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Abstract 

Introduction: Over 30 research groups and companies are exploring newborn screening using 

genomic sequencing (NBSeq), but the sensitivity of this approach is not well understood.  

 

Methods: We identified individuals with treatable inherited metabolic disorders (IMDs) and 

ascertained the proportion whose DNA analysis revealed explanatory deleterious variants 

(EDVs). We examined variables associated with EDV detection and estimated the sensitivity of 

“DNA-first” NBSeq. We further predicted the annual rate of true positive and false negative 

NBSeq results in the United States for several conditions on the Recommended Uniform 

Screening Panel (RUSP). 

 

Results: We identified 635 individuals with 80 unique IMDs. In univariate analyses, Black race 

(OR = 0.37, 95% CI: 0.16-0.89, p = 0.02) and public insurance (OR = 0.60, 95% CI: 0.39-0.91, p 

= 0.02) were less likely to be associated with finding EDVs. Had all individuals been screened 

with NBSeq, the sensitivity would have been 80.3%. We estimated that between 0 and 649.9 

cases of RUSP IMDs would be missed annually by NBSeq in the United States. 

 

Conclusions: The overall sensitivity of NBSeq for treatable IMDs is estimated at 80.3%. That 

sensitivity will likely be lower for Black infants and those who are on public insurance. 

 

Keywords: Newborn screening, genomic sequencing, inherited metabolic diseases, detection 

sensitivity, explanatory deleterious variants  
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Introduction 

Newborn screening (NBS) is a successful public health program that identifies infants at risk for 

a range of treatable, childhood-onset conditions. The majority of the conditions on the United 

States Recommended Uniform Screening Panel (RUSP)1 are inherited metabolic disorders 

(IMDs), a group of genetic conditions characterized by impaired energy production or pathologic 

accumulation of toxic metabolites. Collectively, IMDs have an estimated incidence of 1 in 2,500-

5,000 live births and lead to significant morbidity and mortality, especially in pediatric 

populations.2 NBS labs primarily use tandem mass spectrometry to identify biomarkers of IMDs, 

but prior studies have suggested that biochemical screening in combination with genomic 

sequencing may improve the sensitivity and specificity of NBS.3 In recent years, many NBS labs 

have added DNA sequencing as a second-tier test to further clarify infants’ risk for a range of 

disorders.4 

 

Over 30 research groups and companies around the world are offering genomic sequencing as 

a first-tier screening test to identify apparently healthy infants at risk for genetic disorders.5,6 

Newborn and childhood screening using genomic sequencing (NBSeq) offers an efficient 

method to screen simultaneously for hundreds of treatable genetic disorders.7 Rare disease 

experts have recognized IMDs as a high-priority group of disorders to include in future NBSeq,8  

and estimates of the sensitivity of NBSeq for treatable conditions will be essential. 

 

Prior studies have addressed the yield of positive results and the positive predictive value of 

genomic screening in newborns,9,10 or compared the sensitivity of biochemical and NBSeq for 

conditions on the RUSP. 3,11 The sensitivity of NBSeq for the detection of a wide range of IMDs, 

however, remains unknown, and the characteristics of infants who might not be detected by this 

modality have not yet been characterized. In this study, using treatable IMDs as a class of 
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diseases for which highly accurate and specific biochemical diagnosis is possible, we explored 

the estimated sensitivity of NBSeq. 

  

We determined the proportion of individuals at a large academic medical center with clinical 

diagnoses of IMDs in whom genetic testing did not reveal explanatory deleterious variants 

(EDVs). We then examined individual and disease-related factors associated with the likelihood 

of having EDVs. Finally, by combining our results with data from gnomAD v2,12 we estimated 

the annual rate of true positive and false negative NBSeq results in the United States for several 

conditions on the RUSP. 

 

Material and Methods 

Study design and case selection 

A retrospective chart review was conducted to identify individuals evaluated in the Boston 

Children’s Hospital (BCH) Metabolism Program for known or suspected IMDs over a five-year 

period from January 1, 2017 to December 31, 2022. The Institutional Review Board of Boston 

Children’s Hospital approved this study (IRB-P00043820). 

