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Genomic risk model to implement precision 
prostate cancer screening in clinical care: the 
ProGRESS study
 

Precision healthcare aims to tailor disease prevention and early 
detection to individual risk. Prostate cancer screening may benefit from 
genomics-informed approaches. We developed and validated the P-CARE 
model, a prostate cancer risk prediction tool combining a polygenic score, 
family history and genetic ancestry, using data from over 585,000 male 
participants in the Million Veteran Program. The model was externally 
validated in diverse cohorts and implemented via a blended genome–
exome assay for clinical use. Here we show that the P-CARE model identifies 
clinically meaningful gradients of prostate cancer risk among men, with 
higher scores associated with increased risk of any, metastatic and fatal 
prostate cancer. The model is now being used in a clinical trial of precision 
prostate cancer screening. This work demonstrates the potential for 
genomics-enabled health systems to improve prostate cancer screening and 
prevention in men. ClinicalTrials.gov registration: NCT05926102.

Preventive healthcare is moving from a one-size-fits-all approach to 
more personalized, risk-adapted strategies. Individual risk prediction is 
an important step for developing tailored strategies for disease preven-
tion and early detection. Risk prediction models can now incorporate 
larger and more complex arrays of clinical, genetic, environmental 
and other risk factors from more diverse populations1. Genomics 
specifically is increasingly demonstrating its potential to inform 
risk stratification and preventive strategies for several diseases2–5; 
however, this potential clinical utility remains only theoretical in the 
absence of prospective intervention studies demonstrating improved 
patient outcomes.

Healthcare systems linked to genomic biobanks thus have the 
opportunity both to generate knowledge about the clinical validity 
of genomic risk prediction and to demonstrate the clinical utility of 
implementing that knowledge in care6. These genomics-enabled learn-
ing healthcare systems can leverage knowledge-generating infrastruc-
ture to determine whether genomics and other novel risk predictors 
improve the effectiveness of disease screening and prevention within 
the healthcare system. The result is not only improved care for patients 
within that system but also potentially generalizable knowledge for 
patients in other settings.

Prostate cancer screening is one clinical context where a genomics- 
enabled learning healthcare system approach might be particularly 
beneficial. Prostate cancer is one of the most heritable cancers, and 
recent genomic discoveries have characterized the rare and com-
mon genetic variation underlying much of this heritability7,8. At the 
same time, clinical guidelines differ on which patient populations are 
most likely to experience net benefit from prostate cancer screening, 
including Black men or those with a family history of the disease9–11. 
Universal screening with prostate-specific antigen (PSA) reduces 
prostate cancer mortality but can also overdiagnose indolent disease 
and lead to unnecessary procedures and treatments12–15. The result is 
substantial variation in prostate cancer screening practices16,17. Clini-
cal consensus is even less developed on whether genotype should 
play a role in prostate cancer risk stratification, despite the discovery 
of robust associations between risk and both single rare variants and  
polygenic scores8.

Given this context, genomics-enabled learning health systems 
can lead the development of genomics-tailored approaches to pros-
tate cancer screening and then evaluate the effectiveness of those 
approaches in clinical care. This evidence generation is an impor-
tant step toward the development of clinical guidelines. Here, we 
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We hypothesized that PHS601 would show a strong, consistent associa-
tion with these outcomes across diverse populations.

The final model included 601 of the 707 unique candidate vari-
ants evaluated (Supplementary Data). The resulting polygenic hazard 
score (PHS601) was associated with age at diagnosis of prostate cancer, 
metastatic prostate cancer and prostate cancer death in MVP (Table 1). 
Among the overall MVP cohort, the hazard ratio (HR) per s.d. increase 
in PHS601 for prostate cancer, metastatic prostate cancer and prostate 
cancer death were 2.02 (95% CI 1.97–2.07), 2.07 (95% CI 1.95–2.17) and 
1.96 (95% CI 1.75–2.18), respectively. The associations between PHS601 
and prostate cancer outcomes were similar in each ancestry-stratified 
analysis with >100 events in MVP and within each ancestry-specific 
PRACTICAL dataset (Table 1). Among the East Asian subgroup in MVP, 
which had small case numbers, associations with metastatic and fatal 
prostate cancer were not statistically significant but had consistent 
directions of effect; the association with clinically significant disease 
was statistically significant in the Asian cohort in PRACTICAL (HR 2.11 
95% CI 1.90–2.39). Among the American subgroup in MVP, the associa-
tion with fatal prostate cancer was not statistically significant but had 
a consistent direction of effect (HR 2.22, 95% CI 0.98–4.25).

Association of P-CARE with prostate cancer outcomes
We evaluated whether P-CARE, which integrates a polygenic risk score 
with genetic ancestry and family history, improves prostate cancer 
risk stratification and correlates with disease severity. Family his-
tory was independently statistically significant for prostate cancer 
risk stratification (Supplementary Table 1) and inclusion of genetic 
ancestry improved performance of our previous PHS18, so both were 
included in the model a priori. As hypothesized, the P-CARE model 
that integrated PHS601, genetic ancestry and family history described 
a strong gradient of risk for any, clinically significant, metastatic and 
fatal prostate cancer across MVP and PRACTICAL datasets (Table 2 
and Supplementary Tables 2–5). Among the overall MVP cohort, the 
HR per s.d. increase in P-CARE for prostate cancer, metastatic prostate 
cancer and prostate cancer death were 2.04 (95% CI 1.99–2.08), 2.05 
(95% CI 1.93–2.16), and 1.95 (95% CI 1.76–2.15), respectively. Across the 
MVP and PRACTICAL datasets, compared to men with median P-CARE 
values, men in the lowest P-CARE quintile had HR 0.35–0.46 for the four 
prostate cancer outcomes (HR20/50), whereas men in the highest P-CARE 
quintile had HR 2.48-4.03 (HR80/50; Table 2). The direction and magni-
tude of association between P-CARE and the prostate cancer outcomes 
were similar in analyses of subgroups defined by genetic ancestry 
(Supplementary Table 6) and, alternatively, by self-reported race and 
ethnicity (Supplementary Table 7), in each subgroup with adequate case 
counts. As additional validation, time-dependent area under the curve 
analysis, sensitivity and specificity of defined P-CARE risk-category 
thresholds, and random forest survival modeling confirmed consistent 
model discrimination and robustness (Supplementary Tables 8-10)

Within the ProtecT (Prostate Testing for Cancer and Treatment) 
dataset, the positive predictive value (PPV) of a PSA value ≥ 3 ng ml−1 
for clinically significant prostate cancer was 0.13 (95% CI 0.12–0.14) in 
the overall dataset and 0.19 (95% CI 0.16–0.21) and 0.23 (0.17-0.28) in 
the subsets in the top 20% and top 5% of P-CARE values, respectively 
(Fig. 2, stratified by PSA level in Extended Data Fig. 1). The percentage of 
true positive cases within the ProtecT dataset that fall into high P-CARE 
categories is shown in Extended Data Fig. 2.

