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A B S T R A C T

Purpose: Assessing the risk of common, complex diseases requires consideration of clinical risk
factors as well as monogenic and polygenic risks, which in turn may be reflected in family
history. Returning risks to individuals and providers may influence preventive care or use of
prophylactic therapies for those individuals at high genetic risk.
Methods: To enable integrated genetic risk assessment, the eMERGE (electronic MEdical Re-
cords and GEnomics) network is enrolling 25,000 diverse individuals in a prospective cohort
study across 10 sites. The network developed methods to return cross-ancestry polygenic risk
scores, monogenic risks, family history, and clinical risk assessments via a genome-informed
risk assessment (GIRA) report and will assess uptake of care recommendations after return of
results.
Results: GIRAs include summary care recommendations for 11 conditions, education pages,
and clinical laboratory reports. The return of high-risk GIRA to individuals and providers
includes guidelines for care and lifestyle recommendations. Assembling the GIRA required
infrastructure and workflows for ingesting and presenting content from multiple sources.
Recruitment began in February 2022.
Conclusion: Return of a novel report for communicating monogenic, polygenic, and family
history-based risk factors will inform the benefits of integrated genetic risk assessment for
routine health care.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Using genetic risk factors to identify individuals at high
risk of disease promises to improve screening practices that
are currently based on clinical risk factors and family
history.1,2 Monogenic disease risks are now incorporated
into screening guidelines for several cancers (breast,
ovarian, colorectal) and cardiometabolic (familial hyper-
lipidemia) conditions.3,4 Yet, risk assessment for mono-
genic diseases based on family history alone is suboptimal
and may miss more than three-quarters of affected
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patients.5,6 The introduction of polygenic risk scores
(PRS), reflecting the aggregate effect of many common
genetic variants of small individual effect, may enable
more integrated genetic risk assessment but complicates
point-of-care translation. Because the analytical validity of
PRS is largely unknown for groups whose genetic ances-
tries are underrepresented in genome-wide association
studies (GWAS) data sets, improving the generalizability
of genetic risk estimation is critical to ensuring equitable
implementation of genomic risk assessment across diverse
populations.7-9
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Implementing new and existing methods to apply com-
plex genetic risk stratification to preventive care decisions
requires new methods to communicate comprehensive
genomic risk assessments to patients and providers. Such
methods should integrate 3 components of genetic risk
(family history, monogenic, and polygenic), incorporate
clinical risk factors, connect genetic risk to clinical utility,
and provide clear guidance on interpretation and clinical
actionability. The electronic MEdical Records and GEno-
mics (eMERGE) network developed a “genome-informed
risk assessment” (GIRA) report that compiles risk infor-
mation from 4 sources: (1) clinical data from self-report and
the electronic health record (EHR), (2) family history in-
formation provided by individuals during study enrollment,
(3) clinical PRS results, and (4) clinical sequencing for a
limited number of monogenic risks. The GIRA report will
be incorporated into individuals’ medical records and
returned to both individuals and their health care providers.
Guidance is included in the report to tailor screening tests
and behavioral interventions to genetic risks that could
prevent or mitigate adverse health outcomes. The network
will assess whether the GIRA influences downstream health
care use, behavior changes, and understanding of disease
risk. This manuscript describes the network’s approach to
assessing integrated risk, development of the GIRA report,
and the design of the prospective cohort study aimed at
examining GIRA utility for 11 complex conditions.
Figure 1 eMERGE network organizational structure. Under the
Committee, the 10 clinical sites, coordinating center, and network partn
protocol, risk scores, and methods as well as recruiting and returning
Harvard; Duke, Duke University; EHR, electronic health record; eMERG
and social implications; NHGRI, National Human Genome Research In
board; VUMC, Vanderbilt University Medical Center.
Materials and Methods