 

Inclusion criteria 

An initial digital medical records query identified charts for potential study inclusion if individuals: 

(1) were seen in the study center’s outpatient Genetics and Metabolism clinic between the years 

2017-2022, (2) were seen by a medical geneticist and/or metabolism physician who evaluates 

metabolic chief complaints, and (3) were less than 22 years of age (due to limited electronic 

health records at the study institution prior to 2000). 

 

Charts were further manually reviewed for study inclusion if individuals: (1) had a chief 

complaint related to the evaluation of a suspected IMD, (2) had undergone both biochemical 
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and DNA-based testing, (3) were found to have biochemical laboratory test results diagnostic of 

a specific IMD diagnosis, and (4) had a clinical diagnosis of a treatable IMD that was rendered 

by a medical geneticist and/or metabolism physician. Chief complaints related to the evaluation 

of a suspected IMD included: a history of abnormal NBS results, developmental delay, 

hypotonia, stroke-like episodes, abnormal biochemical test results or radiologic imaging 

suggestive of an IMD, a known IMD, family history of IMD, dysmorphic physical features, or 

other.  

 

Treatable IMDs were defined as those with clinically available dietary or pharmaceutical therapy 

that targets the underlying mechanism of disease.7 By this definition, treatable IMDs included all 

core and secondary metabolic conditions on the RUSP1 as well as 137 metabolic disorders 

previously curated by Gold et al.8 We included several additional treatable genetic conditions 

managed by metabolic physicians at the study institution that are frequently diagnosed or 

managed by other subspecialties. These conditions included hereditary folate malabsorption 

(OMIM: 229050), lipoprotein lipase deficiency (OMIM: 238600), metachromatic leukodystrophy 

(OMIM: 250100), lysosomal acid lipase deficiency (OMIM: 620151), pyridoxine-dependent 

epilepsy (OMIM: 266100), alkaptonuria (OMIM: 203500), and glycogen storage disease (GSD) 

types 0 (OMIM: 240600), IV (OMIM: 232500), and V (OMIM: 232600). 

 

Individuals were excluded if biochemical testing or DNA-based testing were incomplete (i.e. 

ordered or considered but never obtained), harbored only variants known to be associated with 

enzyme pseudodeficiency,13 if their diagnosis did not require long-term metabolic care (such as 

short-chain acyl-CoA dehydrogenase deficiency [OMIM: 201470] or benign hypermethioninemia 

[OMIM: 250850]), or if their diagnosis was not considered a treatable IMD as described above. 

Positive biochemical testing was defined as the presence of characteristic lab abnormalities 

suggestive of a specific IMD.14 In cases of GSD, which lack a pathognomonic biomarker, 
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documented hypoglycemia and abnormal liver imaging or an abnormal liver biopsy were 

considered to be sufficient for a biochemical diagnosis.  

 

The primary outcome measure was whether or not molecular testing revealed EDVs diagnostic 

of IMD. EDVs were defined as the presence of pathogenic or likely pathogenic variant(s) 

(PLPVs) in a dosage corresponding to the mode of disease inheritance (i.e. two PLPVs in a 

gene associated with autosomal recessive inheritance) found on diagnostic genomic testing, 

such as a gene panel or exome sequencing. This definition is based upon the methodology 

employed by several newborn genomic sequencing studies in which variants of uncertain 

significance (VUS) are not reported.9,15,16,17 

 

Data collection 

Data were abstracted from the electronic medical record (EMR) by two independent reviewers 

(SB, HP) and were recorded and stored in a secure electronic database hosted by REDCap 

(Research Electronic Data Capture) electronic data capture tools at BCH.18,19  

 

The data collected included demographic information (sex, race, ethnicity, home zip code, 

insurance status), and clinical information (reason for referral to a metabolism specialist, date of 

first clinic visit, age at first clinic visit, biochemical testing, and results), and DNA-based 

sequencing results (gene name, variant, variant classification, IMD diagnosis, IMD classification, 

year of diagnosis, and clinical status). Race and ethnicity were self-reported by individuals or 

their families. 

 

The reason for referral was categorized into one of 12 groups: abnormal newborn screen, 

developmental delay/cognitive impairment, hypotonia, stroke-like episodes/intermittent 

ataxia/AMS, seizures, failure to thrive/cyclic vomiting, hypoglycemia, abnormal laboratory 
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results and/or imaging, known IMD diagnosis, family history of IMD, dysmorphic features, and 

other. IMD classification was based upon the International Classification of Inherited Metabolic 

Disorders (ICIMD)20 and included disorders of amino acid metabolism, disorders of 

carbohydrate metabolism, disorders of fatty acid and ketone body metabolism, disorders of lipid 

metabolism, disorders of complex molecule degradation, disorders of vitamin and cofactor 

metabolism, and other types of IMD. 

