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A B S T R A C T

Purpose: Over 30 international studies are exploring newborn sequencing (NBSeq) to expand
the range of genetic disorders included in newborn screening. Substantial variability in gene
selection across programs exists, highlighting the need for a systematic approach to prioritize
genes.
Methods: We assembled a data set comprising 25 characteristics about each of the 4390 genes
included in 27 NBSeq programs. We used regression analysis to identify several predictors of
inclusion and developed a machine learning model to rank genes for public health consideration.
Results: Among 27 NBSeq programs, the number of genes analyzed ranged from 134 to 4299,
with only 74 (1.7%) genes included by over 80% of programs. The most significant associations
with gene inclusion across programs were presence on the US Recommended Uniform
Screening Panel (inclusion increase of 74.7%, CI: 71.0%-78.4%), robust evidence on the natural
history (29.5%, CI: 24.6%-34.4%), and treatment efficacy (17.0%, CI: 12.3%-21.7%) of the
associated genetic disease. A boosted trees machine learning model using 13 predictors achieved
high accuracy in predicting gene inclusion across programs (area under the curve = 0.915, R2 =
84%).
Conclusion: The machine learning model developed here provides a ranked list of genes that can
adapt to emerging evidence and regional needs, enabling more consistent and informed gene
selection in NBSeq initiatives.

© 2025 American College of Medical Genetics and Genomics.
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Introduction

A decade ago, the BabySeq Project piloted newborn and
childhood sequencing (NBSeq), a process designed to detect
risk for a wide range of genetic disorders in apparently
healthy infants.1-9 Per the data repository Rx-Genes, over 700
genetic disorders now have targeted treatments or consensus
guidelines for long-term management, which has further
fueled enthusiasm for NBSeq.10,11 Stakeholders, including
diverse groups of parents,12-14 rare disease specialists,11 pri-
mary care physicians,15 genetic counselors,11,16,17 and the
public18,19 now support the implementation of genomic
newborn screening for at least some disorders. At least 30
international research programs and companies are actively
exploring this screening approach,20-22 most of which are
exchanging best practices through the International Con-
sortium on Newborn Sequencing.23

Historically, the criteria established byWilson and Jungner24

have provided a framework for selecting the disorders to include
in public newborn screening programs. These criteria prioritize
the inclusion of childhood-onset disorders that are treatable if
diagnosed in their earliest stages and require immediate inter-
vention to prevent irreversible damage. However, given the
hundreds of treatable disorders that could be candidates for
NBSeq and the complexity of genomic data, selection of the
appropriate genes and disorders for NBSeq is a recurring chal-
lenge.21,25,26 Prior studies have identified discrepancies across
the genes being analyzed by a limited number of commercial
NBSeq programs27 and research studies,28,29 but little is known
about the values and variables that underlie these differences.
Understanding which genes have high concordance across
programs may guide emerging NBSeq research programs as
they select which genes and variants to report to participants.
Furthermore, the characteristics of these genes and their asso-
ciated disorders can be used more empirically to prioritize
candidate genes for public health programs.

To understand the variability among newborn sequencing
programs, we compared the genes currently selected for
analysis by 27 research studies and commercial NBSeq
programs. For each gene that was included in any NBSeq
program, we assembled a data set of 25 associated charac-
teristics. We then used a multivariate regression analysis to
identify which of these characteristics were associated with
inclusion across programs. Finally, we used a boosted trees
model to generate a ranked list of genes, offering a data-
driven approach to the prioritization of genetic disorders
for population-wide NBSeq.
Materials and Methods

Study design

This cross-sectional study involved 4 stages: (1) identifica-
tion of gene lists across international NBSeq research
studies and commercial programs, (2) compilation of a data
set of characteristics for each gene included in any program,
(3) statistical comparison of gene lists across programs, and
(4) development of a machine learning model to predict
gene inclusion across NBSeq programs based on gene
characteristics.