Network organization

The eMERGE (electronic MEdical Records and GEnomics)
network is a National Human Genome Research
Institute–supported consortium of 10 health care institutions
within the United States and a coordinating center (CC)
responsible for data integration, report generation, and
overall network logistics (Figure 1). In its first 3 phases,
eMERGE successfully developed tools to use EHRs for
discovery and to create programs to implement genomic
medicine across large cohorts. For example, eMERGE
developed methods for accurately extracting phenotypes
from EHRs for use within large GWAS and pioneered the
development of phenome-wide association studies.10-15

eMERGE also studied the clinical implementation of
sequencing across large cohorts, returning genomic results
to individuals, placing results directly into EHRs, and
deploying related clinical decision support.11,12,16-19

To complete the study objectives of the fourth phase, the
consortium has engaged 3 new partners to provide essential
laboratory or point-of-care data collection capabilities: the
Broad Institute (clinical PRS testing and reporting), Duke
University (family history collection tool, MeTree), and
Invitae (Invitae Corporation; clinical monogenic
sequencing). The network hosts 6 workgroups (Supplemental
guidance of the NHGRI, External Scientific Panel, and Steering
ers make up 6 workgroups charged with developing the network
results to 25,000 individuals. Broad, Broad Institute of MIT and
E, electronic Medical Records and Genomics; ELSI, ethical legal

stitute; PRS,polygenic risk score; sIRB: single institutional review
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Table 1) and is guided by a steering committee that meets
twice monthly via teleconference and 3 times per year at
hybrid meetings, as well as with a 7-member External Sci-
entific Panel. Network decisions, rationale, and timelines are
tracked centrally by the CC and displayed to the network via
dashboards.

Study design

The eMERGE network aims to increase applicability of
genomic risk prediction across populations by validating
PRS in multiple ancestral groups and enrolling a prospective
cohort that includes individuals who are currently under-
represented in clinical-genomic research. Six sites are
committed to recruiting an “enhanced diversity cohort” with
a target of 75% of individuals belonging to a racial or ethnic
minority or medically underserved population, whereas the
remainder of clinical sites will target 35%. Enrollment is not
targeted to individuals with specific conditions, although
individuals with prevalent conditions can be included. The
network focuses on 3 major aims: (1) recruit 25,000 in-
dividuals (ages 3-75 years) from general health care system
populations, (2) generate cross-ancestry and ancestry-
adjusted PRS as the basis for reports to return risk along-
side family health history, clinical, and monogenic risk, and
(3) measure individual outcomes and provider behaviors and
comprehension in response to receiving this information.

The Vanderbilt University Medical Center CC is the
institutional review board of record (#211043) for the net-
work’s single institutional review board, approved in July
2021. Exclusion criteria include inability to consent or
receive results in English or Spanish, history of solid organ
or bone marrow transplant, lack of a health care provider at
Figure 2 The GIRA report integrates multiple risk elements and is
the electronic Medical Records and Genomics (eMERGE) study are enrol
and biological samples. Polygenic risk (Broad report), monogenic risk (In
data (from EHRs and participant surveys) are collected and combined
recommendations that can be used to guide screening recommendations a
determine changes in health care behavior after return. EHR, electronic
the parent institution, and study personnel. The network
uses a prescreening survey before consent to ascertain
eligibility. Individuals are consented electronically and then
given 2 surveys to complete before providing biological
samples (saliva or blood). Samples are sent to the Broad
Institute for generation of polygenic risk reports and Invitae
(adults only) for monogenic reports. Individuals also pro-
vide family health history data using MeTree software. Data
are received at the CC to generate GIRA reports (Figure 2).

