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Summary
The use of genomic sequencing (GS) for prenatal diagnosis of fetuses with sonographic abnormalities has grown tremendously over the

past decade. Fetal GS also offers an opportunity to identify incidental genomic variants that are unrelated to the fetal phenotype butmay

be relevant to fetal and newborn health. There are currently no guidelines for reporting incidental findings from fetal GS. In the United

States, GS for adults and children is recommended to include a list of ‘‘secondary findings’’ genes (ACMG SF v.3.2) that are associated

with disorders for which surveillance or treatment can reduce morbidity and mortality. The genes on ACMG SF v.3.2 predominantly

cause adult-onset disorders. Importantly, many genetic disorders with fetal and infantile onset are treatable as well. A proposed solution

is to create a ‘‘treatable fetal findings list,’’ which can be offered to pregnant individuals undergoing fetal GS or, eventually, as a stand-

alone cell-free fetal DNA screening test. In this integrative review, we propose criteria for a treatable fetal findings list, then identify ge-

netic disorders with clinically available or emerging fetal interventions and those for which clinical detection and intervention in the

first week of life might lead to improved outcomes. Finally, we synthesize the potential benefits, limitations, and risks of a treatable fetal

findings list.
Introduction

The clinical use of genomic sequencing (GS) for prenatal

diagnosis of fetuses with sonographic abnormalities has

grown tremendously in recent years. The International So-

ciety of Prenatal Diagnosis (ISPD) recommends offering

fetal GS to individuals with pregnancies affected by a ma-

jor single anomaly, multiple anomalies, or with a history

of an undiagnosed fetus or child with a congenital anom-

aly,1 likely affecting up to 2%–3% of pregnancies.2 The

diagnostic yield of GS varies by indication, ranging from

2% for isolated increased nuchal translucency to 53% for

skeletal abnormalities.3

In the United States, indication-based genome

sequencing for children and adults includes the optional

analysis of a list of ‘‘secondary findings’’ genes recommen-

ded by the American College of Medical Genetics (ACMG)

(ACMG SF v.3.2).4 These genes are predominantly associ-
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ated with adult-onset cardiac, cancer, and inherited meta-

bolic disorders (IMDs). Secondary findings have been iden-

tified in at least 1%–3% of adults.5–8 Once detected, these

disorders can often be managed with medication, dietary

changes, or long-term surveillance aimed at improving

morbidity and mortality in affected individuals.9 The

ACMG secondary findings list is recommended both for

adults and children undergoing GS. However, professional

organizations differ in their recommendations on report-

ing secondary findings for adult-onset conditions in chil-

dren. While the recommendations of organizations such

as Genomics England10 generally align with ACMG, the

European Society of Human Genetics and others argue

that it is premature to screen for later-onset conditions in

children.11

The ACMG SF v.3.2 recommendations do not apply to

fetuses, and guidance regarding the reporting of incidental

findings from fetal GS remains unclear.12 An ACMG Points
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Table 1. Selection criteria for genes associated with fetal, delivery, or neonatal interventions

Topic Selection criteria

Age of treatment initiation intervention administered in utero or in the first
week of life is expected to prevent morbidity,
mortality, or irreversible organ damage to the infant

Safety and efficacy of intervention intervention is safe and plausibly effective

Clinical severity gene is associated with critical illness or chronic disease

Gene-disease validity genes with limited, disputed, or refuted ClinGen
validity scores have been excluded
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to Consider document states that ‘‘prenatal exome

sequencing analysis could be limited to the reporting of

variants in genes associated with the ultrasound findings,’’

while also recommending that ‘‘highly penetrant patho-

genic variants detected in genes unrelated to the fetal

phenotype, but known to cause moderate to severe child-

hood onset disorders, are recommended to be reported.’’13

The ISPD suggests that secondary findings analyzed in fetal

GS might include ‘‘moderate to severe childhood condi-

tions’’ but does not provide specific guidance on which

genes to include.1 Reporting practices vary across clinical

labs, and pregnant individuals are not routinely offered a

choice regarding the type of genomic findings they receive.

Of note, many pregnancies affected by actionablemono-

genic conditions show no sonographic abnormalities, or

the abnormalities are too subtle to detect with current im-

aging technology.14,15 Recent studies have demonstrated

that 0.6%–2.7% of sonographically normal fetuses harbor

pathogenic or likely pathogenic variants (PLPVs) expected

to cause genetic disease,16–19 and 1.85%–9.4% of infants

have PLPVs associated with a monogenic childhood-onset

disorder,20,21 including IMDs, cardiomyopathies, and syn-

dromic intellectual disability disorders.

Over 700 genetic disorders are now treatable with dietary

changes, medication, hematopoietic stem cell transplanta-

tion, solid organ transplantation, or gene therapies.22 The

number of in utero interventions for genetic disorders is

rapidly expanding,23 supported by clinical trials, case re-

ports, and animal model studies. Many of these disorders

do not present with ultrasound findings, meaning that

the benefits of prenatal interventions can only be realized

by individuals with known family history or carrier sta-

tus.24 However, most countries lack a uniform approach

to carrier screening,25 and the genes included in these

panels vary widely, with none addressing de novo disorders

in the fetus.26,27

Shortly after birth, newborn screening (NBS) identifies

many severe, treatable genetic disorders in infants. Howev-

er, many of the disorders included in NBS programs can

cause morbidity or mortality shortly after birth before

the receipt of results at 5–7 days of life (see web resources

for NBS process). Prenatal diagnosis of these disorders

may allow for improved care during the perinatal period,

including appropriate labor and delivery planning, mobili-

zation of relevant medical teams, and the acquisition of
2 The American Journal of Human Genetics 112, 1–19, June 5, 2025
specialized medical formulas, medications, or other thera-

peutics needed for immediate intervention.

A prior commentary by Gold et al. suggested offering

pregnant individuals who are undergoing fetal GS the

optional analysis of a ‘‘treatable fetal findings list.’’28 This

list is not intended to replace NBS or diagnostic GS for in-

fants but would enhance reproductive options and man-

agement capabilities of conditions not typically identified

during pregnancy or the immediate perinatal period.

We used an integrative review approach to propose

criteria for a treatable fetal findings list, then identified ge-

netic disorders with clinically available or emerging fetal

interventions and those for which clinical detection and

intervention in the first week of life might lead to

improved outcomes. Finally, we synthesized the potential

benefits, limitations, and risks of a treatable fetal find-

ings list.
Criteria for and identification of genetic disorders

with interventions in utero or treatments during

the first week of life

Integrative review criteria

The integrative review includes five stages: problem identi-

fication, literature search, data evaluation, data analysis,

and presentation.29,30 This approach allows for the use of

several study designs, with the aim of generating new

frameworks or ideas.29,30

The search strategies for genetic disorders that have in

utero interventions and genetic disorders that are treatable

in the first week of life are described in the supplemental

methods and Table S1.
Selection criteria for genes associated with fetal,

delivery, or neonatal interventions

We established inclusion and exclusion selection criteria

(Table 1) and created gene lists as follows: the first main

category includes genetic disorders with in utero interven-

tions that have variable degrees of clinical evidence

including clinical trials (Table 2), case reports or case series

(Table S2), and preclinical animal model studies (Table S3),

whichmay be future candidates for a more expansive treat-

able fetal findings list. The second main category includes

genetic disorders for which prenatal diagnosis could



Table 2. Genes associated with disorders with in utero fetal interventions in clinical trials (n ¼ 11)

