer?’; n=3,034)
or negative otherwise (no response or different response to survey
question; n=71,297). The model validity was evaluated within and
across AoU-provided predicted genetic ancestries (African/African
American, n=16,733; American Admixed/Latino, n =10,769; East Asian,
n=1,436; European, n=43,917; Middle Eastern, n =346; and South
Asian, n=1,130) (Supplementary Table 14).

Candidate variants and training for polygenic score

We considered variants previously identified from the following sources
for potential inclusion in an updated polygenic score for the P-CARE
model: 290 variants from a previous score, 613 variants identified as
prostate cancer susceptibility loci in a multi-ancestry genome-wide
association studies, 23 variants identified as susceptibility loci for
benign elevation of PSA or benign prostatic hypertrophy, nine vari-
ants identified as prostate cancer susceptibility loci in men of African
ancestry in agenome-wide meta-analysis and 128 variantsidentified as
susceptibility loci for prostate cancer inagenome-wide multi-ancestry
meta-analysis®>*>*¢-%2, A machine-learning, least absolute shrinkage
andselection operator (LASSO)-regularized Cox proportional hazards
modelapproachwas used inthe MVP dataset to select the final variants
forthe polygenic score and estimate weights, using the R (v.4.4) glmnet
package (v.4.1.8)%"%, To develop the polygenic score, age at any prostate
cancer diagnosis in MVP was the time to event, as this gives the most
statistical power; controls were censored at age of last follow-up. First,
weidentified pairs of variants with highly correlated genotype (defined
asr*>0.95) and used univariable Cox models to exclude the variant from
each pair with weakest univariable association. Next, all remaining can-
didate variants were evaluated for inclusionin the new polygenic score
using a Cox model with genotype allele counts of candidate variants
and thefirst five FastPop principal components as predictor variables.
Genetic principal components were estimated using 2,309 ancestry
informative markers from FastPop®®. Loadings for the first five princi-
pal components were estimated in the 1000 Genomes Project phase 3
dataset®. The final form of the LASSO model was estimated using the
lambda value that minimized the mean cross-validated error®®,

We then used Cox proportional hazards models to evaluate the
association of the new polygenic score with age at diagnosis of prostate
cancer, age at diagnosis of nodal and/or distant metastatic prostate
cancer, and age at prostate cancer death within the MVP dataset overall
andinanalyses stratified by continental population ancestry group, as
in previous work'®*"*%6>¢°72 Similarly, Cox models were used to evalu-
ate the association between the new score and age at diagnosis of any
prostate cancer, clinically significant prostate cancer and fatal prostate
cancer (in the COSM dataset) in the PRACTICAL cohort®®.

P-CARE model development and validation

The resulting polygenic score was then carried forward for use in the
development of an integrated clinical prediction model within MVP.
We developed a Cox model for age at prostate cancer diagnosis as a
function of the polygenic score, modeled as a continuous variable;
family history of prostate cancer (Supplementary Table 1), modeled
as a binary variable indicating presence or absence of at least one
first-degree relative with prostate cancer; and population structure,
modeled using the first two genetic principal components (PCs). Pre-
vious analyses showed that the first two PCs are sufficient to capture
genetic variation for prostate cancer risk stratification compared
to 5-10 PCs™. Individuals not meeting the end point of interest were
censored at last follow-up. Training on metastatic disease did not give
improved results, due to lower event rates.

The resulting P-CARE model was then validated internally within
the MVP dataset and externally within the four PRACTICAL datasets.
Where available, we evaluated the association of the P-CARE model with
age of diagnosis of any prostate cancer, clinically significant prostate
cancer, metastatic prostate cancer and fatal prostate cancer. Asin our
previous work'®*3+3738637072 e estimated illustrative effect sizes using
HRsand teniterations of tenfold cross-validation, calculated to make
the following comparisons: HRg(,,,, menin the highest 20% versus low-
est20%; HRys/so, menin the highest 5% versus those with median values;
and HR,,50, men in the lowest 20% versus those with median values.
Within the MVP dataset, we generated cumulative incidence curves
for each prostate cancer end point by P-CARE percentile groups, asin
previous work®7°, We additionally generated cumulative incidence
curves by P-CARE risk categories defined by risk of metastatic disease,
given its morbidity and mortality and to counter the criticism that
current prostate cancer screening approaches over-detect indolent
disease'” . The high-risk category was defined as an overall P-CARE
HR > 1.5 for metastatic prostate cancer and the low-risk category was
defined as HR < 0.75 (consistent with routine clinical prediction tools
for other diseases, suchasbreast cancer, diabetes and cardiovascular
disease””); all other risk values were considered average risk. The ages
atwhich different P-CARE percentiles and P-CARE risk groups reached
an equivalent cumulative risk of any and metastatic/fatal prostate
cancer as that of the average risk man at 55 and 70 years old, respec-
tively, were also determined. Because ProtecT systematically collected
prostate biopsies, this dataset offered the opportunity to correlate PSA
values with likelihood of clinically significant prostate cancer. Within
the ProtecT dataset, we calculated the PPV of aPSA value > 3 ng ml™ for
clinically significant prostate cancer on biopsy among participantsin
the top fifth (PPV,s) and top 20th P-CARE percentile (PPVgy)*>.