 

Data analyses 

Analyses were conducted using R (version 2023.06.0+421) (R Foundation, Vienna, Austria). 

Descriptive statistics were calculated to characterize the study cohort, including sex, age at first 

clinic visit, insurance status, and self- or family-reported race and ethnicity. The proportion of 

individuals with an established biochemical diagnosis without EDVs was identified, and from this 

proportion, the predicted sensitivity of NBSeq was estimated.  

 

We designed univariate and multivariable logistic regression models to identify individual and 

disease characteristics associated with finding EDVs. First, we selected possible predictors that 

we theorized might influence the likelihood of finding EDVs for a clinically diagnosed IMD, 

including sex, insurance status, race, ethnicity, RUSP versus non-RUSP conditions, and IMD 

classification. All variables were categorical, so we modeled them as separate indicator 

variables for each category. In the univariate models, we used logistic regression (implemented 

with the glm R function) to associate each indicator variable with the binary outcome of finding 

EDVs. In the multivariable model, we included all selected variables in the logistic regression 

model, excluding the most common category of each variable as its reference. We assessed the 

significance of each variable in each model based on its coefficient Wald p-value. For all 

quantitative analyses, results were deemed significant at a threshold of p < 0.05. 
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Estimation of sensitivity of genetic testing for IMDs 

Using the data from this study, we estimated the hypothetical sensitivity of NBSeq for the 

identification of the 80 treatable IMDs found in our cohort. For these calculations, individuals 

with clinical IMD diagnoses and EDVs were considered “true positive” cases. Individuals with 

clinical diagnoses of IMD but without EDVs were considered “false negative” cases. For each 

individual, we combined all genetic testing approaches that they had undergone (CMA, familial 

variant analysis, common variant genotyping, single gene sequencing, gene panel, and exome) 

as a conglomerate representation of NBSeq. 

 

Estimation of cases missed by NBSeq per year 

We then used the estimated sensitivity rates alongside data from gnomAD v2 to calculate the 

number of cases of IMDs on the RUSP that could potentially be missed by NBSeq annually in 

the United States.  

 

We first defined the number of infants expected to receive positive NBSeq results for each 

disorder. The Genetic Prevalence Estimator (GeniE) uses variant databases and population 

data from ClinVar and gnomAD to estimate the prevalence of deleterious genotypes associated 

with autosomal recessive diseases (genie.broadinstitute.org).21 For each disorder on the RUSP, 

we used the expected prevalence of a deleterious genotype from GeniE as an estimate of the 

rate of true positive plus false negative NBSeq results.  

 

We defined the rate of false positive NBSeq results as the prevalence of individuals in gnomAD 

v2 with two deleterious variants known to be in trans or unphased. We first tabulated the 

number of individuals with predicted loss of function variants or likely deleterious missense 
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variants (REVEL score ≥ 0.932) occurring in trans or unphased in the variant co-occurrence 

tables from gnomAD v2. The false positive rate was calculated by dividing the number of 

individuals derived from the variant co-occurrence tables by the total number of samples 

included in gnomAD v2 co-occurrence tables (n=125,748).22  

 

To calculate the proportion of infants expected to have true positive NBSeq results, we 

subtracted the percentage of individuals in gnomAD v2 with two deleterious variants predicted 

to be in trans or unphased from the total prevalence of deleterious variants predicted by GeniE. 

Multiplying this true positive rate by the number of births in the United States in 202323 yielded 

the predicted annual number of true positive cases detected by genetic testing.  

 

We then used the calculated sensitivity of NBSeq for each RUSP condition from our study and 

the calculated true positive rate to estimate the total number of affected individuals per year. 

Subtracting the number of true positive cases detected by genetic testing from this total 

provided the projected estimate of cases missed by NBSeq annually. 

 

X-linked conditions were omitted from our calculations as GeniE cannot estimate their 

prevalence. Gene-disease pairs with calculated NBSeq sensitivity of zero or where the 

predicted false positive rate exceeded the genetic prevalence estimate from GeniE were also 

excluded. 
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Results 

Descriptive statistics 

Among 8,121 charts identified for review by digital medical record query, 635 met criteria for 

inclusion in these analyses (Figure 1). These individuals had a total of 80 unique treatable IMDs 

(Supplemental Table 1). 