Phenotype OMIM Gene Inheritance ClinGen gene-disease validity Fetal intervention Clinical area References

Clinical trials

Osteogenesis imperfecta
type III or severe type IV

259420 COL1A1 AD definitive prenatal administration of
allogeneic expanded fetal
mesenchymal stem cells
(NCT03706482)

endocrine disorder Sagar et al.31;
Lang and Semon32

166220

259420 COL1A2 AD definitive

166220

Infantile-onset Pompe disease 232300 GAA AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Lysosomal acid lipase deficiency 620151 LIPA AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Hurler syndrome 607014 IDUA AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Mucopolysaccharidosis
2 (Hunter)

309900 IDS XL definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Mucopolysaccharidosis
4a (Morquio)

253000 GALNS AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Mucopolysaccharidosis
6 (Maroteaux-Lamy)

253200 ARSB AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Mucopolysaccharidosis 7 (Sly) 253220 GUSB AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Neuronopathic Gaucher disease 231000 GBA AR definitive prenatal ERT (NCT04532047) inherited metabolic disorder Borges et al.33; Cohen et al.34

Ectodermal dysplasia,
hypohidrotic, X-linked

305100 EDA XL no VS protein administered via intra-
amniotic injection (NCT04980638)

multi-system disorder Schneider et al.35;
Schneider et al.36

The table is formatted so that for each phenotype, the columns for ‘‘OMIM,’’ ‘‘Gene,’’ ‘‘Inheritance,’’ and ‘‘ClinGen gene-disease validity’’ are aligned horizontally within the same row to designate their association. The
columns for ‘‘Fetal intervention,’’ ‘‘Clinical area,’’ and ‘‘References’’ are associated with the overall phenotype but not tied to specific genes within that phenotype unless otherwise indicated.
AD, autosomal dominant; AR, autosomal recessive; ERT, enzyme replacement therapy; VS, validity score; XL, X-linked.
A full list of genes associated with disorders that have in utero fetal interventions at varying levels of human evidence are included in Table S2 (n ¼ 54).
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Table 3. Illustrative examples of the 267 genes associated with disorders with clinically available therapies that could be applied in the first week of life (n ¼ 22)

Phenotype OMIM Gene Inheritance
ClinGen gene-
disease validity Treatment Reason for early detection References

Endocrine disorders

AVP resistance (formerly nephrogenic
diabetes insipidus)

304800 AVPR2 XL no VS low-solute diet, thiazide
diuretics, DDAVP, and NSAIDs

can present with hypovolemic
shock in the first days of life

Wesche et al.37; Monnens
et al.38; Libber et al.39

125800 AQP2 AD; AR no VS

Gastrointestinal disorders

Congenital sucrase-isomaltase
deficiency

222900 SI AR no VS avoidance of sucrose and
isomaltose

getting sucrose in the first days
of life (e.g., from a sweetened
medication) could cause serious
diarrhea, dehydration, or
electrolyte abnormalities

Smith et al.40; Esposito
et al.41; Danialifar et al.42

Hematologic disorders

Coagulation factor deficiencies 613679 F2 AR definitive plasma product therapy,
replacement of appropriate
factor

diagnosis may lead to prompt
and appropriate treatment of
intracranial hemorrhage
or cephalohematoma

Leebeek et al.43

227400 F5 AR definitive

227500 F7 AR definitive

306700 F8 XL definitive

306900 F9 XL definitive

227600 F10 AR definitive

612416 F11 AD; ARAR definitive

234000 F12 AR definitive

613225 F13A1 AR definitive

613235 F13B AR definitive

202400 FGG AR definitive

202400 FGB AR definitive

202400 FGA AR definitive

Protoporphyria, erythropoietic 177000 FECH AR definitive avoidance of phototherapy,
blood transfusion, splenectomy

jaundice and hepatosplenomegaly
can develop in the first days of life;
phototherapy causes severe blistering

Nordmann et al.44

263700 UROS AR no VS

Inherited metabolic disorders

Biotin-thiamine responsive basal
ganglia disease

607483 SLC19A3 AR definitive oral biotin and thiamine treatment is benign and may prevent
basal ganglia stroke; although
neonatal presentation is rare,
it can occur

Tabarki et al.45;
De�gerliyurt et al.46

(Continued on next page)
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Table 3. Continued

Phenotype OMIM Gene Inheritance
ClinGen gene-
disease validity Treatment Reason for early detection References

Hereditary fructose intolerance 229600 ALDOB AR no VS strict avoidance of fructose infant formulas that contain fructo-
oligosaccharides, as well as common
medications in the neonatal period
that contain sucrose (e.g., Sweet-ease)
can cause life-threatening hepatic
failure in the first week of life

Civit et al.47

Neurologic disorders

Deafness, aminoglycoside-induced 580000 MT-RNR1 mtDNA no VS avoidance of aminoglycoside
antibiotics

aminoglycosides are commonly
used to prevent neonatal sepsis,
but individuals with this variant
are at risk for associated hearing loss

Göpel et al.48;
Rahman et al.49

STXBP1-related neonatal epilepsy 612164 STXBP1 AD; AR definitive levetiracetam complete seizure control and EEG
normalization reported with
levetiracetam (not a first-line
neonatal ASM)

Dilena et al.50

The table is formatted so that for each phenotype, the columns for ‘‘OMIM,’’ ‘‘Gene,’’ ‘‘Inheritance,’’ and ‘‘ClinGen gene-disease validity’’ are aligned horizontally within the same row to designate their association. The
columns for ‘‘Treatment,’’ ‘‘Reason for early detection,’’ and ‘‘References’’ are associated with the overall phenotype but not tied to specific genes within that phenotype unless otherwise indicated.
AD, autosomal dominant; AR, autosomal recessive; ASM, anti-seizure medication; DDAVP, desmopressin; HSCT, hematopoietic stem cell transplantation; 5-HTP, 5-hydroxytryptophan; MAO-B, monoamine oxidase B;
NSAIDs, nonsteroidal anti-inflammatory drugs; r-hIL-18BP, recombinant human interleukin-18 binding protein; SSRI, selective serotonin reuptake inhibitors; VS, validity score; XL, X-linked.
A full list of genes that could benefit from treatment in the first week of life are included in Table S4 (n ¼ 267).
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plausibly improve outcomes in the first week of life (Ta-

bles 3 and S4). For these conditions, all treatments dis-

cussed are clinically accepted (approved and standard of

care) and can potentially improve outcomes if imple-

mented at an earlier time in an individual’s life. The disor-

ders that may receive intervention in utero are organized by

their level of clinical evidence along a continuum toward

clinical approval. The disorders that may benefit from

earlier implementation of approved treatments in the first

week of life are organized alphabetically by the primary or-

gan system affected.

Inclusion criteria

Risk-benefit ratio considered to be acceptable for fetus and

pregnant person

With any fetal intervention, two individuals are impli-

cated: the pregnant person and the fetus.51 Because of

this, the risk-benefit ratio of a fetal intervention must be

tolerable, and there must also be potential efficacy without

inflicting undue risk to either the pregnant person or fetus.

For example, certain procedural fetal interventions carry a

risk of preterm delivery, premature rupture of membranes,

and oligohydramnios,52 while the risks of medication

administration to the pregnant individual may vary.53

We defined a safe in utero intervention as one that did

not result in fetal demise, did not lead to adverse side ef-

fects in the neonate or child, and did not cause unexpected

adverse events in the mother.