Identification of lists of genes from research
studies and commercial programs

A total of 35 NBSeq programs were identified through
membership in the International Consortium on Newborn
Sequencing and an online search (Supplemental Table 1,
Figure 1).5,30-47 We obtained gene lists from 27 NBseq
programs, including 20 research studies: BabyDetect,30,47

BabyScreen+,28 BabySeq,2 BeginNGS,31,32 Chen et al33

(2023), Early Check,34,48 FirstSteps, the Generation study,
gnSTAR,35,37 GUARDIAN study,41,49,50 Jian et al36 (2022),
Lee et al42 (2019), Luo et al43 (2020), NeoExome,46 Neo-
Seq,39 NESTS,40 NewbornsInSA, Progetto Genoma Puglia,
Screen4Care,44 and Wang et al38 (2023). Seven lists of
genes from commercial firms that offer genomic newborn
screening were included: FORESITE 360 (Fore Genomics),
Fulgent (Newborn Genetic Analysis), Igenomix (Igenomix
newborn screening), Mendelics (Teste da Bochechinha),
Nurture Genomics, PerkinElmer Revvity (Genetic Insight-
Panel),45 and Sema4 (Natalis).30 Nine studies reported
screening outcomes, and we also summarized the positive
screen rates and positive predictive values for these studies
(Table 1, Supplemental Methods).
Compilation of a data set of gene-disorder
characteristics

All obtained gene lists were aggregated, standardizing
gene names to HGNC nomenclature and linking each
gene to a single disorder using Online Mendelian Inher-
itance in Man (OMIM) and ClinGen (Supplemental
Methods). A data repository with 25 characteristics for
each gene-disorder pair was created, collecting data from
5 research articles and 5 existing databases (see
Supplemental Methods).2,10,11,31,51-53 More information
on the source and description of each of the characteris-
tics can be found in the Supplemental Methods and
Supplemental Table 2. This data repository, as well as the
gene list data, were made available online in a Github
Repository.
Statistical comparison of gene lists across programs

Descriptive statistics for each gene list, including the length
of the list, proportion of genes in each clinical category,
and the number of genes associated with Recommended
Uniform Screening Panel (RUSP) conditions were calcu-
lated (Figure 2A and B, Supplemental Figure 2, and
Supplemental Table 3). To provide information on the



Figure 1 Research and commercial genomic newborn screening (NBSeq) programs. Gene lists from 27 of these programs were
included in the analysis (denoted with an asterisk). Intended enrollment sizes are indicated where available.
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concordance across all lists of genes, an UpSet plot, Venn
Diagrams, and Jaccard similarity indices were provided
(Figure 2C and D, Supplemental Figures 3 and 4). Inclusion
of high concordance genes, as well as genes associated with
core and secondary RUSP conditions, were plotted
(Figure 2E-G).
Table 1 Percentage of positive results from genomic newborn screeni

Genes

Sequencing D

Infants
Sequenced

G6PD
Deficiency

To
Pos

BabyDetect 405 3847 44
PerkinElmer Panel 268 606 4
Wang et al,38 2023 164 10,334 2
gnSTAR 134 4986 40 1
Chen et al,33 2023 142 29,601 689 8
GUARDIAN Study 237 4000 1
NESTS 465 11,484 338 9
PerkinElmer GS 6000 562 4
NeoExome 601 3049 2
BabySeq 4299 159 1
Total 68,628 2,6

Positive cases of G6PD, as well as follow-up data for positively screened infan
NBSeq, newborn sequencing; PPV, positive predictive value.
A linear regression model was used to identify
factors associated with inclusion in multiple gene lists.
Two types of regressions were performed: regressions
in which the outcome variable is the proportion of
gene list inclusion across all NBSeq programs (Figure 3A,
Supplemental Tables 4 and 5) and regressions in
ng research programs

ata Follow-Up Data

tal
itive

Total Positive
(in %)

Total
Follow-Up

Total
Diagnosed PPV

71 1.85
13 2.15
32 2.25 231 50 22%
13 2.27
13 2.75 797 402 50%
47 3.68 151 120 79%
02 7.85 414 50 12%
46 8.19
71 8.89
15 9.43
23 3.82

ts reported where available.
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which the outcome variable is the inclusion of a gene
for each individual study (Figure 3B, Supplemental
Table 6).