We defined P-CARE risk categories by HR thresholds (HR 0.75 and 
HR 1.5 for metastatic prostate cancer) and evaluated both cumulative 
incidence and risk-equivalent age for any, metastatic and fatal prostate 
cancer. Overall, the model categorized 25.1%, 37.3% and 37.6% of MVP 
participants as low, average and high risk, respectively (Table 3). The 
model categorized 68.7% of participants with positive family history as 
high risk and only 5.6% as low risk. Among participants self-reporting 
Black or African-American race, only 2.8% were categorized as low risk. 
Figure 3 shows cumulative prostate cancer incidence curves in MVP 

describe the development, validation and clinical implementation of 
a genomics-informed prostate cancer risk model, developed to enable 
a randomized clinical trial of precision prostate cancer screening in a 
large national healthcare system (Clinicaltrials.gov NCT05926102).

Results
Overview of risk prediction model development
Figure 1 illustrates our discovery-to-implementation approach. The 
Prostate CAncer integrated Risk Evaluation (P-CARE) model was devel-
oped and validated to enhance genomic risk assessment for prostate 
cancer. Using data from the Million Veteran Program (MVP), a large 
biobank linked to the US Veterans Health Administration, we refined 
a prostate cancer polygenic score and integrated it with family history 
and genetic ancestry to create P-CARE. This model was externally vali-
dated in four diverse prostate cancer cohorts from the PRACTICAL Con-
sortium. To facilitate clinical implementation, we developed a blended 
genome–exome (BGE) assay to assess both P-CARE and rare monogenic 
variants associated with prostate cancer risk. The assay is now being 
deployed in a randomized clinical trial (ProGRESS, NCT05926102) to 
evaluate genomics-informed prostate cancer screening in a real-world 
healthcare setting.

Association of polygenic score with prostate cancer outcomes
We assessed whether a polygenic hazard score (PHS601) was signifi-
cantly associated with prostate cancer risk, metastasis and mortal-
ity in both MVP and PRACTICAL as well as across ancestry groups.  
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Fig. 1 | Translating prostate cancer genomic risk discovery to clinical trial 
implementation. A prostate cancer polygenic score (PHS601) is trained in the 
MVP biobank of the VA using known prostate cancer and other prostate trait-
associated loci (1). The P-CARE model is developed in MVP from PHS601, genetic 
principal components and prostate cancer family history (2). Both PHS601 and 
P-CARE are replicated in external multi-ancestry datasets from the PRACTICAL 
Consortium (3). A BGE platform is validated for the P-CARE model, including 
imputation, analytic validation of PHS601 against WGS and clinical laboratory 
validation of P-CARE in AoU Research Program data (4). BGE platform is validated 
for gene panel annotation, filtering and analysis of rare variants in guideline-
informed prostate cancer-associated genes (5). Clinical P-CARE and rare variant 
reports with summary recommendations are developed (6). Clinical laboratory 
analysis and reporting pipeline is implemented in a pragmatic clinical trial of 
precision prostate cancer screening across the VA (7).
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both by P-CARE percentile groups and by P-CARE risk category. As 
shown in Table 4, by age 80 years, men in the high-risk P-CARE group 
had a cumulative risk of any, metastatic and fatal prostate cancer of 
37.4%, 4.4% and 0.8%, respectively. The expected age of any and meta-
static prostate cancer occurred 5 years earlier in the high-risk group 
compared to the men in the standard risk; specifically, a man in the 
high-risk group reached a prostate cancer detection risk equivalent 
to the 55-year standard at an age of 50 years and a metastatic prostate 
cancer risk equivalent to the 70-year standard at an age of 63.5 years 
(Supplementary Table 11).

Development and validation of clinical laboratory assay for 
genetic prostate cancer risk
We then used the BGE platform to develop a clinical laboratory assay for 
inherited prostate cancer risk by combining P-CARE, which evaluates 
polygenic risk, with targeted testing for 12 genes known to be associated 

with hereditary prostate cancer. First, both PHS601 and the integrated 
P-CARE model were again externally validated in the All of Us (AoU) 
cohort, demonstrating strong associations with prostate cancer across 
diverse ancestry groups. Within the AoU dataset, the PHS601 was asso-
ciated with prostate cancer with an odds ratio per s.d. of 1.91 (95% CI 
1.85–1.98). In the same dataset, for the full P-CARE model (PHS601 plus 
genetic principal components and family history) we found an odds 
ratio of 2.41 (95% CI 2.25–2.60) for individuals in the high-risk category 
to be diagnosed with prostate cancer, compared to individuals clas-
sified as average risk. Similarly, individuals in the low-risk category 
show an odds ratio of 0.48 (95% CI 0.44–0.54), compared to individuals 
classified as average risk. Notably, this strong association holds across 
different ancestries. (Extended Data Fig. 3).

Next, the accuracy and reliability of the BGE assay in detecting 
both polygenic and rare monogenic variants associated with prostate 
cancer risk were evaluated against known reference samples; the BGE 

Table 1 | Association of polygenic score with prostate cancer outcomes in MVP and PRACTICAL cohorts

Clinical end point n Event, n HR (95% CI)

HRSD HR80/20 HR20/50 HR80/50 HR95/50

MVP development and validation

Any prostate cancer

  All 585,418 68,618 2.02 (1.97–2.07) 6.27 (5.85–6.72) 0.43 (0.41–0.45) 2.72 (2.62–2.82) 4.06 (3.86–4.29)

  African 105,014 16,178 1.94 (1.84–2.06) 5.81 (5.06–6.79) 0.48 (0.45–0.52) 2.81 (2.59–3.08) 3.74 (3.37–4.23)

  European 420,722 48,178 2.04 (1.97–2.11) 5.74 (5.26–6.20) 0.43 (0.41–0.45) 2.46 (2.35–2.55) 3.78 (3.54–4.03)

  American 50,590 3,775 2.03 (1.83–2.26) 5.55 (4.24–7.07) 0.44 (0.39–0.50) 2.44 (2.13–2.79) 3.72 (3.06–4.52)

  East Asian 9,092 487 2.10 (1.59–2.81) 5.81 (2.90–10.65) 0.44 (0.32–0.60) 2.41 (1.72–3.36) 3.83 (2.31–6.04)

Metastatic prostate cancer

  All 585,418 6,606 2.07 (1.95–2.17) 6.69 (5.70–7.62) 0.42 (0.40–0.45) 2.81 (2.58–3.01) 4.27 (3.78–4.71)

  African 105,014 1,726 1.90 (1.65–2.19) 5.60 (3.81–7.84) 0.50 (0.43–0.58) 2.73 (2.18–3.39) 3.62 (2.70–4.77)

  European 420,722 4,467 1.96 (1.80–2.19) 5.20 (4.19–6.83) 0.45 (0.39–0.50) 2.33 (2.08–2.68) 3.50 (2.97–4.29)