In the case of in utero enzyme replacement therapy or

other prenatal interventions administered directly to

the fetus, there is limited concern for the drug to harm

the mother, although these safety aspects are monitored

in the pregnant individual through an active phase 1

clinical trial.33,34,54 The reason for this is the relatively

small medication dose compared to the pregnant indi-

vidual’s weight and the low risk of the pregnant individ-

ual (an obligate heterozygote in the majority of cases)

recognizing the drug as a foreign antigen.

In the case of oral medications that have tolerable safety

profiles in adults butmay have a risk of embryotoxicity due

to the potential impact on organogenesis based on animal

studies (everolimus [Afinitor; see web resources] and siroli-

mus [Rapamune; see web resources]), it is important

to note that the majority of medications discussed in

Table 2 and S2 would not be implemented until after diag-

nosis is confirmed on amniocentesis, which is a procedure

that occurs after organogenesis is complete. On the other

hand, some medications are deemed extremely safe in

pregnancy. An illustrative example is oral levothyroxine,

which has not been shown to increase birth defects, mis-

carriages, or other adverse maternal or fetal outcomes.55,56

Vitamins such as biotin, folic acid, vitamin B12, and pyri-

doxine are deemed safe in pregnancy as well.57 Dietary

supplements such as L-carnitine (levocarnitine [Carnitor;

see web resources]), L-serine, and sialic acid are considered

generally safe but may have more limited data in human

pregnancy.58
6 The American Journal of Human Genetics 112, 1–19, June 5, 2025
Pregnancy registry data on antiepileptics have not re-

ported risk with levetiracetam,59 but instead indicate that

dose adjustments may be required during pregnancy due

to a decrease in plasma concentrations later in pregnancy

(levetiracetam [Keppra; see web resources]). Mammalian

target of rapamycin (mTOR) inhibitors, such as sirolimus

and everolimus, have warnings surrounding potential risk

to the fetus.60 In cases such as these, systematic clinical tri-

als are needed to further understand risk, given the

competing risk posed by the fetal genetic disease. Many an-

imal studies for various cystic fibrosis transmembrane

conductance regulator (CFTR) modulator therapies have

not shown adverse events, but it is important to note that

thehumandata fromclinical trials is too incomplete to fully

inform drug-associated risk in pregnant individuals.61

For disorders with treatments that may improve clinical

outcomes in the first week of life, the available treatments

are broadly considered safe for affected infants.

Plausibly efficacious treatment

Treatment efficacy was defined as improved neonatal

outcomes when compared to the natural history of the

disease.34,62–64 We selected only disorders with treat-

ments that are considered to be potentially effective in

human case series or clinical trials. Although some

disease-targeted interventions have been successful,

others have led to adverse events and therefore were

not included. For instance, intrauterine dexamethasone

treatment for adrenal hyperplasia, congenital (MIM:

201910, 201810, 201710, 613743; clinicaltrials.gov:

NCT02795871, NCT00617292) has extensive literature

dating back to the 1980s and 1990s, but more recently

was discovered to lead to cognitive impairment in chil-

dren and was therefore deemed to be potentially harm-

ful.65–71 Additionally, reports of significant maternal

side effects from dexamethasone administration present

another concern.72

In some instances, the benefit of an intervention was

incomplete or inconsistent. For example, in a case report

of maternal biotin administration to a fetus with holocar-

boxylase synthetase deficiency (MIM: 253270), the au-

thors concluded that although it may have improved fetal

growth, the prenatally administered dose was insufficient

to prevent the neonatal acidotic crisis this particular indi-

vidual experienced.73 We included this particular gene

and disease because it suggests that the treatment was

safe for the mother and fetus and that a higher dose of

maternal biotin may have the potential to improve

neonatal outcomes.

For disorders with treatments that may improve clinical

outcomes in the first week of life, the available treatments

are broadly considered effective but may not necessarily

have reported use in newborns. In many cases, a confir-

matory non-molecular test, such as a biochemical labora-

tory test or flow cytometry, can be completed shortly after

birth to determine if signs of disease are present. Such

tests ensure that the appropriate treatment is applied



A B Figure 1. Methods of delivering fetal
intervention in humans and animal
models
(A) An increasing number of genetic
disorders can now be intervened upon in
the fetal period through various methods,
including oral medication, umbilical cord
vein injection, amnioreduction, intra-am-
niotic injection, and fetal surgery.
(B) Ongoing preclinical research in fetal
gene therapy explores different delivery
routes and vectors across mouse, rat, and
canine models.
Drawings created with BioRender.
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only to infants who are symptomatic or have orthogonal

evidence of disease, which is of particular importance

for disorders with incomplete penetrance or variable

expressivity.

Clinically severe disorders

We selected only disorders that were associated with

critical or chronic childhood illness. We excluded disor-

ders such as adrenal hyperplasia, congenital, due to

21-hydroxylase deficiency (MIM: 201910), which more

commonly presents in late childhood, adolescence, or

adulthood, with symptoms that are not medically harm-

ful, such as hirsutism and acne.

Potential as a fetal secondary findings list

Of note, the most common reason for ordering fetal GS is

the presence of fetal structural anomalies.74,75 However,

many genes on this list are not associated with structural

anomalies detectable by sonography. As such, these genes

are unlikely to be considered diagnostic for the specific

sonographic abnormalities that prompted an individual

obtaining GS and may be better suited for separate interro-

gation as part of a secondary fetal findings gene list.

Exclusion criteria

Limited gene-disease validity

Gene-disease validity refers to the strength of evidence sup-

portingor refuting a claim that variation inaparticular gene

causes a corresponding monogenic disorder.76 All tables

predominantly include genes with definitive, strong, or

moderate gene-disease validity as annotated in ClinGen.76

Some genes have not yet been curated by ClinGen. Genes

with limited, disputed, or refuted ClinGen validity scores

have been excluded.
Genetic disorders with evidence for fetal diagnosis

and fetal intervention

An increasing number of genetic disorders can receive in-

terventions in the fetal period through a range of therapeu-
Th
tic methods (Figure 1A). Fetal intervention and treatments

for humans with various genetic disorders are in preclinical

research stages, have advanced to clinical trials, or have

been reported in single case reports.77–80
Interventions in preclinical research stages

Ongoing preclinical research in the field of fetal gene ther-

apy explores various delivery routes and vectors across

mouse, rat, and canine models (Figure 1B).77–80 These de-

livery routes include injections that are intrahepatic, intra-

cerebroventricular, intraplacental, intraperitoneal, intrave-

nous, and into the yolk sac.77 While the field of in utero

gene therapy and gene editing continues to hold great

promise for a range of disorders, some approaches have

met with limited success, such as hematopoietic stem cell

gene therapy in a canine model of Hurler syndrome

(MIM: 607014), which was unable to reduce disease

burden.81
Interventions in clinical trials

Systemically administered enzyme replacement therapy

delivered through the umbilical cord vein (Figure 1A) has

advanced to human clinical trials. This route of adminis-

tration, also used for transfusions in fetal anemia,82,83 de-

livers therapy directly to the fetus and has an acceptable

safety profile. Another human clinical trial involves

intra-amniotic injection (Figure 1A) of the protein that is

absent in ectodermal dysplasia 1, hypohidrotic, X-linked

(MIM: 305100).35

Additionally, administering low-toxicity medications

to a pregnant individual, either orally or through injec-

tions or infusions, can treat fetal genetic disorders by

crossing the placenta (Figure 1A). For instance, certain

IMDs can be treated with a nutritional supplement or

medication provided to the mother, which then crosses

the placenta and improves enzyme activity or prevents

toxic substrate accumulation in the fetus.84–87 Further-

more, promising outcomes have also been observed in

more prevalent diseases such as cystic fibrosis (MIM:

219700), in which modulator therapy administered to
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pregnant individuals can improve outcomes of affected

fetuses.62–64 The ongoing exploration of therapeutic de-

livery to the pregnant individual or direct delivery to

the fetus remains a viable path forward.
Interventions published in case reports

Cardiac disorders

In a recent example, a case of fetal bradycardia with posi-

tive maternal autoimmune antibodies was found to be

unresponsive to maternal dexamethasone treatment, and

genetic testing later revealed a KCNH2 (MIM: 152427)

variant-induced long QT syndrome 2 (MIM: 613688),

demonstrating how molecular diagnosis can guide man-

agement by alerting the team that conventional prenatal

treatment for a common problem may not be sufficient.88

Relatedly, pathogenic variants in SCN5A (MIM: 600163),

which can cause long QT syndrome 3 (MIM: 603830),

can be treated with targeted medications.88,89 Addition-

ally, there are times that a genetic diagnosis can lead to

management changes such as avoiding the otherwise

accepted prenatal therapy; for example, fetal chylothorax

in fetuses with PTPN11 (MIM: 176876)-related Noonan

syndrome 1 (MIM: 163950) responded poorly to in utero

pleurodesis by OK-432.90

Hematologic disorders

Disorders that require disease-specific obstetric manage-

ment should also be considered for inclusion in a treatable

fetal findings list. For instance, for fetuses affected by he-

mophilia or another factor deficiency (MIM: 202400,

613679, 227400, 227500, 306700, 306900, 227600,

612416, 234000, 613225, 613235), cesarean section could

be considered, and the use of vacuum-assisted delivery or

forceps should be avoided to prevent intracranial

hemorrhage.91

Inherited metabolic disorders

Case reports for disorders such as liver failure, infantile,

transient (MIM: 613070) and methylmalonic aciduria

and homocystinuria, cblC type (MIM: 277400), in which

a safe postnatal medication is trialed prenatally via admin-

istration to the pregnant person, provide early evidence

from which larger prospective clinical trials can be

launched.84–87 For these cases, the risk-benefit profile is

favorable due to the low potential for maternal medication

side effects. Among the case reports of oral administration

of medication to a mother carrying an affected fetus, it is

evident that the underlying molecular cause of a symp-

tomatic presentationmay help guide specific intervention.
Disorders for which prenatal genomic diagnosis

may improve outcomes by administering

treatment in the first week of life

Although NBS has prevented morbidity and mortality in

infants with a range of IMD and other genetic disorders,
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several disorders included on the Recommended Uniform

Screening Panel (RUSP) can cause critical illness in the first

week of life before NBS results are typically returned. Addi-

tionally, there are a range of other disorders not yet

included in public health NBS programs that also present

with symptoms or have clinical therapies that could be

initiated promptly after birth. These treatments are

approved and represent the standard of care following

the diagnosis of affected infants. None are preclinical treat-

ments or currently in clinical trials. Here, we suggest begin-

ning intervention immediately after birth.

Examples of treatment in the first week of life

Cardiac disorders

The genes that most commonly account for long QT syn-

drome (MIM: 613688, 192500, 603830) can cause fatal ar-

rhythmias in fetuses or infants and have even been impli-

cated in some cases of infant and childhood sudden

death.92,93 Medical management with beta-blockers or

the implantation of a cardioverter-defibrillator may be

lifesaving. Additional genes associated with long QT

syndrome account for a very small proportion (<1%) of

diagnoses (see web resources for long QT syndrome

overview).

Endocrine disorders

Many neonatal-onset endocrine disorders can cause elec-

trolyte disturbances, hypoglycemia, or salt-wasting crises

in the first days of life, which lead to neurologic sequelae

and even death.94,95 While these symptoms can be

partially managed without knowledge of the specific geno-

type, prenatal detection of these disorders may allow for

more proactive clinical care and thereby prevent acute

manifestations.96 Additionally, in the example of congen-

ital hyperinsulinism (MIM: 601820, 256450, 602485,

606762, 125850, 600496), knowledge of the underlying

genotype allows for the appropriate treatment to be expe-

dited, as diazoxide may not be effective in certain genetic

subtypes.97 Relatedly, the more common forms of diabetes

mellitus, permanent neonatal (MIM: 618856, 618857)

caused by pathogenic variants in KCNJ11 (MIM: 600937)

and ABCC8 (MIM: 600509) typically present after the first

week of life but can be improved by targeted treatment

with sulfonylureas.98

Gastrointestinal disorders

There are several gastrointestinal disorders for which early

identification could improve outcomes in infants. A vari-

ety of congenital diarrheas and enteropathies manifest

immediately after birth and can be treated with disease-

specific fluid and electrolyte therapies in the first few

days of life (see web resources for Glucose galactose malab-

sorption).99 Importantly, limitation of enteral feeding can

lead to life-threatening acid-base instability.100 Addition-

ally, accurate identification of these disorders may prevent

potentially unnecessary evaluations or surgeries for condi-

tions such as pseudo-obstruction, which show imaging
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findings similar to those of certain genetic conditions.101

Autosomal recessive hyperlipoproteinemia, type 1D

(MIM: 615947) can present with chylomicronemia shortly

after birth, and early intervention can reducemorbidity.102

Hematologic disorders

Awide variety of genetic disorders of hematopoiesis as well

as plasma proteins, particularly those involved in hemosta-

sis, are amenable to in utero or perinatal therapies or man-

agement strategies. Nearly all severe fetal anemias, for

example, respond to in utero transfusion, which can bridge

the gap to birth, after which chronic transfusion, hemato-

poietic stem cell transplantation, or, increasingly, gene

therapy can be delivered.103–110 The erythroid porphyrias,

protoporphyria, erythropoietic, 1 (MIM: 177000) and

porphyria, congenital erythropoietic (MIM: 263700), do

not themselves cause severe anemia, but the overproduc-

tion of porphyrins results in extreme light sensitivity,

warranting the avoidance of neonatal phototherapy.44 Dis-

orders of granulocyte or platelet numbers or function

generally do not cause disease in prenatal or perinatal

life, but early identification may lead to prophylactic ther-

apies to avoid bleeding or infectious complications (see

web resources for Chediak-Higashi syndrome).111,112

Recognition of clotting factor deficiencies may be an indi-

cation for cesarean section, prompt initiation of factor

replacement, or avoidance of common procedures such

as circumcision (see web resources for hemophilia A).91

Inborn errors of immunity

NBS for severe combined immunodeficiencies (SCIDs [MIM:

102700, 267500, 615617, 615615, 610163, 615401, 602450,

300400, 608971, 600802, 619374, 606593, 300988, 611291,

615966, 619924, 601457, 243150, 617514, 618986]) has

improved morbidity and mortality for infants with the

most severe form of immunodeficiency. Nonetheless, neo-

nates with SCIDs can acquire life-threatening infections, in

particular cytomegalovirus (CMV) from breast milk, prior

to detection by NBS and confirmatory flow-cytometry

testing.113,114 In addition, false-negative NBS results for

SCIDs do occasionally occur.113 Prenatal detection of fetuses

at risk for SCIDs would allow for improved management

both pre- and postnatally. Prenatally, families could be

referred for initial bone marrow transplant evaluation, and

HLA typing could be initiated. Families could be referred to

specific tertiary centers with providers experienced in treat-

ing individualswith SCIDs. In theneonatal period,measures

including isolation precautions, immune prophylaxis, and

counseling against breastfeeding for mothers positive for

CMVcould further reducemorbidity andmortality as confir-

matory testing is performed. Of note, we did not include

genes recently associated with SCIDs, which have a limited

or not yet curated gene-disease relationship based on the

ClinGen SCID-CID expert panel, e.g., MAN2B2 (MIM:

618899) andBCL11B (MIM:606558),bothofwhichareasso-

ciated with congenital anomalies and could be ascertained

by indication-based testing.115
Th
Variable expressivity is a common feature of inborn errors

of immunity (IEIs), including SCIDs and combined immu-

nodeficiencies (CIDs [MIM: 606843, 308230, 209920,

243700, 616873, 300636, 620815, 620816, 620817,

250250, 147060, 301000, 269840, 615758, 615816]).

Many genes are associated with both SCIDs and CIDs, often

due to hypomorphic variants linked to the latter. Due to the

critical importance of identifying individuals at risk for

SCIDs, we included genes associatedwith CIDs that can pre-

sent in the neonatal period with SCIDs.116 Because of the

heterogeneity of CIDs and marked variable expressivity, it

is challenging to definitively distinguish which CIDs would

benefit from diagnosis within the first week of life. Early

detection of many IEIs including CIDs could decrease

morbidity and mortality during infancy but is beyond the

scope of this review.117

We included genes associated with agammaglobulin-

emia (MIM: 613502, 300755, 613501, 601495, 616941/

619824, 619705), a category of disorders predominantly

associated with antibody deficiencies. Although infants

with agammaglobulinemia typically present at 3–6months

of age, earlier diagnosis and treatment would likely prevent

morbidity and mortality.114 Several countries are imple-

menting B cell kappa-chain receptor excision circles

(KRECs) screening in conjunction with SCID NBS. This

screening can detect individuals at risk for agammaglobu-

linemia.114 These programs will provide critical informa-

tion regarding the utility of neonatal detection, which

can help inform genes chosen for the treatable fetal find-

ings list.

We also included genes associated with diseases of im-

mune dysregulation, congenital defects of phagocyte num-

ber, function, or both, defects in intrinsic and innate

immunity, and autoinflammatory disorders. We included

IEIs that can present during the neonatal period and are

treatable.116,118 We did not include complement defi-

ciencies, as the typical age of onset is usually in childhood,

although one neonatal presentation has been re-

ported.116,118 This is an area of active investigation, in

particular for diseases of immune dysregulation and auto-

inflammatory disorders.118 We anticipate that the list of

genes associated with fetal and perinatal presentation

will rapidly increase as these disorders are further charac-

terized with growing awareness of potential fetal

presentation.

Variable expressivity and incomplete penetrance are

common features of IEIs. In particular, for IEIs with

genotype-phenotype associations, consideration of both

gene and specific variant would be important to consider

prior to inclusion in a treatable fetal findings list.

Neonatal orthogonal testing for IEIs, particularly flow cy-

tometry, is a powerful additional tool when penetrance is

unknown.

Inherited metabolic disorders

Many IMDs lead to symptoms in the first days of life, prior

to the receipt of NBS results. The detection of at-risk fetuses
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would allow pregnant individuals to prepare for delivery in

a clinical center where a specialized biochemical genetics

team is present or allow advanced notice for the birth cen-

ter to procure the necessary metabolic medications and

formulas.

In a recent example, a female fetus with pyruvate dehy-

drogenase E1-alpha deficiency (MIM: 312170) was diag-

nosed via exome sequencing in the setting of structural

brain malformations.119 This prenatal diagnosis allowed

for interdisciplinary delivery planning among the preg-

nant individual’s obstetric providers and the institution’s

pediatrics teams, including biochemical genetics special-

ists, neonatologists, and dieticians with expertise in the

ketogenic diet. The infant was placed on a ketogenic diet

immediately after birth and, as a possible result, experi-

enced no seizures or lactic acidosis in the neonatal period.

This case illustrates the potential opportunity for infants

with other IMDs requiring specialized diets ormedications,

such as organic acidemias or urea cycle disorders, to receive

appropriate treatment beginning at birth. In some cases,

prompt initiation of treatment may prevent the accumula-

tion of toxic intermediates that lead to severe metabolic

decompensations, characterized by lethargy, seizures, and

even early death. Early treatment of IMDs therefore has

the potential to improve lifelong health and quality of

life for affected individuals.

Of note, one challenge that may arise across these disor-

ders is that specific variants in some genes (such as those

associated with carnitine palmitoyltransferase II defi-

ciency, myopathic, stress-induced [MIM: 255110]) are

strongly associated with attenuated or late-onset forms of

disease, which do notmeet the inclusion criteria for this re-

view. If these genes were adapted for a treatable fetal find-

ings list, further discussion will be needed regarding which

PLPVs to analyze and report.

Neurologic disorders

The management of infants at risk for many monogenic

disorders with neurologic symptoms could be improved

by identification prior to birth. In particular, several

syndromes causing neonatal seizures are optimally treated

with specialized management that differs from the

standard of care; prompt initiation of the appropriate

anti-seizure medication is more likely to lead to complete

seizure control.120 Additionally, for disorders such as

the congenital myasthenic syndromes (MIM: 614750,

610542, 615350, 614198, 618197, 616228, 617143,

616040, 601462, 616313, 616322, 608931, 616326,

254300, 616325, 613723, 603034, 616720, 615120,

254210, 617239, 616330, 618323, 616224), the effect of

acetylcholinesterase therapy depends directly on the geno-

type, which in some cases can worsen symptoms and lead

to critical illness (see web resources for congenital myas-

thenic syndromes overview).

One unique entity that meets criteria for inclusion is the

mtDNA variant m.1555A>G in the MT-RNR1 gene (MIM:

561000). This variant is a risk allele for deafness, aminogly-
10 The American Journal of Human Genetics 112, 1–19, June 5, 2025
coside-induced (MIM: 580000). Although this variant is not

expected to cause symptoms a priori, for infants who un-

dergo preventive treatment of sepsis, commonly used ami-

noglycoside antibiotics may put them at risk for hearing

loss. Instead, targeted pharmacologic treatment for these in-

fants might lead to the use of a different antibiotic.121

Renal disorders

Infants at risk for two renal disorders, cystinosis (MIM:

219800) and hyperoxaluria, primary, type 1 (MIM:

259900), would particularly benefit from treatment in

the first week of life to preserve renal function. Cystinosis

leads to cystine accumulation in various tissues, including

the kidney. Although clinical symptoms do not typically

occur until approximately 6 months of age, glomerular

damage accumulates from birth. Early treatment with

cystine-depleting agents such as cysteamine immediately

after birth can slow this damage.122,123 Hyperoxaluria, pri-

mary, type 1, which presents in the first months of life in

10% of affected individuals, results in oxalate accumula-

tion, causing nephrocalcinosis, nephrolithiasis, and pro-

gressive kidney damage (see web resources for primary hy-

peroxaluria type-1: an unprecendented presentation at

birth).
Exploring the potential for a secondary findings

panel specific to fetal sequencing

Fetal GS is poised to play an increasingly significant role in

prenatal diagnosis. The ISPD recommends offering GS to

all pregnant individuals whose fetuses have structural ab-

normalities,1 which would encompass up to 2%–3% of

pregnancies.2 Additionally, several research studies have

explored fetal GS in non-anomalous fetuses, finding that

0.06%–2.7% have variants associated with monogenic dis-

ease.16–19 Currently, no established guidelines regarding

which monogenic variants to report in fetal GS exist, and

the role of secondary findings remains unclear. Analysis

of a treatable fetal findings list could be optionally offered

to pregnant individuals undergoing diagnostic fetal GS.