 

Overall, 55.6% (n=353) of participants were male and 44.4% (n=282) were female, with a 

median age at presentation of 3.5 months (IQR 13 days - 53.2 months) (Table 1). Most 

individuals self-identified as White (n = 365, 57.5%) and non-Hispanic (n=439, 69.1%), although 

19.2% did not report race and 20.2% (n=128) did not report their ethnicity. 

 

Among all 635 individuals whose DNA had been sent for analysis, 510 (80.3%) were discovered 

to have EDVs. Disorders of amino acid metabolism made up the largest subset of cases 

analyzed (n=239, 37.6%), followed by disorders of fatty acid and ketone body metabolism 

(n=126, 19.8%) (Figure 2). Among all individuals with positive biochemical testing and clinical 

diagnoses of IMDs, 69.9% (n=444) had IMDs that are included as core or secondary conditions 

on the RUSP. Of these, 82.2% (n=365) had EDVs and 17.8% (n=79) lacked EDVs.  

 

Of the 510 individuals with EDVs, 396 (77.6%) were diagnosed by single gene testing, 59 

(11.6%) were diagnosed by gene panel, 27 (5.3%) were diagnosed by genotyping for common 

variants, 20 (3.9%) were diagnosed by exome sequencing, 4 (0.8%) were diagnosed by familial 

variant analysis, and 1 (0.2%) was diagnosed by CMA (Supplemental Table 2). In 3 cases 

(0.6%), genetic testing was obtained at an outside hospital, and the specific testing modality 

was unknown. 
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Of the 125 individuals without EDVs, 78 (62.4%) received single gene testing only, 22 (17.6%) 

received gene panel testing only, and 5 (4.0%) received exome sequencing only. Multiple 

genetic tests, including CMA, single gene sequencing, common variant genotyping, gene panel, 

and exome, were obtained in 20 (16.0%) cases without EDVs. Genome sequencing was not 

pursued for any individuals in our cohort.  

 

Predictors of EDVs 

Individuals of Black/African American race had significantly lower odds of having EDVs 

compared to White individuals (OR = 0.37, 95% CI: 0.16-0.89). This association remained 

significant in the multivariable analysis adjusting for all other variables (aOR = 0.32, 95% CI = 

0.13-0.87). No other racial groups were associated with significant differences in the odds of 

having EDVs (Table 2). 

 

Individuals with public insurance as well as those with international/self-pay modes of coverage 

had lower odds of having EDVs compared to those with private insurance. In the univariate 

model, the OR for public insurance was 0.60 (95% CI: 0.39-0.91), and the aOR was 0.41 (95% 

CI: 0.23-0.72). International/self-pay coverage trended towards lower odds of having EDVs in 

the univariate analysis (OR = 0.41, 95% CI: 0.18-1.05, p = 0.05), but this was not statistically 

significant in the multivariable analysis (aOR = 0.34, 95% CI: 0.06-2.64, p = 0.23). 

 

Among categories of IMDs, disorders of fatty acid and ketone body metabolism (FAOD) were 

associated with significantly lower odds of having EDVs compared to the disorders of amino 

acid metabolism reference group in both the univariate (OR = 0.58, 95% CI: 0.35-0.99) and 

multivariable analyses (aOR = 0.38, 95% CI: 0.19-0.74). Other IMD classifications did not 

demonstrate significant associations. 
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Conditions not included on the RUSP were associated with lower odds of having EDVs 

compared to those on the RUSP. This association was not significant in the univariate analysis 

(OR = 0.68, 95% CI: 0.45-1.03, p = 0.07) but was significant after adjusting for confounding by 

the other covariates (aOR = 0.47, 95% CI: 0.23-0.93). None of the other independent variables 

achieved statistical significance with regard to having EDVs. 

 

Sensitivity of “DNA-first” screening for IMDs 

We calculated the sensitivity of NBSeq for IMDs on the RUSP to be 82.2% (365 true positive 

cases/(365 true positive cases + 79 false negative cases)). Comparatively, 30.1% (n=191) of 

individuals in this study had been clinically and biochemically diagnosed with an IMD that is not 

listed as a core or secondary condition on the RUSP. We calculated the sensitivity of NBSeq for 

46 treatable IMDs that are not on the RUSP to be 75.9% (145 true positive cases/(145 true 

positive cases + 46 false negative cases)). 