Development of a machine learning model

We developed a machine learning prediction model to pri-
oritize genes for population-wide NBSeq programs. Out of
25 potential gene-disorder characteristics, we selected 13
characteristics as predictors in our model: the RUSP cate-
gory, clinical area, evidence base, severity of the disorder,
the treatment efficacy, penetrance, treatment acceptability,
age of onset, existence of an orthogonal test, the recom-
mendation score, inheritance, prevalence, and the ClinGen
Disease Validity. The remaining 12 gene and disease char-
acteristics were excluded because of a high amount of
missing data. For example, the ClinGen actionability scores
were not used because of their availability for only 242
genes. Additionally, when characteristics from different
sources described similar concepts, we selected the charac-
teristic that includes data on the most genes.

Three machine learning models were compared: linear
regression, random forest, and boosted trees. We randomly
split the gene list data into an 80% training set (n = 91,312,
80% of all 114,140 potential instances of 4390 genes
included on a gene list across 26 NBSeq programs) and a
20% test set to estimate prediction power of the model. The
boosted trees model, which had the highest area under the
curve, was then selected to generate predictions for all 4390
genes, providing a ranked list of genes (Supplemental
Table 7).
Results

Overview of NBSeq programs

Of the 35 research and commercial programs identified, 10
were located in North America, 10 in Asia, 9 in Europe, 4 in
Australia and New Zealand, 1 in South America, and 1 in
Africa (Figure 1, Supplemental Table 1). The research
programs anticipate a combined total sample size of 560,410
infants, with the intended enrollment in each study varying
from 48 to 101,000 infants.42,54 Nine NBSeq research pro-
grams have published or presented the screening results
from a collective total of 68,628 infants by September 2024
(Table 1, Supplemental Methods).

The percentage of positive screening results ranged from
1.85% in BabyDetect (3847 infants screened for 405 genes)
to 9.43% in BabySeq (159 infants screened for 4299 genes),
with an average of 3.82% positive results across 68,628
infants. There was a significant positive correlation between
the percentage of positive screening results in a program and
the number of genes they screened (Pearson correlation
coefficient of 0.653, P = .041). A majority of the collective
1937 positive screening results across 7 studies for which
detailed results were available were due to variants in G6PD
(56.8%).

Four studies reported the clinical outcomes of infants
who had undergone NBSeq, allowing for the calculation of
these studies’ positive predictive value, which varied from
12% to 79%49,50 with an average across studies of 41%
(39% when weighted by sample size).

Description of gene lists across NBSeq programs

A total of 23 programs have published or made available
criteria for selecting genes and disorders for screening
(Supplemental Table 8). The number of genes included in
27 programs ranged from 134 to 4299 (median = 306)
(Figure 2A and B). A total of 4390 genes (out of a total of
4966 genes associated with human disease)55 were included
across at least 1 of the 27 gene lists (Supplemental Table 3).
Of these, 4033 genes (91.8%) were associated with a
phenotype in the OMIM database. Collectively, most genes
were linked to inherited metabolic disorders (25.4%),
neurologic (15.5%), and immunologic (11.9%) disorders
(Figure 2A and B).

Discordance among gene lists used in NBSeq
programs

A pairwise Jaccard index indicated that, aside from those
from commercial laboratories, most pairs of gene lists from
NBSeq research programs were highly discrepant
(Figure 2C and D, Supplemental Figures 2 and 3). Of the
4390 genes included in at least one NBSeq program, the
vast majority were included by only a small number of
NBSeq programs: 4089 genes (93%) were included by 10 or
fewer programs, and 3793 (87%) genes were included by 5
or fewer programs (Supplemental Figure 1).