Condition selection

Conditions were selected after considering the analytical
and clinical validity of the associated PRS, projected clinical
actionability, and applicability of genomic risks to pop-
ulations of diverse genetic ancestries. During validation
studies, the network compared individuals above a selected
threshold to all those below the threshold; scores with
nonsignificant odds ratios (OR; those with 95% CIs that
overlapped 1.0) in multiple genetic ancestries were
deprioritized for implementation. Definitions for each se-
lection criterion and categories of genomic risk are provided
in the Supplemental Glossary. The network reviewed 23
proposed conditions and selected 11 conditions for imple-
mentation (Table 1). The initial assessments included
comprehensive literature reviews focused on PRS perfor-
mance; the network then conducted independent secondary
validations in additional clinical-genomic data sets across 4
genetic ancestry groups (European, Asian, African, and
Hispanic). Because the PRS for colorectal cancer did not
validate in either Hispanic or African ancestry sample data,
the colorectal cancer PRS risk component was excluded
from the GIRA. Of the 11 conditions, 4 were determined to
returned to individuals, providers, and the EHR. Individuals in
led and provide both self-reported (clinical and family history) data
vitae report), family health history (MeTree pedigree), and clinical
to create the GIRA report. Results are returned along with care
nd next steps for primary care providers. Outcomes are assessed to
health record; GIRA, genome-informed risk assessment.



Table 1 High-risk criteria for genome-informed risk assessment conditions

Condition

Monogenic Risk Polygenic Risk Family History Risk Expected
Number of
High RiskaGenes Considered

P/LP
Frequency, %

High Risk
Threshold, % Relatives

% Increased
Risk

Pediatric only conditions (3-17 y at enrollment)
Asthma N/A N/A 5 N/A N/A 250
Type 1 diabetes N/A N/A 3 N/A N/A 150

Pediatric and adult conditions (3-75 y at enrollment)
Obesity/BMI N/A N/A 3 N/A N/A 750
Type 2 diabetes N/A N/A 2 N/A N/A 500

Adult only conditions (18-75 y at enrollment)
Atrial fibrillation LMNA 0.05 3 Parents <75 y 5 610
Breast cancerb,c BRCA1, BRCA2, PALB2,

PTEN, TP53, STK11
1.48 5 First and second

degree
11 348

Chronic kidney
disease

N/A N/A 2 First degree 9 400

Colorectal cancer EPCAM, MLH1, MSH2,
MSH6, PMS2, STK11,
PTEN, TP53

0.54 N/A N/A N/A 110

Coronary heart
disease

APOB, LDLR, LDLRAP1,
PCSK9

0.89 5 First degree 9.8 1178

Hypercholesterolemia APOB, LDLR, LDLRAP1,
PCSK9

0.89 3 N/A N/A 778

Prostate cancerc BRCA1, BRCA2, EPCAM,
MLH1, MSH2, MSH6,
PMS2

1.69 10 First degree
males

9.4 1169

BMI, body mass index; BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; N/A, not applicable; P/LP, path-
ogenic/likely pathogenic.

aPredicted in-person return for combined polygenic risk and monogenic risk scores does not account for overlap. Trigger hierarchy: monogenic > polygenic
> family history risk.

bBreast cancer triggers from BOADICEA integrated score, 25% lifetime risk.
cBreast and prostate cancer risk returned to self-reported sex at birth of female and male, respectively. N ~ 5000 pediatric and N ~ 20,000 adult individuals

are expected.
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be pertinent clinically for individuals aged 3 to 17 years:
asthma, obesity/body mass index (BMI), type 1 diabetes
(T1D), and type 2 diabetes (T2D). Asthma and T1D are only
returned to those aged <18 years, whereas obesity/BMI and
T2D are returned to adults as well. Considering the network
ethical, legal, and social implication (ELSI) input and un-
certain penetrance of monogenic genes on these 4 condi-
tions, the network elected not to offer monogenic testing to
individuals aged <18 years.

Polygenic risk assessment

The network selected a genotyping panel for PRS genera-
tion based on the Global Diversity Array (Illumina); the
Global Diversity Array balances cost and content and in-
cludes a large number of single-nucleotide variations
(formerly single-nucleotide polymorphisms) optimized for
imputation performance across diverse populations. Stan-
dard imputation and analytical pipelines were implemented
to support clinical reporting of the PRS, and the network
developed clinical report language and a logic structure for
the PRS components of the GIRA.