  American 50,590 369 2.07 (1.42–2.64) 6.02 (2.33–10.47) 0.44 (0.32–0.67) 2.51 (1.55–3.40) 3.92 (1.91–6.08)

  East Asian 9,092 44 – – – – –

Fatal prostate cancer

  All 585,418 1,709 1.96 (1.75–2.18) 5.81 (4.31–7.65) 0.45 (0.40–0.51) 2.60 (2.22–3.03) 3.82 (3.06–4.72)

  African 105,014 365 1.62 (1.16–2.12) 3.81 (1.49–7.26) 0.61 (0.44–0.85) 2.15 (1.27–3.22) 2.68 (1.35–4.45)

  European 420,722 1,250 1.92 (1.60–2.20) 4.99 (3.18–6.86) 0.47 (0.39–0.57) 2.27 (1.81–2.69) 3.39 (2.41–4.32)

  American 50,590 87 2.22 (0.98–4.25) 8.45 (0.95–32.23) 0.48 (0.19–1.03) 2.78 (0.97–6.14) 4.81 (0.96–14.32)

  East Asian 9,092 8 – – – – –

PRACTICAL replication

Any prostate cancer

  COSM 3,415 2,298 2.27 (2.11–2.46) 9.18 (6.66–12.93) 0.36 (0.31–0.42) 3.34 (2.97–3.98) 5.35 (4.26–6.92)

  ProtecT 6,411 1,583 1.87 (1.78–2.01) 5.67 (4.75–6.73) 0.44 (0.40–0.48) 2.78 (2.47- 3.05) 3.78 (3.31–4.29)

  African 6,253 3,240 1.84 (1.72–1.98) 8.55 (6.64–11.08) 0.41 (0.36–0.46) 3.47 (2.93–3.99) 4.49 (3.71–5.37)

  Asian 2,320 1,164 2.15 (1.92–2.38) 8.80 (6.73–11.09) 0.35 (0.30–0.39) 3.02 (2.63–3.39) 5.26 (4.24–6.48)

Clinically significant prostate cancer

  COSM 3,415 1,487 2.30 (2.09–2.53) 9.35 (7.32–12.20) 0.36 (0.31–0.41) 2.81 (2.58–3.01) 4.27 (3.78–4.71)

  ProtecT 6,411 628 2.02 (1.88–2.21) 7.02 (5.65–8.42) 0.40 (0.36–0.44) 2.73 (2.18–3.39) 4.45 (3.76–5.11)

  African 6,253 1,424 1.85 (1.69–2.02) 8.61 (6.50–11.61) 0.41 (0.35–0.47) 2.51 (1.55–3.40) 3.92 (1.91–6.08)

  Asian 2,320 716 2.11 (1.90–2.39) 7.88 (5.94–10.68) 0.36 (0.32–0.42) 2.85 (2.44–3.32) 4.83 (3.84–6.09)

Fatal prostate cancer

  COSM 3,415 278 1.91 (1.65–2.28) 5.88 (3.51–9.19) 0.45 (0.36–0.56) 2.58 (1.97–3.32) 3.82 (2.59–5.35)

Association of PHS601 with any, metastatic and fatal prostate cancer in MVP (total and genetic ancestry-stratified groups) and with any, clinically significant, and fatal prostate cancer in four 
PRACTICAL Consortium datasets. Results with fewer than 50 events per subset were excluded given the unstable nature of the HR estimates. COSM, Cohort of Swedish Men; PHS, polygenic 
hazard score.
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platform produced nearly identical results for polygenic risk scores 
and ancestry estimates, with Pearson correlations exceeding r > 0.998 
for PHS601 and r > 0.999 for both principal components. For the 12 
genes related to hereditary prostate cancer risk, the assay met quality 
thresholds for coverage and variant detection in 11 of 12 genes. The one 
exception was PMS2, a technically challenging gene due to its similarity 
to a nearby pseudogene, which can interfere with accurate sequencing. 
Within the PMS2 gene, exons 13, 14 and 15 were undercovered in a subset 
of samples, with 80% and 20% of samples missing full coverage in those 
regions, respectively. Of the 18 samples assessed for monogenic rare 
variants, all 18 variants of interest were successfully detected, includ-
ing seven single-nucleotide variants (SNVs), five insertions/deletions 
(indels) and six copy-number variants (CNVs); however, three of the 
CNVs were classified as low quality based on prespecified thresholds 
for clinical reporting (QUAL ≥ 50 for duplications, QUAL ≥ 100 for het-
erozygous deletions and QUAL ≥ 400 for homozygous deletions) and 
would have not been clinically reported in a real-world setting. This is 
consistent with known limitations in detecting small CNVs involving 
fewer than three exons. Despite this, the platform showed excellent 
technical performance with 100% precision across repeated tests, both 
within and between sequencing runs.

Clinical P-CARE and monogenic reports
Here we describe the implementation of the P-CARE and monogenic risk 
reports in clinical use, linking them to personalized screening recom-
mendations in the ProGRESS trial. An example of the resulting labora-
tory report package is shown in the Supplementary Information. The 
cover page summarizes the results of both the monogenic and P-CARE 
analyses and provides an overall risk category for the individual based 
on these results. An individual with a pathogenic or likely pathogenic 
variant in one of the 12 prostate cancer-associated genes is categorized 
as high risk, regardless of P-CARE results. Individuals without such a 
variant are categorized as low, average or high risk according to their 
P-CARE result, with thresholds at HR = 0.75 and HR = 1.5, as described in 
the Methods. The cover page also links these risk categories to tailored 
prostate cancer screening recommendations for the individual. After 

this cover page summary, separate P-CARE and rare variant reports 
provide further detail about these individual result types, including 
information about P-CARE model development and validation, techni-
cal descriptions of the analyses performed, relevant gene and disease 
information and literature references. These reports are now being used 
in the national ProGRESS randomized clinical trial, in which 5,000 VA 
patients who are prostate cancer screen-eligible are randomly assigned 
to usual care versus precision screening recommendations informed 
by P-CARE and rare variants.