Genes with high concordance across NBSeq
programs

Despite this variability across gene lists, we found 74 genes
(1.7% of 4390) that were included by over 80% (22 of 27)
of NBSeq programs (Supplemental Figure 1). Of these
genes, 58 were associated with diseases on the US RUSP
(Figure 2E and F). A total of 34 genes not linked to disor-
ders on the RUSP appeared on 20 or more lists (Figure 2G).

Predictors of gene inclusion across NBSeq programs

Genes associated with core or secondary disorders on the
RUSP were significantly more likely to be included in
NBSeq programs (regression coefficient 74.7%, 95% con-
fidence interval (CI): 0.710-0.784, P < .01; regression co-
efficient 60.0%, 95% CI: 0.557-0.643, P < .01, Figure 3A,



Figure 2 Description, concordance and content of gene lists of genomic newborn screening programs. A. Clinical areas of 4299 genes
included in BabySeq. B. Counts and clinical areas of genes included in 26 research and commercial genomic newborn screening programs
(n = 4390). C. Jaccard similarity index, which offers a quantitative comparison of how closely related the gene lists are. D. UpSet plot of gene
lists of 4 large research studies. The matrix below the bar graph represents each individual study and their intersections (n = 818). E. In-
clusion of genes associated with core Recommended Uniform Screening Panel (RUSP) conditions. The x-axis is each genomic newborn
screening program and y-axis are individual genes; the corresponding cell is colored if the gene is included on a given list. F. Inclusion of
genes associated with secondary RUSP conditions. G. Inclusion of genes on 20 lists or more that are not associated with RUSP conditions.
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Figure 3 Determinants and prediction model of gene inclusion in genomic newborn screening. In (A) and (B), RUSP category (n =
4474), survey recommendation and orthogonal test (n = 649), evidence base, efficacy, penetrance, disease severity, treatment acceptability,
and neonatal or infant onset (n = 749). A. Regression coefficients (and confidence intervals) associated with various gene and disease
characteristics predicting inclusion across gene lists. B. Heat map with regression coefficients associated with gene and disease characteristics
for each individual genomic newborn screening program. C. ROC curves for three prediction models in the hold-out test set (n = 895 genes).
D. Scatter plot of predicted versus observed gene list inclusion, showing the fit of the boosted trees model on the 20% hold-out set (n = 895
genes). AUC, area under the curve; ROC, receiver operating characteristic; RUSP, Recommended Uniform Screening Panel.
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Supplemental Table 4, Supplemental Figure 5). Addition-
ally, genes that were recommended for inclusion in newborn
screening by 80% or more rare disease experts in a recent
survey11 were 43.5% (95% CI: 37.4%-49.6%, P < .01)
more likely to be included than genes that were recom-
mended by fewer experts (Supplemental Figure 6).

A strong predictor of inclusion across NBSeq programs
was the age-based semiquantitative metric evidence base,
previously defined as a metric measuring a combination of
gene-disease validity, published descriptions of the natural
history of disease, and the availability of practice guidelines
for disease diagnosis and management.51 Genes with the
highest evidence base were 29.5% more likely (95% CI:
24.6%-34.4%, P < .01) to be included in NBSeq programs
than those with less available evidence.