Alternatively, this list might eventually serve as a panel

for non-anomalous fetuses or couples with a family history

of an undiagnosed disorder and could eventually be ascer-

tained using cell-free fetal DNA.124–127 Of note, however,

the list in this review is not comprehensive or consensus

based and will require updates as new research and inter-

ventions emerge.

Importantly, parents have demonstrated interest in us-

ing GS to diagnose disorders with available experimental

in utero interventions. In surveys of parents with children

affected by mucopolysaccharidoses (MIM: 607014,

309900, 253000, 253200, 253220), for example, themajor-

ity of parents had a favorable attitude toward phase 1

clinical trials for fetal therapy.128 Similarly, survey

results from families affected by spinal muscular atrophy

(MIM: 253300) and sickle cell disease (MIM: 603903)
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overwhelmingly supported prenatal diagnosis, and the

majority expressed an interest in fetal therapy.129,130 Iden-

tifying treatable monogenic disorders during the fetal

period could therefore enhance individuals’ care options

and autonomy during pregnancy as well as improve the

neonatal and lifelong health of affected infants.

In this integrative review, we compiled a list of 296 genes

associated with disorders for which therapeutic interven-

tion—either in the fetus (54 genes, Tables 2 and S2) or in

the first week of life (267 genes, including 25 genes that

appear on both lists, Tables 3 and S4)—could improve

health outcomes. Tables 2 and S2 are organized by the

highest level of evidence, and Table 2 focuses on those dis-

eases for which a fetal clinical trial is currently available.

Tables 3 and S4 describe standard-of-care early-life treat-

ments, with Table 3 detailing illustrative examples of the

complete gene list shared in Table S4. At present, we sug-

gest that the disorders for which there have been successful

treatments reported in individual human cases, disorders

with fetal interventions that are currently in clinical trials,

and disorders for which treatment in the first week of life

may improve outcomes should be considered for a treat-

able fetal findings list, taking into account the selection

criteria established in Table 1. If this list is implemented,

the efficacy and safety of fetal interventions, based on in-

formation conveyed in the pregnancy and lactation label-

ing rule, should also be continuously monitored and up-

dated. In practice, genomic variants related to this gene

list will lead to the need for further clinical correlation,

personalized discussions of the risks and benefits of each

treatment, and shared decision-making with patients. Ulti-

mately, additional systematic clinical trials will be needed

in many cases. Yet, providing care teams and patients

with this information has the potential to improve fetal

outcomes and neonatal health.

Although GS allows for querying the entire genome, and

any genomic finding could be considered actionable in the

perinatal period, presenting theoption toassess a listof treat-

able fetal disorders is an important step toward enhancing

the autonomy of pregnant individuals. In the future, preg-

nant individuals could be offered the option for GS to focus

on variants associated with sonographic findings or to also

include additional treatable findings or analysis of thewhole

genome. If whole-genome analysis were pursued, these lists

ofdisorders could alsobeused toguidediscussionsonpoten-

tial treatment opportunities, which would provide people

with a more comprehensive range of care options. Further-

more, reporting all PLPVs associated with childhood-onset

disorders may be premature and pose challenges to coun-

seling, as the penetrance and expressivity of many variants

are not yet well understood.131

Although the treatable disorders listed in this review are

all relatively well characterized in the medical literature,

other challenges remain in establishing the clinical utility

of a treatable fetal findings list. The penetrance of many of

these disorders is unknown, and the paucity of diagnostic

imaging signs or non-molecular confirmatory testing avail-
The
able in fetuses limits diagnostic certainty.132,133 Fetal GS is

complicated by incomplete phenotyping due to ultra-

sound limitations,14 and many disorders may have no

discernible prenatal phenotype to substantiate the diag-

nosis.132,133 Efforts are underway to expand entries in

the Human Phenotype Ontology related to prenatal pre-

sentations; however, this does not address incomplete phe-

notyping related to technological limitations.133 While

tests such as fetal enzyme activity using placental134 or

umbilical cord blood samples are possible, interpreting re-

sults is difficult without established fetal norms.135 After

birth, genetic diagnoses can be confirmed by non-genetic

findings, but during the fetal period, treatment decisions

may rely solely on genetic information.

Implementation of a treatable fetal findings list may also

be complicated by barriers to care in resource-limited set-

tings and by psychosocial ramifications. Access to fetal GS

is inequitable,136 and the additional analysis of treatable

disease genes couldpotentiallywidenhealthdisparities. Re-

porting only PLPVs, as has been recommended by the

ACMG, may lead to inequities for reproductive couples of

non-European ancestry in whom variants of uncertain sig-

nificance are more common.137 When a positive finding is

identified, it may be infeasible for some individuals to

receive care at a clinical center where the appropriate treat-

ment is available.138 Pregnant individuals offered GS in the

setting of a fetal anomaly might face an overwhelming

amount of information if offered multiple secondary or

treatable findings lists, and it may be a new challenge for

physicians and genetic counselors to consent individuals

for the analysis of potential secondary findings.139–142 We

also acknowledge that a list of treatable disorders could be

used as a justification to limit pregnant individuals’ repro-

ductive options. In addition to deciding whether to

continue or terminate a pregnancy of a fetus with a genetic

disorder, these lists of genes are meant only to provide

another option of early treatment, which in some cases

has the potential to change the natural history of a disease.

However, many of these interventions are not yet proven

and are not the standard of care, and therefore should not

be viewed as a reason to curtail reproductive decision-mak-

ing. As the clinical use of fetal GS expands, the clinical,

ethical, legal, and social ramifications of this technology

will continue to be a field of active research.