 

Cumulatively, for all treatable IMDs included in this study, the sensitivity of NBSeq was 

estimated at 80.3% (510 true positive cases/(510 true positive cases + 125 false negative 

cases)). Based on the results of this study, if NBSeq were used to expand the number of 

treatable IMDs assessed by NBS, approximately 19.7% of individuals with biochemical and 

clinical diagnoses of treatable IMDs might receive false negative results. 

 

Predicted missed cases per year by NBSeq 

We estimated the annual number of cases in the US of 18 treatable IMDs on the RUSP that 

would be missed by NBSeq (Table 3). NBSeq is projected to result in the fewest missed cases 

of mucopolysaccharidosis I (0.6) (OMIM: 607014), citrullinemia type I (1.7) (OMIM: 215700), 

and maple syrup urine disease (2.2) (OMIM: 248600, 620698, 620699). NBSeq is expected to 

miss the highest number of cases of profound/partial biotinidase deficiency (649.9) (OMIM: 
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253260), Pompe disease (54.4) (OMIM: 232300), and medium-chain acyl-CoA dehydrogenase 

deficiency (53.0) (OMIM: 201450). No missed cases were expected for malonyl-CoA 

decarboxylase deficiency (OMIM: 248360), tyrosinemia type I (OMIM: 276700), carnitine 

palmitoyltransferase II deficiency (OMIM: 600649, 608836, 255110), 3-ketothiolase deficiency 

(OMIM: 203750), dihydropteridine reductase deficiency (OMIM: 261630), and cobalamin C 

deficiency (OMIM: 277400). 

 

Discussion 

Incorporating NBSeq into population-wide NBS programs has the potential to be lifesaving for 

infants at risk of treatable genetic disorders.24 However, the clinical utility of NBSeq as a 

screening tool will depend, in part, upon its sensitivity—the rate at which it detects infants who 

will eventually show symptoms of disease. IMDs, which are largely childhood-onset and can be 

confirmed by biochemical testing, serve as a model to estimate NBSeq’s sensitivity. In this 

study, we reviewed the EMRs of 635 individuals with 80 unique IMDs. We estimated NBSeq to 

have an aggregate sensitivity of 80.3%, with lower sensitivity expected among infants who were 

Black and those who were on public insurance. We estimated that annually between 0 and 650 

infants in the United States with one of a subset of IMDs would be missed by NBSeq. As 

international NBSeq efforts expand, our findings highlight their current capabilities for detecting 

treatable IMDs and suggest ways to improve upon sensitivity in the future. 

 

Traditional NBS methods, including tandem mass spectrometry and enzymatic assays, have a 

near-perfect sensitivity for many treatable IMDs.25 Prior analyses have found NBSeq less 

sensitive than traditional NBS for IMDs on the RUSP. Among 1,728 dried blood spots from 

infants with IMDs in California, traditional NBS had a sensitivity of 99.0%, whereas exome 

sequencing had a sensitivity of only 88%.3 Similarly, the NEXUS study found EDVs in only 

15/17 (88%) of infants with phenylketonuria (OMIM: 261600) and medium-chain acyl-CoA 
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dehydrogenase deficiency, which are rarely missed by traditional NBS.26 In this study, genetic 

testing identified EDVs in 82.2% (365/444) of individuals with an IMD included on the RUSP, 

reinforcing the need to use biochemical testing as the gold standard in screening. However, this 

study includes IMDs beyond those on the RUSP, allowing for broader assertions about the 

sensitivity of NBSeq for disorders that cannot be ascertained by traditional biochemical 

methods. 