Other characteristics associated with inclusion across
NBSeq programs were high efficacy of disease treatment
(17.0%, 95% CI: 12.3%-21.7%, P < .01), high penetrance
(15.5%, 95% CI: 9.8%-21.2%, P < .01), neonatal or in-
fantile onset (15.2%, 95% CI: 10.7%-19.7%, P < .01), high
disease severity (14.5%, 95% CI: 8.2%-20.8%, P < .01),
high acceptability of treatment (with regard to the burdens
and risks placed on the individual) (15.0%, 95% CI: 10.5%-
19.5%, P < .01), and the existence of an nonmolecular test
that could be used to confirm the diagnosis (13.8%, 95% CI:
9.3%-18.3%, P < .01). There was variability in the impor-
tance of different characteristics across programs, but pro-
grams adhered positive value to all of these characteristics
with few exceptions (Figure 3B, Supplemental Table 6).
Measuring evolving knowledge about genes and
diseases

We conducted a multivariate regression analysis to predict
how changes in specific variables, such as treatability and



Table 2 List of 50 genes with highest predicted inclusion across NBSeq programs, excluding genes on the RUSP

Rank Gene Disorder
OMIM

Phenotype Clinical Area
Babyseq
Category

Clingen
Validity

Clingen
Actionability

(/12)

ASQM
Score
(/15)

Expert
Recommendation,

%

Observed
List

Inclusion
(/27)

Predicted
List

Inclusion,
%

13 G6PC1 Glycogen storage disease Ia 232200 Metabolism A 13 93 26 96
17 OTC Ornithine transcarbamylase

deficiency
311250 Metabolism A Definitive 10AB 14 98 26 96

40 SLC37A4 Glycogen storage disease Ib 232220 Metabolism A 13 93 25 91
41 CPS1 Carbamoylphosphate synthetase I

deficiency
237300 Metabolism A Definitive 9AB 13 86 25 90

47 SLC25A15 Hyperornithinemia-
hyperammonemia-homocitrullinemia
syndrome

238970 Metabolism A Definitive 10 85 25 88

51 AGL Glycogen storage disease IIIa 232400 Metabolism A Definitive 12 85 24 86
52 NAGS N-acetylglutamate synthase

deficiency
237310 Metabolism A Definitive 10NC 14 85 22 86

55 ALPL Hypophosphatasia, infantile 241500 Endocrinology A Definitive 10CC 11 71 23 84
56 GALNS Mucopolysaccharidosis IVA 253000 Metabolism A Definitive 9CA 9 87 23 84
57 ALDOB Fructose intolerance, hereditary 229600 Metabolism A 10NC 14 84 23 83
60 BTK Agammaglobulinemia, X-linked 1 300755 Immunology A Definitive 81 24 82
65 F9 Hemophilia B 306900 Hematology A Definitive 9CB 14 90 23 81
68 CYBB Chronic granulomatous disease, X-

linked
306400 Immunology A 12 74 25 80

69 G6PD Hemolytic anemia, G6PD deficient
(favism)

300908 Hematology A Definitive 7DC 12 80 23 80

73 CYP11B1 Adrenal hyperplasia, congenital, due
to 11-beta-hydroxylase deficiency

202010 Endocrinology A 11 92 21 79

74 SMPD1 Niemann-Pick disease 257200 Metabolism A Definitive 9 85 21 78
75 ARSB Mucopolysaccharidosis type VI

(Maroteaux-Lamy)
253200 Metabolism A Definitive 11 92 22 77

76 CTNS Cystinosis, nephropathic 219800 Nephrology A Definitive 9CB 14 80 20 77
77 ATP7B Wilson disease 277900 Metabolism A Definitive 11CA 12 81 21 77
78 CYBA Chronic granulomatous disease 4,

autosomal recessive
233690 Immunology A 12 74 18 77

79 ABCC8 Hyperinsulinemic hypoglycemia,
familial, 1

256450 Endocrinology A Definitive 14 81 20 75

80 RB1 Retinoblastoma 180200 Oncology A Definitive 10CB 13 89 21 75
81 ALDH7A1 Epilepsy, early-onset, 4, vitamin B6-

dependent
266100 Neurology Definitive 11CB 12 86 21 74

82 TG Thyroid dyshormonogenesis 3 274700 Endocrinology A 14 18 73
84 TPO Thyroid dyshormonogenesis 2A 274500 Endocrinology A 14 18 71
85 PHEX Hypophosphatemic rickets, X-linked

dominant
307800 Endocrinology 9CC 74 20 71

(continued)
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Table 2 Continued