Table 2 | Association of P-CARE model with prostate cancer outcomes in MVP and PRACTICAL cohorts

Clinical end point n HR (95% CI)

HRSD HR80/20 HR20/50 HR80/50 HR95/50

Any prostate cancer

  MVP 585,418 2.04 (1.99–2.08) 6.33 (5.95–6.71) 0.43 (0.42–0.45) 2.75 (2.66–2.84) 4.09 (3.89–4.29)

  COSM 3,415 2.33 (2.14–2.58) 9.40 (6.88–13.20) 0.37 (0.31–0.42) 3.43 (2.91–4.08) 5.45 (4.31–7.00)

  ProtecT 6,411 1.87 (1.77–2.01) 5.53 (4.60–6.66) 0.45 (0.41–0.49) 2.48 (2.27–2.73) 3.71 (3.23–4.23)

  African 6,253 2.00 (1.86–2.16) 9.68 (7.55–12.49) 0.40 (0.36–0.46) 3.88 (3.35–4.42) 5.16 (4.35–6.03)

  Asian 2,320 2.17 (1.95–2.42) 8.74 (6.60–11.28) 0.35 (0.30–0.40) 3.06 (2.65–3.46) 5.23 (4.09–6.47)

Clinically significant prostate cancer

  COSM 3,415 2.34 (2.12–2.55) 9.39 (7.25–12.27) 0.37 (0.32–0.42) 3.43 (2.98–3.99) 5.47 (4.47–6.76)

  ProtecT 6,411 2.01 (1.87–2.18) 6.81 (5.42–8.20) 0.40 (0.36–0.44) 2.77 (2.48–3.04) 4.35 (3.71–4.12)

  African 6,253 2.04 (1.86–2.23) 10.30 (7.66–13.47) 0.39 (0.36–0.44) 4.03 (3.39–4.86) 5.41 (4.38–6.77)

  Asian 2,320 2.11 (1.91–2.35) 7.60 (5.70–10.15) 0.38 (0.33–0.43) 2.84 (2.42–3.31) 4.68 (3.71–5.73)

Metastatic prostate cancer

  MVP 585,418 2.05 (1.93–2.16) 6.50 (5.51–7.38) 0.43 (0.40–0.46) 2.78 (2.54–2.99) 4.17 (3.68–4.59)

Fatal prostate cancer

  MVP 585,418 1.95 (1.76–2.15) 5.71 (4.33–7.30) 0.45 (0.41–0.52) 2.59 (2.22–2.97) 3.77 (3.05–4.57)

  COSM 3,415 1.95 (1.66–2.37) 5.95 (3.61–9.29) 0.46 (0.37–0.56) 2.65 (2.03–3.41) 3.87 (2.69–5.49)

Association of P-CARE model with any prostate cancer, clinically significant prostate cancer, metastatic prostate cancer, and fatal prostate cancer in MVP and four PRACTICAL Consortium 
datasets. As described, P-CARE model consists of PHS601, first-degree family history of prostate cancer and genetic principal components.
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Fig. 2 | Positive predictive value of PSA in ProtecT by P-CARE values. Illustrated 
are mean PPV (95% CI) for a PSA value ≥ 3 ng ml−1 for clinically significant prostate 
cancer among three groups of men in the ProtecT study (n = 6,411): all men 
(regardless of P-CARE value), men in the top 20% of P-CARE values (P-CARE80) and 
men in the top 5% of P-CARE values (P-CARE95).
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Discussion
We used genomic, clinical and survey data from a large national biobank 
to develop a genomics-informed prostate cancer prediction model con-
sisting of family history, genetic principal components and an updated 
polygenic score of 601 prostate trait-associated loci. Patients in the 
lowest and highest 20% of values under this model have 0.4-fold and 
2.7-fold risk of prostate cancer, respectively, compared to those with 
median values; replication in external multi-ancestry cohorts con-
firmed these associations. Men at highest risk of developing advanced 
prostate cancer are most likely to benefit from screening; the P-CARE 
model is associated with risk of all, clinically significant, metastatic and 
fatal prostate cancer. When low and high risk were defined as HR < 0.75 
and HR > 1.5, respectively, for metastatic prostate cancer, the cumu-
lative incidence of metastatic prostate cancer by age 80 years in the 
biobank was 0.8% in the low-risk group and 4.4% in the high-risk group.

Unlike our previous PHS (PHS290), both P-CARE and PHS601 have 
relatively similar performance at a population level to discriminate 
prostate cancer risk; family history and agnostic genetic ancestry have 
less prognostic value in the current multivariable model than in our 
previous model. However, the effect of family history is substantial for 
individuals so inclusion of family history could make a difference at an 
individual level in clinical decision-making. While ancestry seems to be 
mostly accounted for by PHS601, we opted not to exclude this post hoc. 
We then developed and validated a clinical assay on a cost-efficient BGE 
platform for both the prediction model and rare pathogenic variants in 
known prostate cancer genes. This assay and associated clinical reports 
are now enabling a clinical trial of precision prostate cancer screening 
among patients receiving care from the national healthcare system 
from which the biobank data were derived. This approach illustrates 
the power of genomics-enabled learning health systems to generate 
translatable discoveries for implementation in preventive healthcare.

We designed the P-CARE model and ongoing prostate cancer 
screening trial to examine how the routine collection and interpreta-
tion of genomic data in preventive care might improve upon exist-
ing screening practices in a large integrated health system. Prostate 
cancer is highly prevalent, but despite randomized controlled trial 
evidence that screening with PSA testing can reduce prostate cancer 

mortality14,19, guidelines vary by organization and country11 on how to 
balance the benefits of screening (early detection and treatment, result-
ing in lower incidence of advanced and lethal disease) and its potential 
risks (overdiagnosis of apparently indolent disease and morbidity from 
unnecessary procedures and treatments). As a result, screening prac-
tices are highly variable16,17,20–23. Better models are needed to distinguish 
men most likely to benefit from screening from those for whom its 
risks might outweigh its benefits. A learning health system approach 
is ideal to improve prostate cancer screening for a few reasons. First, 
risk prediction models that inform the net benefit of cancer screening 
depend in large part on model calibration within a population; relative 
and absolute risk estimates derived from a healthcare system-linked 
biobank are thus particularly informative for patients receiving care 
in that system. In particular, age is a critical factor not only in the risk 
of advanced prostate cancer but also for the competing health risks 
that might make prostate cancer early detection less important24; our 
time-to-event analysis and age-specific cumulative incidence curves 
account for age and allow physicians to balance these with age-related 
competing risks for a given individual to guide age-based screening 
decisions. Second, the effect sizes of polygenic scores themselves, 
including for prostate cancer, can vary between biobanks25,26. Third, 
the net benefit of prostate cancer screening in a population is highly 
dependent on the downstream diagnostic and therapeutic manage-
ment of elevated PSA values and abnormal prostate biopsy results27,28; 
nesting the evaluation of a new screening paradigm within its target 
healthcare delivery system helps ensure that system-specific clinical 
practice patterns are included.