 

NBSeq can expand upon the number of IMDs included in NBS. Biochemical testing alone is 

inaccurate for some treatable IMDs, such as ornithine transcarbamylase deficiency (OMIM: 

311250),27 or infeasible for others, like mitochondrial disorders, which have no single 

pathognomonic biomarker, or acute intermittent porphyria (OMIM: 176000), which requires 

specialized testing that may only be positive in times of metabolic crisis. We found that the 

estimated sensitivity of NBSeq for 46 non-RUSP IMDs was 75.9%. This is slightly lower than for 

RUSP conditions, likely due to decades of population-level ascertainment of those conditions 

that has led to more accurate genotype-phenotype correlations. Our estimation of sensitivity for 

RUSP and non-RUSP conditions was also further influenced by the study cohort size and 

disease representation within this single hospital system, which can be improved upon in future 

studies. Importantly, none of the individuals with non-RUSP conditions in this study were 

identified by current NBS methods, thereby delaying their care until after the emergence and 

recognition of symptoms. Taken together, the sensitivity of NBSeq is therefore expected to have 

a greater aggregate sensitivity across all IMDs. 

 

Determining which variants are reported as “deleterious” from NBSeq will affect the sensitivity of 

this approach. We defined EDVs as PLPVs in a dosage corresponding to the mode of disease 

inheritance, which is consistent with the methodology of several NBSeq research 

programs.9,15,16 FAOD, the second-largest category of IMD in our cohort, had a high proportion 
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of VUS in clinically diagnosed individuals. If a broader criterion was used, in which one PLPV 

and one VUS for an autosomal recessive condition constituted EDVs, 58 additional cases in our 

study would have been classified as true positives. This definition of EDVs would have 

increased the cumulative sensitivity of NBSeq for IMDs from 80.3% to 89.4%. However, this 

more lenient approach to variant reporting must be balanced against the risk of increasing the 

rate of false positive results, which may overwhelm both parents and the pediatric workforce.  

 

We also combined our findings with gnomAD v2 data to estimate the expected annual rate of 

RUSP IMD cases that might be missed by NBSeq. These theoretical data can be improved 

upon by large, longitudinal studies, but provide an early estimate of true positive and false 

negative results from NBSeq. Disorders such as biotinidase deficiency and phenylketonuria, 

which are relatively more common than other IMDs, were estimated to be more likely to be 

missed by NBSeq. In part, these findings may reflect the incomplete penetrance and variable 

expressivity of these disorders, or possibly the presence of causative intronic variants. However, 

relatively few children with each condition would be missed by NBSeq, and these false negative 

rates could be easily improved by concurrent or serial biochemical screening when available.  

 

NBSeq may improve upon the positive predictive value (PPV) of traditional NBS methods. 

Although biochemical screening has greater than 99% sensitivity, only 0.5-2% of infants with 

positive results are found to have diagnostic evidence of disease because each disorder is 

individually so rare.25 To establish the PPV of NBSeq, infants with PLPVs need longitudinal 

evaluations to detect signs and symptoms of disease. Since genes associated with monogenic 

disease are less tolerant of loss-of-function variants,12,28 an assertion supported by our 

exploration of variant co-occurrence across IMD genes, we expect few false positive results 

from NBSeq.29 In a prior analysis, we found that less than 1% of apparently healthy participants 

in gnomAD (59/141,456) had PLPVs in 127 genes associated with treatable childhood-onset 
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disorders.30 This low false positive rate, which is inversely related to the PPV, suggests that 

genomic sequencing may offer more prognostic information than current biochemical screening 

methods alone. 

   

NBSeq can mitigate healthcare disparities related to referral patterns and access to care, but 

limitations remain.31 Individuals of Black/African American race had lower odds of having EDVs 

compared with those who were White, a disparity seen in prior studies.32,33 Non-White 

participants in large genomic databases have fewer pathogenic variants and more VUS than 

White participants.34 This discrepancy may be mitigated by including parental samples in 

genome sequencing analysis, as shown in the 100,000 Genomes Project from Genomics 

England.35 This approach may not be feasible for NBS, as samples from both parents may not 

always be available. As more data from more diverse individuals becomes available in large 

genomic databases, analysis of proband-only sequencing will improve. 

 

The sensitivity of genetic testing is likely to grow with time. Over half (62.4%) of individuals 

without EDVs in this cohort had single-gene testing, which may miss causative variants in genes 

with similar biochemical signatures. Variants in non-coding regions may also go undetected by 

exome or panel sequencing.36 Genome sequencing and RNAseq, which were not used in our 

cohort, have an 8% and 15% greater diagnostic yield compared with exome alone.37–39 

However, a recent analysis showed that many children with signs of IMD who had negative 

exome testing still lacked a diagnosis after exome reanalysis and genome sequencing.39 With 

time, the analysis and interpretation of coding and non-coding variants will continue to improve. 