Rank Gene Disorder
OMIM

Phenotype Clinical Area
Babyseq
Category

Clingen
Validity

Clingen
Actionability

(/12)

ASQM
Score
(/15)

Expert
Recommendation,

%

Observed
List

Inclusion
(/27)

Predicted
List

Inclusion,
%

86 TH Segawa syndrome, recessive 605407 Neurology A Definitive 13 70 20 71
87 ATP7A Menkes disease 309400 Metabolism A Definitive 9CA 12 84 19 71
89 SLC2A1 GLUT1 deficiency syndrome 1,

infantile onset, severe
606777 Metabolism A Definitive 11 90 19 71

90 GLA Fabry disease 301500 Metabolism A Definitive 9CA 12 83 20 70
91 DUOX2 Thyroid dyshormonogenesis 6 607200 Endocrinology A 13 20 70
92 WAS Wiskott-Aldrich syndrome 301000 Immunology A Definitive 9CC 68 20 69
93 FBP1 Fructose-1,6-bisphosphatase

deficiency
229700 Metabolism 13 80 18 69

94 PYGL Glycogen storage disease VI 232700 Metabolism A 10 83 19 69
96 SPR Dystonia, dopa-responsive, due to

sepiapterin reductase deficiency
612716 Neurology A Definitive 12 70 20 69

97 CD40LG Immunodeficiency, X-linked, with
hyper-IgM

308230 Immunology A Definitive 11 74 17 68

98 LIPA Wolman disease 620151 Metabolism A Definitive 7 80 19 67
100 GUSB Mucopolysaccharidosis VII 253220 Metabolism A Definitive 9 89 19 67
101 SCNN1B Pseudohypoaldosteronism, type IB2,

autosomal recessive
620125 Endocrinology A 14 49 17 66

102 POU1F1 Pituitary hormone deficiency,
combined or isolated, 1

613038 Endocrinology A 12 66 18 66

103 TSHR Hypothyroidism, congenital,
nongoitrous, 1

275200 Endocrinology A 12 24 66

104 AVPR2 Diabetes insipidus, nephrogenic, 1 304800 Endocrinology A 11 60 18 66
105 KCNJ11 Diabetes mellitus, transient neonatal

3
610582 Endocrinology A Definitive 12 76 18 64

106 GATM Cerebral creatine deficiency syndrome
3

612718 Metabolism Definitive 10 85 17 64

108 GLUD1 Hyperinsulinism-hyperammonemia
syndrome

606762 Metabolism A Definitive 11 87 18 63

110 PHKB Phosphorylase kinase deficiency of
liver and muscle, autosomal recessive

261750 Metabolism A Definitive 13 76 17 63

111 CYP17A1 17,20-lyase deficiency, isolated 202110 Endocrinology 90 18 62
114 NPC1 Niemann-Pick disease 257220 Metabolism A Definitive 12 69 19 62
115 SLC7A7 Lysinuric protein intolerance 222700 Metabolism A Definitive 12 85 16 62
116 PROP1 Pituitary hormone deficiency,

combined, 2
262600 Endocrinology A 13 66 19 62

ASQM, age-based semiquantitative metric; NBSeq, newborn sequencing; RUSP, Recommend Uniform Screening Panel.
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evidence base, would individually influence the overall
regression (Supplemental Table 5). Notably, the introduc-
tion of a new, highly acceptable treatment for a disorder
with no previous treatment is associated with an increase in
the likelihood of inclusion in NBSeq programs by 9.7%
(95% CI: 0.1%-19.3%, P < .05). Similarly, improving
knowledge related to the natural history of a gene-disorder
pair from “none” to “perfect” would increase the likeli-
hood of inclusion in NBSeq programs by 14.8% (95% CI:
4.8%-24.8%, P < .01).