Our approach also seeks to address controversies in prostate can-
cer screening that are intimately intertwined with health disparities. In 
the United States, Black men are more likely to be both diagnosed with 
and die from prostate cancer29. Possible causal factors include genetic, 
environmental and social determinants of health, including struc-
tural factors including access to screening and other healthcare30–32. 
Black men are highlighted in prostate cancer guidelines as a group 
whose high risk merits earlier screening9,10. This recommendation is 
appropriate to address racial disparities in prostate cancer outcomes; 
however, at the same time, the use of race in medical decision-making 

Table 3 | Characteristics of P-CARE risk categories for metastatic prostate cancer among 585,418 MVP participants

P-CARE risk category, n (%)

n Low risk (HR < 0.75) Average risk (HR 0.75-1.5) High risk (HR > 1.5)

Total 585,418 146,826 (25.08) 218,530 (37.33) 220,062 (37.59)

Positive family history 28,358 1,595 (5.62) 7,270 (25.63) 19,493 (68.73)

Genetic ancestry groups

  African 105,014 2,607 (2.48) 19,314 (18.39) 83,093 (79.12)

  European 420,722 128,096 (30.44) 173,774 (41.30) 118,852 (28.24)

  American 50,590 12,842 (25.38) 21,518 (42.53) 16,230 (32.08)

  East Asian 9,092 3,281 (36.08) 3,924 (43.15) 1,887 (20.75)

Self-reported race/ethnicity groups

  American Indian or Alaska Native 5,507 1,346 (24.44) 2,236 (40.60) 1,925 (34.95)

  Asian 6,210 2,403 (38.69) 2,684 (43.22) 1,123 (18.08)

  Black or African American 101,920 2,812 (2.75) 18,986 (18.62) 80,122 (78.61)

  Hispanic white 26,037 6,871 (26.38) 11,067 (42.50) 8,099 (31.10)

  Native Hawaiian or Pacific Islander 3,042 755 (24.81) 1,259 (41.38) 1,028 (33.79)

  Non-Hispanic white 418,387 126,633 (30.26) 172,661 (41.26) 119,093 (28.46)

  Other 8,077 1,938 (23.99) 3,303 (40.89) 2,836 (35.11)

  Unknown 16,238 4,068 (25.05) 6,334 (39.00) 5,836 (35.94)

P-CARE risk categories are defined by thresholds of HR 0.75 and HR 1.5 for metastatic prostate cancer. Participants with a HR for metastatic prostate cancer <0.75 and >1.5 are defined as low and 
high risk, respectively.
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can inappropriately ascribe to biology effects that arise from a com-
plex social construct confounded by myriad social determinants of 
health; it also ignores the complex multiracial and multi-ancestry 
backgrounds of individuals in modern healthcare system populations. 
We thus set out to develop a prostate cancer risk prediction model that 
did not include discrete race or genetic ancestry categories, favoring 
instead, principal components as a continuous measure of genetic 
variation. At the same time, we confirmed that the resulting model 
performed well across categories of socially defined populations (race 
and ethnicity groups in MVP and external cohorts). Initial genome 
studies predominantly included individuals with European ancestry, 
but more recent work has improved genetic discovery and risk strati-
fication in more diverse populations, including African ancestry18,33–37.  

The P-CARE model extends this work, confirming that most Black men, 
but not all, have high risk. While the model does not fully disentangle 
the confounded associations between genetic ancestry and social 
determinants of prostate cancer risk, it represents an advance toward 
a more equitable, tailored approach to risk stratification and screening 
that does not treat race as a biological construct.

Family history of prostate cancer and certain rare genetic variants 
are also known prostate cancer risk factors, independent of ances-
try and polygenic score18,33,34,37. We designed the P-CARE model to 
build upon, not replace, these clinical risk factors, similar to breast 
cancer-screening models38,39. Rare variants in several genes, including 
BRCA2 and MSH2, are known to increase prostate cancer risk and thus 
have separate screening guidelines for carriers20. Carrier status of 
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Fig. 3 | Prostate cancer cause-specific cumulative incidence in MVP by P-CARE 
strata. a–c, Cause-specific cumulative incidence within MVP for prostate 
cancer (a), metastatic prostate cancer (b) and fatal prostate cancer (c). The left 

column shows incidence for each end point by P-CARE percentile group: 0–20th, 
30–70th, 80–100th and 95–100th. The right column shows incidence for each 
end point by P-CARE risk category: high, average and low risk.
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these variants is presently unknown for the vast majority of prostate 
cancer screen-eligible patients and yet might play a more prominent 
role in preventive care in a future when genomic testing is more com-
monplace. Despite aggregate analyses suggesting that polygenic 
scores can modify the effects of these rare variants40–42, we deter-
mined that these modified associations are not yet robust enough for 
individual variant-level clinical reporting and should not supersede 
National Comprehensive Cancer Network (NCCN) guidelines for the 
clinical management of rare variants. We therefore chose a genomic 
analysis platform that could detect and interpret these important 
rare variants and will report them according to established clinical 
guidelines to participants. By combining high-coverage exome and 
low-coverage whole-genome sequencing (WGS) data, the new BGE 
technology provides a cost-efficient, scalable and accurate platform 
for implementing the P-CARE model in clinical care. In the ProGRESS 
trial (ClinicalTrials.gov ID NCT05926102) participants and their health-
care providers are now receiving clinical reports with P-CARE results 
and the results of rare variant analysis, enabling an evaluation of a 
precision screening approach on prostate cancer in the US Veterans 
Health Administration.

Previous modeling studies suggest that the use of polygenic 
scores can improve the cost-effectiveness of prostate cancer screen-
ing pathways with and without MRI43,44; the ProGRESS trial will provide 
additional empiric data to determine the costs and cost-effectiveness 
of such an approach in real-world implementation. Even if the 
cost-effectiveness of a polygenic approach to screening is marginal 
for single cancers45,46, multiplex platforms such as the BGE enable both 
monogenic variant screening and polygenic risk stratification with one 
test. Modeling studies already suggest that population genomic screen-
ing for a select number of monogenic diseases is cost-effective47,48. More 
complex models incorporating polygenic risk for multiple diseases are 
needed, but it is plausible that as the costs of genomic testing decrease, 
the incremental cost-effectiveness of adding polygenic approaches to 
genomic medicine programs will be favorable, depending on patient 
population, healthcare setting and country.

Our work has some limitations. Despite the strengths of our learn-
ing healthcare system approach described above, this system-specific 
model may not generalize to other settings with different population 
risks and screening practices. Model replication in the diverse PRAC-
TICAL and AoU datasets mitigates this concern, but other healthcare 
systems should examine model calibration in their own data before 
implementation. In addition, while the inclusion of family history, 

polygenic score, genetic principal components and rare variants 
improves upon existing clinical prostate cancer screening approaches, 
the P-CARE model cannot disentangle the effects of genetic predisposi-
tion from environmental exposures and other social determinants that 
shape prostate cancer risk. Ongoing and future work should examine 
how to model and include other important risk factors in a clinically 
implementable risk stratification tool, including the consideration of 
other machine-learning-based prediction approaches29,49,50. Finally, 
BGE has many benefits, including genome-level variant information 
for polygenic scores as well as an exome backbone for monogenic 
reporting, but there are limitations that come with an exome-based 
approach that a purpose built capture panel may overcome, includ-
ing lower sensitivity around complex regions of genes like PMS2 and 
reduced sensitivity of small CNVs below 3 exons in size.