For each of the 10 PRSs selected for clinical reporting,
the threshold for high-risk status was selected by one of
several methods that varied by phenotype. Thresholds were
chosen to be equivalent to a clinically meaningful risk factor
such as family history or a corresponding OR of ≥2
(Table 1). The Broad Institute developed a phasing and
imputation method based on the tools used by the Michigan
Imputation Server (University of Michigan).20 The final
PRS pipeline used 2 distinct population reference panels, the
1000 Genome project panel for imputation and parameters
derived from the All of Us Research Program cohort for
ancestry calibration. Imputation and PRS analytical validity
were determined through a validation study in the Broad
Institute clinical laboratory that leveraged 42 samples with
matched polymerase chain reaction–free whole-genome se-
quences in 20 specimens with matched blood and saliva
sample collection. The PRS determination pipelines were
developed in the Terra cloud platform (www.terra.bio) using
the Workflow Description Language, allowing the methods
to be made available for research purposes in the NHGRI
Genomic Data Science Analysis, Visualization, and Infor-
matics Lab-space (AnVIL)21 platform (Supplemental
Table 2).

Each condition selected underwent validation on relevant
data sets based on the targeted PRS populations. The PRS
pipeline performance was additionally verified on the

http://www.terra.bio
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eMERGE I-III cohorts12,22,23 by the Broad Institute clinical
laboratory to ensure that the ORs, magnitudes, and signifi-
cance could be independently verified. To accurately and
equitably return scores across ancestry groups, an ancestry
adjustment step was applied to the raw PRS scores, which
was a derivative of the method first proposed by Khera
et al24 and includes variance correction.

Network discussions determined clinical report content.
A pipeline for automated report creation was built at the
Broad Institute and includes a step for clinical laboratory
staff review of results before release. Clinical reports are
created as both PDF documents and structured data in JSON
format, both of which are returned to the CC for inclusion in
the GIRA and delivery to the clinical sites.

Monogenic risk assessment

For a subset of conditions (Table 1), the network assessed
monogenic risk with a limited panel of genes. Although
funding for monogenic testing was not included in the initial
eMERGE project, the network partnered with Invitae to
support this testing with an in-kind contribution.

Consideration of which genes to include in monogenic
testing occurred in parallel with selection of the final con-
ditions for which PRS would be reported. The network
finalized the list of genes, including the Centers for Disease
Control and Prevention tier 1 conditions25 (hereditary breast
and ovarian cancer syndrome, Lynch syndrome, and familial
hypercholesterolemia) as well as 5 additional genes: TP53,
STK11, PTEN, PALB2,26 which are important risk factors
for colorectal and breast cancer, and LMNA, which is
associated with arrhythmias, including atrial fibrillation
(Table 1). Variants of uncertain significance will not be
returned. Based on Invitae data, the network estimated a
pathogenic or likely pathogenic result rate for this expanded
panel, excluding heterozygote results from LDLRAP1,
LMNA, and EPCAM of approximately 2.5%.27

Family history risk assessment

Family history is an important component of risk assessment
formost conditions in this study andwas therefore included as
a high-risk criterion in the GIRA. MeTree, a family history
application,28 is being used to collect variables on first and
second degree relatives directly from the individuals for the
conditions of interest. Family history text is displayed on all
GIRA reports as contextual factors along with a pedigree.
Family history is used as a high-risk return trigger for 5
conditions: atrial fibrillation, breast cancer (integrated into the
Breast andOvarian Analysis of Disease Incidence and Carrier
Estimation Algorithm [BOADICEA]29 model), chronic kid-
ney disease, coronary artery heart disease (CHD), and prostate
cancer (Table 1). TheDukeUniversity team collaboratedwith
network workgroups to customize MeTree to display only
relevant eMERGE conditions and allow for a manual and
automated data transfer to the CC 8 weeks after individual
account creation.