 

While traditional biochemical screening outperforms NBSeq for many disorders of primary 

metabolism, it cannot efficiently detect hundreds of other childhood-onset treatable disorders. 

The interpretation of NBSeq results is limited by the lack of longitudinal population-wide 
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phenotype data and longstanding disparities in genomics research, but its yield appears high 

and is consistently improving. With ongoing gene discovery, variant curation efforts, and 

increasing availability of genome sequencing, NBSeq’s sensitivity and PPV will continue to 

grow, eventually enabling the detection of many more children at risk for treatable IMDs.  
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Figure Legends 

Figure 1. Methods flow diagram. Abbreviations: IMD, inherited metabolic disease. 

Figure 2. Results of genetic testing. Abbreviations: EDV, explanatory deleterious variant; VUS, 

variants of uncertain significance. 

Jo
urn

al 
Pre-

pro
of



1 

Table 1. Demographic and disease characteristics of patients included in study. 

 Characteristic N (%) 

 Total Cases 635 

 Sex  

 Male 353 (55.6) 

 Age at Presentation,  
 [IQR] 

3.2 months, 
[13 days – 53.2 months] 

 Race  

 Additional races 92 (14.5) 

 Asian 33 (5.2) 

 Black or African American 23 (3.6) 

 White 365 (57.5) 

 Unknown 122 (19.2) 

 Ethnicity  

 Hispanic 68 (10.7) 

 Non-Hispanic 439 (69.1) 

 Unknown 128 (20.2) 

 Insurance Status  

 Public 243 (38.3) 

 Private 342 (53.9) 

 International/self-pay 26 (4.1) 

 Unknown 24 (3.8) 

 IMD Classification  

 Disorders of amino acid metabolism 239 (37.6) 

 Disorders of carbohydrate metabolism 101 (15.9) 

 Disorders of fatty acid and ketone body metabolism 126 (19.8) 

 Disorders of lipid metabolism 22 (3.5) 

 Disorders of complex molecule degradation 93 (14.6) 

 Disorders of vitamin and cofactor metabolism 45 (7.1) 

 Other 9 (1.4) 

Abbreviations: IQR, interquartile range; IMD, inherited metabolic disorder. The Additional Races category combines American Indian or Alaska Native, 

Native Hawaiian or Other Pacific Islander, and Other races. 
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Table 2. Associations of patient characteristics with EDVs. 

  
Characteristic 

Univariate Analysis  Multivariable Analysis   

OR (95% CI) P value  aOR (95% CI) P value  

Sex        
  Female 1 [Reference] NA  1 [Reference] NA  
  Male 0.83 (0.55-1.23) 0.37  0.92 (0.53-1.56) 0.74  
Race        
  White 1 [Reference] NA  1 [Reference] NA  
  Additional races 1.43 (0.80-2.72) 0.25  1.53 (0.67-3.74) 0.33  
  Asian 1.82 (0.70-6.24) 0.27  1.34 (0.48-4.79) 0.62  
  Black or African American 0.37 (0.16-0.89) 0.02  0.32 (0.13-0.87) 0.02  
Ethnicity        
  Non-Hispanic 1 [Reference]   1 [Reference] NA  
  Hispanic 1.37 (0.70 - 2.95) 0.38  1.42 (0.59-3.68) 0.45  
Insurance        
  Private 1 [Reference] NA  1 [Reference] NA  
  Public 0.60 (0.39-0.91) 0.02  0.41 (0.23-0.72) 0.002  
  International/self-pay 0.41 (0.18-1.05) 0.05  0.34 (0.06-2.64) 0.23  
IMD Classification        
  AA 1 [Reference]   1 [Reference] NA  
  Carb 1.02 (0.56 - 1.94) 0.94  1.95 (0.77-5.53) 0.18  
  FAOD 0.58 (0.35 - 0.99) 0.04  0.38 (0.19-0.74) 0.005  
  Lipid 0.55 (0.21 - 1.61) 0.24  0.69 (0.22-2.39) 0.54  
  Complex molecule 0.76 (0.35 - 0.99) 0.36  1.69 (0.72-4.19) 0.24  
  Vitamin/cofactor 1.35 (0.57 - 3.72) 0.53  1.28 (0.46-4.22) 0.66  
  Other 0.72 (0.17 - 4.98) 0.69  1.82 (0.24-37.54) 0.61  
RUSP        
  RUSP 1 [Reference]   1 [Reference] NA  
  non-RUSP 0.68 (0.45-1.03) 0.07  0.47 (0.23-0.93) 0.03  