In summary, a healthcare system-linked biobank has enabled 
the development, replication and clinical laboratory validation of an 
updated prostate cancer risk model, now implemented in a clinical 
trial of precision prostate cancer screening. This approach exemplifies 
the power of genomics-enabled-learning health systems to accelerate 
the discovery and translation of precision technologies to improve 
population health outcomes.

Methods
Study overview
The VA Central Institutional Review Board approved this study (IRB-
Net 1735869 and 1735136). As described in detail below, we used data 
from a large biobank linked to a national healthcare system to update 
a previous prostate cancer polygenic score18. We then developed and 
cross-validated a prostate cancer prediction model based on the com-
bination of that score and family prostate cancer history, now termed 
the P-CARE model. We further validated the P-CARE model in four 
external prostate cancer cohort datasets before the development and 
validation of a clinical BGE assay both for the P-CARE model and also for 
rare prostate cancer-associated monogenic variants. This assay is now 
being implemented in a randomized clinical trial of genomics-informed 
prostate cancer screening in a new cohort of patients from the national 
healthcare system in which the P-CARE model was first developed 
(ProGRESS; ClinicalTrials.gov ID NCT05926102).

Participants and phenotype definitions
Genotype and phenotype data were analyzed from the following 
cohorts33,51,52 (also summarized in Supplementary Tables 12 and 13).

Million Veteran Program. Data from the MVP were used to update a 
previous prediction model18 to develop the new P-CARE model. MVP is 
a mega-biobank linked to the national Veterans Health Administration 
healthcare system of the US Department of VA51. Participants provide 
biospecimens, consent to research access to their VA health records 
and complete surveys about family health history, health behaviors, 
military and environmental exposures and other health-related fac-
tors. For the present analyses, we used data from 585,418 male MVP 
participants to develop and cross-validate the P-CARE model. All study 
participants provided blood samples for DNA extraction and genotyp-
ing using a custom Affymetrix Axiom biobank array containing 723,305 
variants, enriched for low-frequency variants in African and Hispanic 
populations53. Family history was defined as the presence or absence 
of paternal history of prostate cancer, as reported on the MVP survey. 
Prostate cancer diagnosis, age at diagnosis and date of last follow-up 
were retrieved from the VA Corporate Data Warehouse based on Inter-
national Classification of Diseases diagnosis codes and VA Central 
Cancer Registry data18,54. Age at diagnosis of metastasis (nodal and/or 
distant, regardless of whether metastases were detected at diagnosis 
or at recurrence) was determined via a validated natural language 
processing tool developed in the VA system18,55. Cause and date of death 
were obtained from the National Death Index. Fatal prostate cancer 

Table 4 | Prostate cancer cause-specific cumulative 
incidence in MVP by P-CARE category

Clinical end point Cumulative incidence (%)

Low risk 
 (HR < 0.75)

Average risk  
(HR 0.75-1.5)

High risk  
(HR > 1.5)

Prostate cancer

  By age 70 4.02 8.38 21.22

  By age 80 9.17 17.68 37.43

  By age 90 14.11 25.29 47.87

Metastatic prostate cancer

  By age 70 0.18 0.46 1.41

  By age 80 0.77 1.64 4.38

  By age 90 1.96 4.29 9.34

Fatal prostate cancer

  By age 70 0.02 0.06 0.21

  By age 80 0.13 0.34 0.82

  By age 90 0.81 1.58 3.61
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was defined by ICD9 code 185 or ICD10 code C61 as the underlying 
cause of death.

PRACTICAL Consortium. Data from four external cohorts from the 
PRACTICAL Consortium were used to externally validate the P-CARE 
model. Data from 18,457 men previously genotyped via OncoArray or 
iCOGs arrays56,57 were divided into four datasets, as described in pre-
vious studies evaluating polygenic scores: (1) men of African ances-
try (n = 6,253); (2) men of Asian ancestry (n = 2,320); (3) the COSM 
population-based cohort with long-term outcomes (n = 3,415); and (4) the 
population-based ProtecT screening trial (n = 6,411)33. Family history was 
defined as the presence or absence of a first-degree relative with a pros-
tate cancer diagnosis. Clinically significant prostate cancer was defined 
as any case with Gleason score ≥7, PSA ≥ 10 ng ml−1, T3-T4 stage, nodal 
metastases or distant metastases33. The COSM dataset additionally had 
age at prostate cancer death58 and the ProtecT dataset had prostate biopsy 
results for both cases and controls with screening PSA ≥ 3 ng ml−159,60.

All of Us Research Program
Data from the v.7 release of the AoU Research Program were used as an 
additional external validation cohort. Excluding samples flagged for 
failing quality control criteria, for being related or for lack of available 
electronic health record data, 74,331 samples with short-read WGS data 
and male sex assigned at birth were analyzed. Samples were classified 
as cases (n = 4,473) and controls (n = 69,858) based on the presence or 
absence of ‘Malignant neoplasm of prostate’ or ‘Personal history of 
malignant neoplasm of prostate’ in the AoU electronic health record 
data. Family history was determined based on AoU survey data as 
positive (responses ‘Father,’ ‘Sibling’ or ‘Son’ to the question ‘Includ-
ing yourself, who in your family has had prostate cancer?’; n = 3,034) 
or negative otherwise (no response or different response to survey 
question; n = 71,297). The model validity was evaluated within and 
across AoU-provided predicted genetic ancestries (African/African 
American, n = 16,733; American Admixed/Latino, n = 10,769; East Asian, 
n = 1,436; European, n = 43,917; Middle Eastern, n = 346; and South 
Asian, n = 1,130) (Supplementary Table 14).

Candidate variants and training for polygenic score
We considered variants previously identified from the following sources 
for potential inclusion in an updated polygenic score for the P-CARE 
model: 290 variants from a previous score, 613 variants identified as 
prostate cancer susceptibility loci in a multi-ancestry genome-wide 
association studies, 23 variants identified as susceptibility loci for 
benign elevation of PSA or benign prostatic hypertrophy, nine vari-
ants identified as prostate cancer susceptibility loci in men of African 
ancestry in a genome-wide meta-analysis and 128 variants identified as 
susceptibility loci for prostate cancer in a genome-wide multi-ancestry 
meta-analysis33,35,36,61,62. A machine-learning, least absolute shrinkage 
and selection operator (LASSO)-regularized Cox proportional hazards 
model approach was used in the MVP dataset to select the final variants 
for the polygenic score and estimate weights, using the R (v.4.4) glmnet 
package (v.4.1.8)63–65. To develop the polygenic score, age at any prostate 
cancer diagnosis in MVP was the time to event, as this gives the most 
statistical power; controls were censored at age of last follow-up. First, 
we identified pairs of variants with highly correlated genotype (defined 
as r2 > 0.95) and used univariable Cox models to exclude the variant from 
each pair with weakest univariable association. Next, all remaining can-
didate variants were evaluated for inclusion in the new polygenic score 
using a Cox model with genotype allele counts of candidate variants 
and the first five FastPop principal components as predictor variables. 
Genetic principal components were estimated using 2,309 ancestry 
informative markers from FastPop66. Loadings for the first five princi-
pal components were estimated in the 1000 Genomes Project phase 3 
dataset67. The final form of the LASSO model was estimated using the 
lambda value that minimized the mean cross-validated error68.