Machine learning prediction model

Of 3 machine learning methods, the boosted trees model
demonstrated the highest accuracy in the hold-out test set,
with an area under the curve of 0.915 and R-squared of 80%
(n = 22,828, 20%) (Figure 3C and D, Supplemental Figure
7). The relative importance of all variables in the boosted
trees model was highest for characteristics such as the
proportion of experts who recommended inclusion of the
gene in NBSeq on a recent survey,11 RUSP classification,
and disease prevalence, confirming the results from the
regression analysis (Supplemental Figure 8).

We used the boosted trees model to predict the observed
inclusion of genes across all NBSeq programs, resulting in a
list of all genes that had appeared in any NBSeq program,
ranked by their predicted inclusion probabilities. Given that
most genes associated with conditions on the RUSP were
highly ranked, a list with these genes redacted was consid-
ered to be more illustrative of the novel capabilities of the
model (Table 2). This analysis identified 5 genes (PTPRC,
ACADSB, NHEJ1, CYBA, and GRHPR) that, despite being
highly ranked by the model, were only included in a low
proportion of NBSeq programs. To address missing data for
some genes that were included across multiple NBSeq
programs, we also created a second ranked list that com-
bines the rankings generated by our machine learning model
with the proportion of NBSeq programs in which each gene
was observed with equal weights (Supplemental Table 7).
By integrating these 2 sources of information, this hybrid
list leverages the most comprehensive evidence available to
prioritize genes for potential implementation in public health
programs.
Discussion

NBSeq is a rapidly advancing area of global research
exploring the impacts of early diagnosis for infants at risk
for genetic disorders. With positive screening results in
1.85% to 9.43% of infants and a higher average positive
predictive value than some traditional newborn screening
techniques,49,56 findings from NBSeq research programs
support the premise that this approach could improve early
detection rates for a wide range of treatable disorders.
However, selecting the appropriate genes for screening is a
critical step toward implementing population-wide NBSeq.
This decision will have significant implications for at-risk
infants, their families, and pediatric health care sys-
tems.20,21 In this study, we compared and collected data on
the genes being analyzed by 27 NBSeq programs, then
developed a machine learning model to predict the inclusion
of a gene across NBSeq programs. By combining this model
with observed data from NBSeq programs, we generated a
ranked list of genes that offers a data-driven approach to
prioritizing genetic disorders for public health programs
looking to incorporate NBSeq into their screening strategies.

Similar to the findings of smaller studies,28,29 our com-
parison of gene lists from 27 NBSeq programs revealed
substantial heterogeneity, which we probed using a series of
regression models. We found that the importance of indi-
vidual gene and disease characteristics varied across studies,
potentially due to differences in the international prevalence
of disorders, the availability of specialists and treatments in
different countries and health care systems, or the specific
goals of individual NBSeq programs. Unexpectedly, 357
genes with no disease association on OMIM and 52 with
limited or refuted gene-disease validity scores from ClinGen
were included by some NBSeq programs, demonstrating
variation among programs in willingness to include candi-
date genes or those with new associations to disease.

Despite variations in the gene lists used by NBSeq pro-
grams, many share a common focus on certain clinical areas
and specific genes. All programs included a substantial
proportion of genes associated with disorders that are on the
RUSP, reflecting the potential for genomic sequencing to
detect cases missed by traditional newborn screening
programs.57-59 Of note, genes associated with some disor-
ders on the RUSP, such as 3-methyl-crotonyl-CoA
carboxylase deficiency (MCCC1 and MCCC2), were
widely included across lists despite not conforming to
the historic Wilson-Jungner criteria because of low pene-
trance and often mild symptoms.60 This suggests that some
NBSeq programs have anchored their lists around the RUSP
even when the disorders are neither severe nor highly
treatable.61 Therefore, the observed concordance of a gene
across NBSeq programs alone may not be sufficient to
evaluate the suitability of a gene for population-wide
screening.