Clinical laboratory assay development and validation

The P-CARE model was then carried forward to develop aclinical labo-
ratory assay (Broad Clinical Labs) to enable precision prostate cancer
screening informed by both the model and relevant rare variants, given
theirimportance in prostate cancer risk.

Blended genome-exome assay. We constructed the assay on aBGE
platform’ modified to achieve deeper exome coverage. The assay
achieves cost-efficiency for detecting rare and common variants
by combining 2-3x WGS with 60-90x exome sequencing in a single
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sequenced sample. The BGE platform has achieved >99% concordance
with 30x genome sequencing data for both exome and genome short
variants”™. Short-variant calling was performed over the high cover-
age exome target regions using the Illumina DRAGEN Bio-IT platform
v.4.2.7.Genotypes and dosage information over the whole genome were
obtained from sequencing data through GLIMPSE2 imputation’” using
the gnomAD HGDP and 1000 Genomes Project callset’®. CNVs were
detected over the exome target regions using GATK-gCNV”°.

Analytic and clinical laboratory validation of polygenic score
and P-CARE model. The analytic validity of the BGE platform for
the polygenic score was assessed by comparing 60 clinical samples
with previously identified variants; reference samples from Coriell
Institute for Medical Research with curated reference variant datasets
maintained by the National Institute of Standards and Technology;
and samples with known SNVs, indels and CNVs from a combination
of previousin-production clinical samples, previous eMERGE studies,
previous CAP proficiency testing samples, Coriell samples and the
Coriell Ancestral Panel. For each of these samples, representing six
genetic ancestry groups (Admixed American, African, Non-Finnish
European, East Asian, South-East Asian and Ashkenazi), we generated
both BGE and WGS dataand calculated the polygenic score and genetic
PCs. Additional evidence of clinical validity for both the polygenic score
and the P-CARE model was obtained using 74,331 samples from the AoU
Research Program. Polygenic score and genetic PCs were calculated
from the WGS genotypes provided by AoU. Individuals were classi-
fied as cases and controls based on the AoU electronic health record
data. P-CARE values were calculated for each AoU participant using
polygenic score, the first two genetic PCs, first-degree family history
of prostate cancer and the MVP-derived coefficients. To determine
the association between P-CARE and prostate cancer case status in
AoU, we calculated odds ratios for an individual to be diagnosed with
prostate cancer in the low and high P-CARE categories, relative to the
average category, usinglogistic regression models controlling for age.

Rare variant selection, validation, and interpretation. We identified
known prostate cancer-associated genes for whichthe NCCN hasissued
clinical management recommendations?°%, This gene listinformed
the filtering for an in silico gene panel for rare variant analysis. The
ability of the BGE to identify pathogenic or likely pathogenic variants
inthese genes was evaluated by assessing the overall technical perfor-
mance of 12 genes related to hereditary prostate cancer risk (BRCAI,
BRCA2, ATM, PALB2, CHEK2, HOXB13, MLH1, MSH2, MSH6, PMS2, TP53
and EPCAM) and identification of known variants from previous clinical
testing (SNVs, smallindels and CNVs) within these genes in 18 clinical
samples. Technical performance of these genes was assessed by deter-
mining the percentage of undercovered bases within a panel gene. A
baseis considered covered ifit satisfies the following: coverage >20x,
base quality >20 and mapping quality >20. This coverage analysis was
performed with two sample fraction thresholds: >80% and >20%. We
determined the sensitivity for the detection of rare monogenic vari-
ants if the variant of interest was identified in the variant call file and
would meet quality and prioritization metrics to be flagged for manual
review by our tertiary analysis platform. Additionally, inter and intra
run precision was assessed by running samples in triplicate across
different runs and within the same run, respectively. We developed a
workflow to classify, review and prioritize variantsinatertiary analysis
platform (Fabric Genomics) before in-house clinical interpretation
and reporting of pathogenic and likely pathogenic variants by ateam
of board-certified geneticists.

Clinical report development

After clinical laboratory validation of the P-CARE and rare variant
pipelines, we developed a laboratory report package suitable for the
clinical implementation of these results, consistent in format and

content with other clinical genetic test reports and with our previous
work**#?, As described in the Results, the report package consisted of
separate laboratory reports for the P-CARE and rare variant results and
asummary reportsynthesizing the result types and providing prostate
cancer screening recommendations for the patient and provider.

Statistics and reproducibility

This study was designed to develop, validate and clinically implement
agenomic risk model for prostate cancer screening using large, diverse
biobank-linked cohorts. Statistical analyses were conducted using Cox
proportional hazards models to evaluate associations between poly-
genicscores, family history, genetic PCs and prostate cancer outcomes.
Model development included internal cross-validation and external
replication in multiple cohorts, with effect sizes estimated using HRs
and cumulative incidence curves.