We then used Cox proportional hazards models to evaluate the 
association of the new polygenic score with age at diagnosis of prostate 
cancer, age at diagnosis of nodal and/or distant metastatic prostate 
cancer, and age at prostate cancer death within the MVP dataset overall 
and in analyses stratified by continental population ancestry group, as 
in previous work18,37,58,63,69–72. Similarly, Cox models were used to evalu-
ate the association between the new score and age at diagnosis of any 
prostate cancer, clinically significant prostate cancer and fatal prostate 
cancer (in the COSM dataset) in the PRACTICAL cohort18.

P-CARE model development and validation
The resulting polygenic score was then carried forward for use in the 
development of an integrated clinical prediction model within MVP. 
We developed a Cox model for age at prostate cancer diagnosis as a 
function of the polygenic score, modeled as a continuous variable; 
family history of prostate cancer (Supplementary Table 1), modeled 
as a binary variable indicating presence or absence of at least one 
first-degree relative with prostate cancer; and population structure, 
modeled using the first two genetic principal components (PCs). Pre-
vious analyses showed that the first two PCs are sufficient to capture 
genetic variation for prostate cancer risk stratification compared 
to 5–10 PCs37. Individuals not meeting the end point of interest were 
censored at last follow-up. Training on metastatic disease did not give 
improved results, due to lower event rates.

The resulting P-CARE model was then validated internally within 
the MVP dataset and externally within the four PRACTICAL datasets. 
Where available, we evaluated the association of the P-CARE model with 
age of diagnosis of any prostate cancer, clinically significant prostate 
cancer, metastatic prostate cancer and fatal prostate cancer. As in our 
previous work18,33,34,37,58,63,70–72, we estimated illustrative effect sizes using 
HRs and ten iterations of tenfold cross-validation, calculated to make 
the following comparisons: HR80/20, men in the highest 20% versus low-
est 20%; HR95/50, men in the highest 5% versus those with median values; 
and HR20/50, men in the lowest 20% versus those with median values. 
Within the MVP dataset, we generated cumulative incidence curves 
for each prostate cancer end point by P-CARE percentile groups, as in 
previous work63,70. We additionally generated cumulative incidence 
curves by P-CARE risk categories defined by risk of metastatic disease, 
given its morbidity and mortality and to counter the criticism that 
current prostate cancer screening approaches over-detect indolent 
disease12–15. The high-risk category was defined as an overall P-CARE 
HR > 1.5 for metastatic prostate cancer and the low-risk category was 
defined as HR < 0.75 (consistent with routine clinical prediction tools 
for other diseases, such as breast cancer, diabetes and cardiovascular 
disease73–75); all other risk values were considered average risk. The ages 
at which different P-CARE percentiles and P-CARE risk groups reached 
an equivalent cumulative risk of any and metastatic/fatal prostate 
cancer as that of the average risk man at 55 and 70 years old, respec-
tively, were also determined. Because ProtecT systematically collected 
prostate biopsies, this dataset offered the opportunity to correlate PSA 
values with likelihood of clinically significant prostate cancer. Within 
the ProtecT dataset, we calculated the PPV of a PSA value ≥ 3 ng ml−1 for 
clinically significant prostate cancer on biopsy among participants in 
the top fifth (PPV95) and top 20th P-CARE percentile (PPV80)33,60.

Clinical laboratory assay development and validation
The P-CARE model was then carried forward to develop a clinical labo-
ratory assay (Broad Clinical Labs) to enable precision prostate cancer 
screening informed by both the model and relevant rare variants, given 
their importance in prostate cancer risk.

Blended genome–exome assay. We constructed the assay on a BGE 
platform76 modified to achieve deeper exome coverage. The assay 
achieves cost-efficiency for detecting rare and common variants 
by combining 2–3× WGS with 60–90× exome sequencing in a single 
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sequenced sample. The BGE platform has achieved >99% concordance 
with 30× genome sequencing data for both exome and genome short 
variants76. Short-variant calling was performed over the high cover-
age exome target regions using the Illumina DRAGEN Bio-IT platform 
v.4.2.7. Genotypes and dosage information over the whole genome were 
obtained from sequencing data through GLIMPSE2 imputation77 using 
the gnomAD HGDP and 1000 Genomes Project callset78. CNVs were 
detected over the exome target regions using GATK-gCNV79.

Analytic and clinical laboratory validation of polygenic score 
and P-CARE model. The analytic validity of the BGE platform for 
the polygenic score was assessed by comparing 60 clinical samples 
with previously identified variants; reference samples from Coriell 
Institute for Medical Research with curated reference variant datasets 
maintained by the National Institute of Standards and Technology; 
and samples with known SNVs, indels and CNVs from a combination 
of previous in-production clinical samples, previous eMERGE studies, 
previous CAP proficiency testing samples, Coriell samples and the 
Coriell Ancestral Panel. For each of these samples, representing six 
genetic ancestry groups (Admixed American, African, Non-Finnish 
European, East Asian, South-East Asian and Ashkenazi), we generated 
both BGE and WGS data and calculated the polygenic score and genetic 
PCs. Additional evidence of clinical validity for both the polygenic score 
and the P-CARE model was obtained using 74,331 samples from the AoU 
Research Program. Polygenic score and genetic PCs were calculated 
from the WGS genotypes provided by AoU. Individuals were classi-
fied as cases and controls based on the AoU electronic health record 
data. P-CARE values were calculated for each AoU participant using 
polygenic score, the first two genetic PCs, first-degree family history 
of prostate cancer and the MVP-derived coefficients. To determine 
the association between P-CARE and prostate cancer case status in 
AoU, we calculated odds ratios for an individual to be diagnosed with 
prostate cancer in the low and high P-CARE categories, relative to the 
average category, using logistic regression models controlling for age.

Rare variant selection, validation, and interpretation. We identified 
known prostate cancer-associated genes for which the NCCN has issued 
clinical management recommendations20,80,81. This gene list informed 
the filtering for an in silico gene panel for rare variant analysis. The 
ability of the BGE to identify pathogenic or likely pathogenic variants 
in these genes was evaluated by assessing the overall technical perfor-
mance of 12 genes related to hereditary prostate cancer risk (BRCA1, 
BRCA2, ATM, PALB2, CHEK2, HOXB13, MLH1, MSH2, MSH6, PMS2, TP53 
and EPCAM) and identification of known variants from previous clinical 
testing (SNVs, small indels and CNVs) within these genes in 18 clinical 
samples. Technical performance of these genes was assessed by deter-
mining the percentage of undercovered bases within a panel gene. A 
base is considered covered if it satisfies the following: coverage >20×, 
base quality >20 and mapping quality >20. This coverage analysis was 
performed with two sample fraction thresholds: ≥80% and ≥20%. We 
determined the sensitivity for the detection of rare monogenic vari-
ants if the variant of interest was identified in the variant call file and 
would meet quality and prioritization metrics to be flagged for manual 
review by our tertiary analysis platform. Additionally, inter and intra 
run precision was assessed by running samples in triplicate across 
different runs and within the same run, respectively. We developed a 
workflow to classify, review and prioritize variants in a tertiary analysis 
platform (Fabric Genomics) before in-house clinical interpretation 
and reporting of pathogenic and likely pathogenic variants by a team 
of board-certified geneticists.