Many gene and disease characteristics emerged as highly
associated with the inclusion of genes across NBSeq pro-
grams, including the strength of published data on the nat-
ural history of disease, estimated penetrance, and the
effectiveness of the associated treatment. Interestingly,
despite the inclusion criteria that several NBSeq programs
reported, characteristics such as the age of onset and disease
severity were weakly associated with inclusion, possibly
due to their subjective nature.

The machine learning model developed in this study
identifies the disorders that may be most appropriate for
genomic newborn screening, based on 13 characteristics and
their inclusion across 27 NBSeq programs. This ranked list,
along with the preferences of rare disease experts11 could be
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used to prioritize genes for screening, which could then be
manually curated by a team of expert reviewers. At this
time, the model’s predictions reflect a consensus drawn from
NBSeq studies and databases, but in the future, these could
be combined with hard-coded gene selection criteria. The
model’s flexibility also allows updates based on regional
preferences, new data, or emerging therapeutics.

Importantly, this model identified several genes
included by only a few NBSeq programs, but which
have characteristics that are highly associated with
inclusion across programs. For example, although PTPRC, a
gene associated with severe combined immunodeficiency
(SCID), was only included by 12 of 27 NBSeq
programs, the model ranked it 113 of 4390 genes. This is
likely because PTPRC is associated with a severe
immunologic disorder that typically presents in childhood
and can be treated with an early hematopoietic stem cell
transplant but is a rare cause of SCID.62 This finding
highlights the model’s potential to identify genes that may
have been overlooked by researchers during the gene se-
lection process.

Our study has several limitations. First, some of the
NBSeq programs may have dynamic gene lists that have
changed over time. Second, the treatability of various con-
ditions varies based on country. Next, the Jaccard index may
exaggerate discrepancies between gene lists of different
lengths. For the regression and machine learning models, we
consolidated metrics including the age-based semi-
quantitative metric, BabySeq, and ClinGen databases, most
of which rely on expert-curated information, such as age of
onset, for which definitions vary, and data were missing
among the 25 characteristics that we collected. These gaps
may automatically reduce the boosted tree model’s pre-
dicted inclusion of genes that are not well characterized,
resulting in lower inclusion rates for genes related to dis-
orders that are rare or have limited published evidence. To
mitigate the effects of missing data, we designed the model
to be easily updated and provided a ranked gene list that
considers observed inclusion in addition to our model esti-
mates. The ranked list may suffer from overfitting, given
that it includes genes on which the model was trained.
Lastly, the model incorporates data from funded research
programs and commercial products, which may not align
with the goals or constraints of public health newborn
screening programs.

In the future, we plan to further develop the data set that
we have created to improve our machine learning model by
incorporating the perspectives of key informants, such as
parents13,14 and pediatricians. Additional informatics data,
such as gene length, gnomAD constraint score,63 the
ENCODE blacklist,64 or the number of associated PubMed
publications, will be updated in future versions. We also
plan to develop a method to iteratively add genes with
newly established gene-disease validity based on recent
publications to our data set. Future research will identify
genes that are not currently included in any NBSeq program
but share similar characteristics to those that are highly
represented. A knowledge graph, such as PrimeKG,65 could
be used to find genes that share common molecular path-
ways, treatments, or symptoms to genes that are currently
included in our data set.

In summary, the growing international interest in
genomic newborn screening has prompted important ques-
tions about which genes and disorders should be considered
for inclusion. Because of the substantial variation in the
genes included by 27 NBSeq programs, we developed an
evidence-based approach to considering gene selection that
draws from a comprehensive data repository encompassing
over 4000 genes. Rather than creating a static list of
genes for universal implementation, our dynamic ranking
system is adaptable and can be updated as new knowledge
about genes, disorders, and therapeutics emerges. This work
will support gene selection for both research and public
health programs considering the use of population-wide
NBSeq.
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