Samplesizes were determined by the availability of eligible partici-
pantsinthe MVP, PRACTICAL Consortium and AoU Research Program
datasets. No statistical method was used to predetermine sample size.
Nodatawere excluded from the analyses unless flagged for failing qual-
ity control criteria, being from related individuals or lacking available
electronic healthrecord data, as described below. Reproducibility was
assessed through internal cross-validation (ten iterations of tenfold
cross-validation) and external validation in independent cohorts.
Analytic validity of the BGE platform was confirmed by comparison
with reference samples and repeated testing across sequencing runs.
All statistical analyses were performed using R (v.4.4) and relevant
packages. The statistical analyses in this study primarily utilized Cox
proportional hazards models and related approaches. Data distribu-
tion, including normality and equal variances, were formally tested
and met model assumptions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data generated from our analyses are included in the text, tables,
figures and supplementary information. The genetic loci included in
the polygenic score and their effect sizes are included in the Supple-
mentary information. Source data for Figs.2 and 3 and Extended Data
Figs.1and 2 have been provided as Source Datafiles. All other datasup-
porting the findings of this study are available from the corresponding
authoronreasonablerequest. Itis not possible for the authors toshare
individual-level datafrom the MVP due to constraints stipulated in the
informed consent. Anyone wishing to gain access to this data should
inquire directly to MVP (MVPLOI@va.gov). Prostate Cancer Associa-
tion Group to Investigate Cancer-Associated Alterationsin the Genome
(PRACTICAL) Consortium data are available upon request to the Data
Access Committee (http://practical.icr.ac.uk/blog). Datafromthe AoU
Research Programare accessible through the Researcher Workbench
toresearchers with anapproved Data Use and Registration Agreement.
Source data are provided with this paper.

Code availability
The code used for analysesis available at https://github.com/precimed/
MVP-PCa-PHS.
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PPV Performance Stratified by PSA Levels
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Extended Data Fig. 1| Positive predictive value of PSA in ProtecT by P-CARE P-CARE values (P-CAREg,), and men in the top 5% of P-CARE values (P-CARE;).
values stratified by PSA values. Illustrated are mean PPV (95% CI) for various Abbreviations: Cl, confidence interval; P-CARE, Prostate CA Risk and Evaluation;
PSAlevels (all (=3 ng/mL), 3-4 ng/mL, 4-10 ng/mL, and >10 ng/mL) for PPV, positive predictive value; ProtecT, Prostate Testing for Cancer and
clinically significant prostate cancer among three groups of men in the ProtecT Treatment; PSA, prostate-specific antigen.

study (n = 6,411): allmen (regardless of P-CARE value), menin the top 20% of
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Sensitivity Stratified by PSA Levels
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Extended DataFig. 2 | Percentage of true positive cases in ProtecT across cancer stratified by P-CARE risk percentiles, with comparisons between the
P-CARE categories. Illustrated are the percentage of true positive cases for top 5% (P-CARE,s) and top 20% (P-CAREg). Error bars represent 95% confidence
various PSA levels among 6,411 men in the ProtecT Study (all values > 3 ng/mL, intervals.

3-4 ng/mL, 4-10 ng/mL, and >10 ng/mL) for clinically significant prostate
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average P-CARE category, derived from logistic regression models controlling
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis The code used for analyses is available at https://github.com/precimed/MVP-PCa-PHS.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data generated from our analyses are included in the manuscript text, tables, figures, and supplement. The genetic loci included in the polygenic score and their
effect sizes are included in the Supplement. It is not possible for the authors to directly share individual-level data from the Million Veteran Program (MVP) due to
constraints stipulated in the informed consent. Anyone wishing to gain access to this data should inquire directly to MVP at MVPLOI@va.gov. Prostate Cancer
Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) Consortium data are available upon request to the Data Access
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Committee (http://practical.icr.ac.uk/blog). Data from the All of Us Research Program are accessible through the Researcher Workbench to researchers with an
approved Data Use and Registration Agreement.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender For this study about prostate cancer, we used samples from participants identified as "male" based on sex chromosome data.
We do not have information about the gender identity of most participants.

Reporting on race, ethnicity, or We have been careful to distinguish the socially defined constructs of race and ethnicity groups (identified through self-

other socially relevant report in these samples) and genetically similar populations (identified through genetic analysis).
groupings

Population characteristics Participants were all adults of male sex, aged 18 and older, without prostate cancer at baseline
Recruitment N/A - These cohorts are already established cohorts and there was no new participant recruitment.
Ethics oversight The VA Central IRB approved this study (IRBNet 1735869 and 1735136).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All available data meeting inclusion criteria were used.

Data exclusions  Genotype data were excluded if they did not meet standard QC criteria or were from related samples.

Replication Analyses from the Million Veteran Program were replicated in PRACTICAL datasets and in the All of Us Research Program.
Randomization  Randomization is not relevant, as there was no group allocation.

Blinding Blinding is not relevant, as there was no group allocation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
D Antibodies |Z| D ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o )
Describe-any-authentication-procedures for-each seed stock used-or novel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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