Abbreviations: EDVs, explanatory deleterious variants; OR, odds ratio; CI, confidence interval; aOR, adjusted odds ratio; NA, not applicable; IMD, 

inherited metabolic disorders; AA, disorders of amino acid metabolism; Carb; disorders of carbohydrate metabolism; FAOD, disorders of fatty acid and 

ketone body metabolism; Lipid, disorders of lipid metabolism; Complex molecule, disorders of complex molecule degradation; Vitamin/cofactor, 

disorders of vitamin and cofactor metabolism; RUSP, Recommended Uniform Screening Panel. The Additional Races category combines American 

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, and Other races. 
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Table 3. Predicted number of missed cases per year by genotype-first NBS for RUSP 

conditions. 

Diagnoses 
Associated 
Gene(s) 

 Sn 

GeniE 
Genetic 
Prevalence 
Estimate 

gnomAD 
Variant Co-
occurrences 

Estimated 
Total Annual 
Cases 

Missed 
Cases 
per Year 

Disorders of amino acid metabolism 

   ASL deficiency ASL  0.63 1.24451E-05 1 16.1 9.7 

   Citrullinemia type I ASS1  0.83 2.31862E-06 0 8.3 1.7 

   3-MCC deficiency 
MCCC1, 
MCCC2 

 0.17 2.00181E-06 0 7.2 35.9 

   Isovaleric acidemia IVD  0.50 1.9798E-06 0 7.1 7.1 

   
Malonyl-CoA 
decarboxylase 
deficiency 

MLYCD  1.00 1.51713E-07 0 0.5 0 

   MSUD 
DBT, 
BCKDHA, 
BCKDHB 

 0.78 2.10817E-06 0 7.6 2.2 

   PKU/hyperPhe PAH  0.94 0.000128502 1 432.9 29.7 

   Tyrosinemia type I FAH  1.00 2.11077E-06 0 7.6 0 

Disorders of carbohydrate metabolism 

   Galactosemia GALT  0.84 1.31933E-05 1 18.8 3.6 

Disorders of fatty acid and ketone body metabolism 

   CPT II deficiency CPT2  1.00 7.53449E-06 0 27.1 0 

   MCAD ACADM  0.81 7.23694E-05 1 231.3 53.0 

   VLCAD ACADVL  0.67 1.11884E-05 0 40.2 20.1 

   
3-ketothiolase 
deficiency 

ACAT1  1.00 4.3978E-07 0 1.6 0 

Disorders of complex molecule degradation 

   
MPS I (Hurler 
syndrome) 

IDUA  0.70 8.36624E-06 1 1.5 0.6 

   Pompe disease GAA  0.81 7.37028E-05 1 236.1 54.5 

Disorders of vitamin and cofactor metabolism 

   DHPR deficiency QDPR  1.00 2.97348E-08 0 0.1 0 

   
Biotinidase 
deficiency/partial 
biotinidase deficiency 

BTD  0.90 0.001628664 0 5849.1 649.9 

    
Cobalamin C 
deficiency 

MMACHC  1.00 4.11948E-06 0 14.8 0 

 

Abbreviations: ASL, argininosuccinate lyase; 3-MCC, 3-methylcrotonyl-CoA carboxylase; IVA, isovaleric acidemia; MSUD, maple syrup urine disease; 

PKU, phenylketonuria; hyperPhe, hyperphenylalaninemia; CPT, carnitine palmitoyltransferase; MCAD, medium-chain acyl-CoA dehydrogenase 

deficiency; VLCAD, very long-chain acyl-CoA dehydrogenase deficiency; MPS, mucopolysaccharidosis; DHPR, dihydropteridine reductase. 
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Total cases
analyzed
(n = 635)

Total cases
assessed for

eligibility
(n = 8121)

Non-metabolic chief complaints 
excluded (5861)

Non-diagnostic evaluation 
excluded (896)

Heterozygotes, pseudodeficiency, 
non-disease excluded (411)

Incomplete biochemical and/or 
genetic testing excluded (237)

Untreatable IMDs excluded (81)
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