Clinical report development
After clinical laboratory validation of the P-CARE and rare variant 
pipelines, we developed a laboratory report package suitable for the 
clinical implementation of these results, consistent in format and 

content with other clinical genetic test reports and with our previous 
work4,5,82. As described in the Results, the report package consisted of 
separate laboratory reports for the P-CARE and rare variant results and 
a summary report synthesizing the result types and providing prostate 
cancer screening recommendations for the patient and provider.

Statistics and reproducibility
This study was designed to develop, validate and clinically implement 
a genomic risk model for prostate cancer screening using large, diverse 
biobank-linked cohorts. Statistical analyses were conducted using Cox 
proportional hazards models to evaluate associations between poly-
genic scores, family history, genetic PCs and prostate cancer outcomes. 
Model development included internal cross-validation and external 
replication in multiple cohorts, with effect sizes estimated using HRs 
and cumulative incidence curves.

Sample sizes were determined by the availability of eligible partici-
pants in the MVP, PRACTICAL Consortium and AoU Research Program 
datasets. No statistical method was used to predetermine sample size. 
No data were excluded from the analyses unless flagged for failing qual-
ity control criteria, being from related individuals or lacking available 
electronic health record data, as described below. Reproducibility was 
assessed through internal cross-validation (ten iterations of tenfold 
cross-validation) and external validation in independent cohorts. 
Analytic validity of the BGE platform was confirmed by comparison 
with reference samples and repeated testing across sequencing runs. 
All statistical analyses were performed using R (v.4.4) and relevant 
packages. The statistical analyses in this study primarily utilized Cox 
proportional hazards models and related approaches. Data distribu-
tion, including normality and equal variances, were formally tested 
and met model assumptions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data generated from our analyses are included in the text, tables, 
figures and supplementary information. The genetic loci included in 
the polygenic score and their effect sizes are included in the Supple-
mentary information. Source data for Figs. 2 and 3 and Extended Data 
Figs. 1 and 2 have been provided as Source Data files. All other data sup-
porting the findings of this study are available from the corresponding 
author on reasonable request. It is not possible for the authors to share 
individual-level data from the MVP due to constraints stipulated in the 
informed consent. Anyone wishing to gain access to this data should 
inquire directly to MVP (MVPLOI@va.gov). Prostate Cancer Associa-
tion Group to Investigate Cancer-Associated Alterations in the Genome 
(PRACTICAL) Consortium data are available upon request to the Data 
Access Committee (http://practical.icr.ac.uk/blog). Data from the AoU 
Research Program are accessible through the Researcher Workbench 
to researchers with an approved Data Use and Registration Agreement. 
Source data are provided with this paper.

Code availability
The code used for analyses is available at https://github.com/precimed/
MVP-PCa-PHS.
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Extended Data Fig. 1 | Positive predictive value of PSA in ProtecT by P-CARE 
values stratified by PSA values. Illustrated are mean PPV (95% CI) for various 
PSA levels (all ( ≥ 3 ng/mL), 3–4 ng/mL, 4-10 ng/mL, and >10 ng/mL) for 
clinically significant prostate cancer among three groups of men in the ProtecT 
study (n = 6,411): all men (regardless of P-CARE value), men in the top 20% of 

P-CARE values (P-CARE80), and men in the top 5% of P-CARE values (P-CARE95). 
Abbreviations: CI, confidence interval; P-CARE, Prostate CA Risk and Evaluation; 
PPV, positive predictive value; ProtecT, Prostate Testing for Cancer and 
Treatment; PSA, prostate-specific antigen.
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Extended Data Fig. 2 | Percentage of true positive cases in ProtecT across 
P-CARE categories. Illustrated are the percentage of true positive cases for 
various PSA levels among 6,411 men in the ProtecT Study (all values ≥ 3 ng/mL,  
3-4 ng/mL, 4-10 ng/mL, and >10 ng/mL) for clinically significant prostate 

cancer stratified by P-CARE risk percentiles, with comparisons between the 
top 5% (P-CARE95) and top 20% (P-CARE80). Error bars represent 95% confidence 
intervals.
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Extended Data Fig. 3 | Odds of prostate cancer in All of Us Research Program 
by P-CARE category. Shown are the odds ratios for an individual to be diagnosed 
with prostate cancer in the low and high P-CARE categories, relative to the 
average P-CARE category, derived from logistic regression models controlling 

for age. Error bars correspond to the 95% confidence intervals, and the shown 
ancestries are the predictions provided by All of Us. Abbreviations: P-CARE, 
Prostate CAncer Risk and Evaluation.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used.

Data analysis The code used for analyses is available at https://github.com/precimed/MVP-PCa-PHS.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data generated from our analyses are included in the manuscript text, tables, figures, and supplement. The genetic loci included in the polygenic score and their 

effect sizes are included in the Supplement. It is not possible for the authors to directly share individual-level data from the Million Veteran Program (MVP) due to 

constraints stipulated in the informed consent. Anyone wishing to gain access to this data should inquire directly to MVP at MVPLOI@va.gov. Prostate Cancer 

Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) Consortium data are available upon request to the Data Access 
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Committee (http://practical.icr.ac.uk/blog). Data from the All of Us Research Program are accessible through the Researcher Workbench to researchers with an 

approved Data Use and Registration Agreement.  

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender For this study about prostate cancer, we used samples from participants identified as "male" based on sex chromosome data. 

We do not have information about the gender identity of most participants.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

We have been careful to distinguish the socially defined constructs of race and ethnicity groups (identified through self-

report in these samples) and genetically similar populations (identified through genetic analysis). 

Population characteristics Participants were all adults of male sex, aged 18 and older, without prostate cancer at baseline

Recruitment N/A - These cohorts are already established cohorts and there was no new participant recruitment.

Ethics oversight The VA Central IRB approved this study (IRBNet 1735869 and 1735136).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All available data meeting inclusion criteria were used.

Data exclusions Genotype data were excluded if they did not meet standard QC criteria or were from related samples.

Replication Analyses from the Million Veteran Program were replicated in PRACTICAL datasets and in the All of Us Research Program.

Randomization Randomization is not relevant, as there was no group allocation.

Blinding Blinding is not relevant, as there was no group allocation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants
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