The use of trio GS as a tool to investigate conditions

affecting the pregnant individual is also an important

new direction for investigation. Given that fetal GS typi-

cally includes a sample from the pregnant individual and

that the maternal genome is also assessed in cell-free

DNA (cfDNA) sequencing, additional genetic disorders

that affect fetal or maternal health, or lead to pregnancy

complications, could also be considered for inclusion. For

example, the pregnant individual’s sample could reveal

disorders that are teratogenic to the fetus, such as maternal

phenylketonuria (MIM: 261600)143 or thrombotic throm-

bocytopenic purpura, hereditary (MIM: 274150).144 Addi-

tionally, analysis of this sample could identify a risk for
American Journal of Human Genetics 112, 1–19, June 5, 2025 11
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disorders that may present in the breastfeeding infant,

such as zinc deficiency, transient neonatal (MIM:

608118) or acrodermatitis enteropathica, zinc-deficiency

type (MIM: 201100),145 which can be prevented by supple-

mentation of the deficient nutrient. Furthermore, identi-

fying genetic conditions that affect the health of the preg-

nant or postpartum individual, such as ornithine

transcarbamylase deficiency (MIM: 311250), Ehlers-

Danlos syndrome, vascular type (MIM: 130050), or cardio-

myopathies, could prevent deadly complications such as

hyperammonemia or uterine rupture.146 Lastly, detecting

fetal conditions such as fatty acid oxidation disorders

may also inform prenatal care, as they can cause secondary

effects in the pregnant individual.147

As access to fetal GS grows and the capabilities of cfDNA

sequencing advance, the field of prenatal genetic diagnosis

will continue to expand. The implementation of a treat-

able fetal findings list has the potential to enhance the au-

tonomy of pregnant individuals and improve the health of

infants with rare diseases. There is evidence to suggest that

a large number of genes are associated with conditions that

are intervenable in utero or during the immediate perinatal

period. In time, our understanding of variant curation and

prenatal phenotypes will grow, which will improve post-

test counseling for pregnant individuals with PLPVs found

on fetal GS. Although challenges remain regarding the

equitable implementation of fetal GS, a treatable fetal find-

ings list could currently be offered to individuals who are

undergoing this test, and eventually may form the basis

of a non-invasive screening tool performed on cfDNA

that could be offered to all pregnant individuals.
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31. Sagar, R.L., Åström, E., Chitty, L.S., Crowe, B., David, A.L.,

DeVile, C., Forsmark, A., Franzen, V., Hermeren, G., Hill,

M., et al. (2024). An exploratory open-label multicentre

phase I/II trial evaluating the safety and efficacy of postnatal

or prenatal and postnatal administration of allogeneic

expanded fetal mesenchymal stem cells for the treatment

of severe osteogenesis imperfecta in infants and fetuses: the

BOOSTB4 trial protocol. BMJ Open 14, e079767. https://

doi.org/10.1136/bmjopen-2023-079767.

32. Lang, E., and Semon, J.A. (2023). Mesenchymal stem cells in

the treatment of osteogenesis imperfecta. Cell Regen. 12, 7.

https://doi.org/10.1186/s13619-022-00146-3.

33. Borges, B., Canepa, E., Chang, I.J., Herzeg, A., Lianoglou, B.,

Kishnani, P.S., Harmatz, P., MacKenzie, T.C., and Cohen, J.L.

(2025). Prenatal Delivery of Enzyme Replacement Therapy to

Fetuses Affected by Early-Onset Lysosomal Storage Diseases.

Am. J. Med. Genet. C Semin. Med. Genet. 31, e32132.

https://doi.org/10.1002/ajmg.c.32132.

34. Cohen, J.L., Chakraborty, P., Fung-Kee-Fung, K., Schwab,

M.E., Bali, D., Young, S.P., Gelb,M.H., Khaledi, H., DiBattista,

A., Smallshaw, S., et al. (2022). In Utero Enzyme-

Replacement Therapy for Infantile-Onset Pompe’s Disease.

N. Engl. J. Med. 387, 2150–2158. https://doi.org/10.1056/

NEJMoa2200587.

35. Schneider, H., Faschingbauer, F., Schuepbach-Mallepell, S.,

Körber, I., Wohlfart, S., Dick, A., Wahlbuhl, M., Kowalczyk-

Quintas, C., Vigolo, M., Kirby, N., et al. (2018). Prenatal

Correction of X-Linked Hypohidrotic Ectodermal Dysplasia.

N. Engl. J. Med. 378, 1604–1610. https://doi.org/10.1056/

NEJMoa1714322.
14 The American Journal of Human Genetics 112, 1–19, June 5, 2025
36. Schneider, H., Hadj-Rabia, S., Faschingbauer, F., Bodemer, C.,

Grange, D.K., Norton, M.E., Cavalli, R., Tadini, G., Stepan,

H., Clarke, A., et al. (2023). Protocol for the phase 2

EDELIFE trial investigating the efficacy and safety of intra-

amniotic ER004 administration to male subjects with

X-linked hypohidrotic ectodermal dysplasia. Genes 14,

153. https://doi.org/10.3390/genes14010153.

37. Wesche, D., Deen, P.M.T., and Knoers, N.V.A.M. (2012).

Congenital nephrogenic diabetes insipidus: the current state

of affairs. Pediatr. Nephrol. 27, 2183–2204. https://doi.org/

10.1007/s00467-012-2118-8.

38. Monnens, L., Jonkman, A., and Thomas, C. (1984). Response

to indomethacin and hydrochlorothiazide in nephrogenic

diabetes insipidus. Clin. Sci. 66, 709–715. https://doi.org/

10.1042/cs0660709.

39. Libber, S., Harrison, H., and Spector, D. (1986). Treatment of

nephrogenic diabetes insipidus with prostaglandin synthesis

inhibitors. J. Pediatr. 108, 305–311. https://doi.org/10.1016/

s0022-3476(86)81010-1.

40. Smith, H., Romero, B., Flood, E., and Boney, A. (2021). The

patient journey to diagnosis and treatment of congenital su-

crase-isomaltase deficiency. Qual. Life Res. 30, 2329–2338.

https://doi.org/10.1007/s11136-021-02819-z.

41. Esposito, M.V., Comegna,M., Cernera, G., Gelzo, M., Paparo,

L., Berni Canani, R., and Castaldo, G. (2021). NGS gene panel

analysis revealed novel mutations in patients with rare

congenital diarrheal disorders. Diagnostics 11, 262. https://

doi.org/10.3390/diagnostics11020262.

42. Danialifar, T.F., Chumpitazi, B.P., Mehta, D.I., and Di Lor-

enzo, C. (2024). Genetic and acquired sucrase-isomaltase

deficiency: A clinical review. J. Pediatr. Gastroenterol. Nutr.

78, 774–782. https://doi.org/10.1002/jpn3.12151.

43. Leebeek, F.W.G., Duvekot, J., and Kruip, M.J.H.A. (2020).

How I manage pregnancy in carriers of hemophilia and pa-

tients with von Willebrand disease. Blood 136, 2143–2150.

https://doi.org/10.1182/blood.2019000964.

44. Nordmann, Y., Amram, D., Deybach, J.C., Phung, L.N., and

Lesbros, D. (1990). Coexistent hereditary coproporphyria

and congenital erythropoietic porphyria (Günther disease).

J. Inherit. Metab. Dis. 13, 687–691. https://doi.org/10.

1007/BF01799568.

45. Tabarki, B., Al-Shafi, S., Al-Shahwan, S., Azmat, Z., Al-Ha-

shem, A., Al-Adwani, N., Biary, N., Al-Zawahmah, M.,

Khan, S., and Zuccoli, G. (2013). Biotin-responsive basal

ganglia disease revisited: clinical, radiologic, and genetic

findings. Neurology 80, 261–267. https://doi.org/10.1212/

WNL.0b013e31827deb4c.
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Supplemental Material and Methods 

Supplemental Methods 

Search strategy for genetic disorders that have in utero interventions 

A literature review was conducted to develop the list of disorders that can receive intervention in 

utero. The authors conducted a review of clinicaltrials.gov (search terms: “fetal therapy”, 

“genetic” returned 256 results, with 8 relevant studies), ChatGPT1 and Microsoft CoPilot2 

queries for available prenatal therapies for genetic disease, and a medical librarian-led search in 

Embase using search terms: “fetal therapy,” “fetal treatment,” “in utero therapy,” “in utero 

treatment,” “prenatal therapy,” “prenatal treatment” and limited to randomized controlled trials, 

clinical trials, case studies, and case reports (Table S2) that yielded 593 titles and abstracts 

which were reviewed by two authors (J.L.C. and M.D.) for relevance. The searches were limited 

to English. These titles and abstracts were reviewed using Covidence.3 Articles deemed 

relevant by one or both authors were added to the tables and manuscript text if they met 

inclusion criteria. Full text manuscripts were reviewed on an as-needed basis.   

Development of a list of disorders that are treatable in the first week of life 

To develop a list of disorders that are treatable in the first week of life, the authors reviewed the 

disorders on the Recommended Uniform Screening Panel (RUSP)4 and a list of 651 genes 

associated with treatable genetic disorders,5 aggregated from various online tools and published 

reports.6–11 Using these previously compiled lists, the authors included disorders that could 

benefit from antenatal detection and early postnatal treatment to improve neonatal outcomes. 

Additionally, the authors incorporated several disorders based on new evidence since the 

publication of the prior lists or as deemed appropriate according to the selection criteria.  

 

https://paperpile.com/c/nQwGEK/CNqRj
https://paperpile.com/c/nQwGEK/pIQkU
https://paperpile.com/c/nQwGEK/tjGW8
https://paperpile.com/c/nQwGEK/rRrF7
https://paperpile.com/c/nQwGEK/CBW78
https://paperpile.com/c/nQwGEK/2iGkw+kufJj+TBKNu+be1rQ+TJHSU+OX0jp


Authors with expertise in various disease areas constructed each clinical section of this list 

(cardiac disorders: A.R.; endocrine disorders: D.M.M.; gastrointestinal disorders: A.S., J.R.T.; 

hematologic disorders: M.D.F.; inborn errors of immunity: R.H.; inherited metabolic disorders: 

R.G., N.B.G.; neurologic disorders: M.A.W.; renal disorders: W.T.). The list of all genes and 

disorders were then reviewed by the senior author (N.B.G.) for consistency with the selection 

criteria. 

  



 

Set #  Search Strategy  Results  

1  

Fetal 
therapy  

'fetal therapy'/exp OR 'fetal therapy' OR 'fetal therapies' OR 'foetal therapy' OR 'foetal 
therapies' OR 'fetal treatment' OR 'fetal treatments' OR 'in utero treatment' OR 'in 
utero treatments' OR 'in utero therapy' OR 'in utero therapies' OR 'prenatal therapy' 
OR 'prenatal therapies' OR 'prenatal treatment' OR 'prenatal treatments'  

5,610  

2  

And study 
filters  

('fetal therapy'/exp OR 'fetal therapy' OR 'fetal therapies' OR 'foetal therapy' OR 'foetal 
therapies' OR 'fetal treatment' OR 'fetal treatments' OR 'in utero treatment' OR 'in 
utero treatments' OR 'in utero therapy' OR 'in utero therapies' OR 'prenatal therapy' 
OR 'prenatal therapies' OR 'prenatal treatment' OR 'prenatal treatments') AND 
([controlled clinical trial]/lim OR [randomized controlled trial]/lim OR 'clinical trial' OR 
'controlled trial' OR 'case report' OR 'case study') 

1,041  

3  

And article 
status and 
english  

  

('fetal therapy'/exp OR 'fetal therapy' OR 'fetal therapies' OR 'foetal therapy' OR 'foetal 
therapies' OR 'fetal treatment' OR 'fetal treatments' OR 'in utero treatment' OR 'in 
utero treatments' OR 'in utero therapy' OR 'in utero therapies' OR 'prenatal therapy' 
OR 'prenatal therapies' OR 'prenatal treatment' OR 'prenatal treatments') AND 
([controlled clinical trial]/lim OR [randomized controlled trial]/lim OR 'clinical trial' OR 
'controlled trial' OR 'case report' OR 'case study') AND ([article]/lim OR [article in 
press]/lim OR [data papers]/lim OR [letter]/lim OR [note]/lim OR [review]/lim OR [short 
survey]/lim OR [preprint]/lim) AND [english]/lim  

601  

Table S1. Search strategies and results for titles and abstracts detailing genetic 
disorders with in utero interventions.  Date: August 13, 2024. Database / Study Registry 
(including vendor/platform): Embase (Elsevier). 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Genes associated with disorders with in utero fetal interventions in clinical 
trials and case reports (n = 54). See supplemental excel file. 

The table was formatted so that for each phenotype, the columns for "OMIM," "Gene," 
"Inheritance," and "ClinGen gene-disease validity" were aligned horizontally within the same row 
to designate their association. The columns for "Fetal intervention," "Clinical Area," and 
"Citations" were associated with the overall phenotype but not tied to specific genes within that 
phenotype unless otherwise indicated. 
 
Abbreviations: AD: Autosomal dominant; AR: Autosomal recessive; ERT: Enzyme replacement 
therapy; hAFMSCs: Human amniotic fluid mesenchymal stromal cells; HSC: Hematopoietic 
stem cells; HSCT: Hematopoietic stem cell transplantation; LT4: Levothyroxine; LXR-agonist: 
Liver X receptor agonist; VS: Validity score; VT: Ventricular tachycardia; XL: X-linked  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S3. Genes associated with disorders with experimental in utero fetal interventions 
in animal models (n = 19). See supplemental excel file. 

Abbreviations: AAV: adeno-associated virus; AD: autosomal dominant; ASO: antisense 
oligonucleotide; AR: autosomal recessive; ERT: enzyme replacement therapy; HSC: 
hematopoietic stem cells; HSCT: hematopoietic stem cell transplantation; LXR-agonist: Liver X 
receptor agonist; SAMe: S-adenosylmethionine; VS: validity score; XL: X-linked 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4. Genes associated with disorders with clinically available therapies that could 
be applied in the first week of life (n = 267). See supplemental excel file. 
 
The table was formatted so that for each phenotype, the columns for "OMIM," "Gene," 
"Inheritance," and "ClinGen gene-disease validity" were aligned horizontally within the same row 
to designate their association. The columns for "Treatment," "Reason for early detection," and 
"Citations" were associated with the overall phenotype but not tied to specific genes within that 
phenotype unless otherwise indicated. 

Abbreviations: AChE: Acetylcholinesterase; AD: Autosomal dominant; AR: Autosomal 
recessive; ASM: Anti-seizure medication; BCAA: Branched chain amino acids; DDAVP: 
Desmopressin;  G-CSF: Granulocyte colony stimulating factor; GM-CSF: Granulocyte-
macrophage colony-stimulating factor; HSCT: Hematopoietic stem cell transplantation; GOF: 
Gain of function; 5-HTP: 5-hydroxytryptophan; LT4: Levothyroxine; LOF: Loss of function; MAO-
B: Monoamine oxidase B; N/A: Not Applicable due to absent OMIM entry; NSAIDs: Nonsteroidal 
anti-inflammatory drugs; rhGH: Recombinant human growth hormone; r-hIL-18BP: Recombinant 
human interleukin-18 binding protein; SCID: Severe combined immunodeficiency; SSRI: 
Selective serotonin reuptake inhibitors; TSH: Thyroid-stimulating hormone; VS: Validity score; 
XL: X-linked 
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