Clinical variables

Because the study was focused on genetic risk, clinical risk
factors alone do not trigger a high-risk notification. How-
ever, they are incorporated into the GIRA as contextual
information for 5 conditions (asthma, chronic kidney dis-
ease, hypercholesterolemia, obesity, and T2D); clinical data
that is displayed include laboratory values, blood pressure,
and International Classification of Diseases codes repre-
senting known diagnoses. Clinical variables are used to
calculate a comprehensive risk score for 2 conditions
(BOADICEA for breast cancer and the pooled cohort
equation [PCE]/integrated risk score for CHD).

Data transfer and risk integration

Data use and transfer agreements for the eMERGE project
were complex because they needed to encompass multiple
sites, participant entered surveys, individual’s EHR data, and
data generated by network partners. TheCC executed data use
and transfer agreements to authorize the intake and storage of
identifiable data in a centralized repository and web applica-
tion based on Research Electronic Data Capture (REDCap;
VUMC).30,31 The custom application was named R4 after the
primary functions supported for the study: Recruitment, Re-
sults reporting, and Risk Reduction. This REDCap project
uses data access groups to allow site-specific access to iden-
tifiable information and customized programming to generate
individualized GIRA reports based on upstream data vari-
ables and associated standardized display text. Figure 3 de-
scribes the data flow across the network. The CC established
application programming interfaces with the 3 network part-
ners (Broad Institute, DukeUniversity, and Invitae) to receive
structured and PDF reports. GIRA also uses data elements
from the participant surveys to generate calculated fields.
BMI and the PCE that predicts 10-year risk for a first
atherosclerotic cardiovascular disease event32were integrated
directly into REDCap, and an application programming
interface was established with CanRisk (University of Cam-
bridge)33 to calculate and send back BOADICEA29 scores for
breast cancer. Once all data import instruments are completed,
the REDCap record is locked and the GIRA is generated for a
given individual.

GIRA return and outcome assessment plan

Because care recommendations based on polygenic risk are
not currently driven by guidelines, the network adapted
existing clinical recommendations associated with risks of
similar magnitude to provide evidence-based guidance to
individuals and providers. Recommendations were drafted
and reviewed iteratively over an 8-month period in light of



Figure 3 Research infrastructure for assembling risk information from site enrollment data collection, site EHRs, partner labo-
ratories, and point-of-care tools for collecting family history. Data are transferred through application programming interfaces from
partners and sites to the central VUMC housed REDCap system R4. Custom REDCap programming was developed to generate the overall
GIRA report, which is made available to sites along with component data and PRS and monogenic laboratory reports. AnVIL, Analysis,
Visualization, and Informatics Lab-space; BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm;
GIRA, genome-informed risk assessment; PRS, polygenic risk score; REDCap, Research Electronic Data Capture; VUMC, Vanderbilt
University Medical Center.
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feedback from study site physicians, findings from ELSI-led
focus groups and interviews with physicians,34 and the
steering committee. The goal was to supplement the current
standard of care for conditions of interest and provide in-
dividuals and providers with well-reasoned next steps.
Family history and monogenic recommendations were taken
directly from existing guidelines.

Individuals receiving high-risk GIRA will have a high-
touch “one-on-one” return, during which a trained study
staff member, study physician, or site genetic counselor will
meet with the individual to explain the results and next
steps. For scenarios when only family history risk triggers a
“high-risk” GIRA and there are no identified genomic risk
factors, individuals will still receive a “high-risk” GIRA;
however, results will be returned by mail or electronically to
individuals. GIRA reports are placed into the EHR and
communicated to the individual’s study provider, which
encompasses traditional primary care and specialists
providing longitudinal care to individuals. The return
methods at each site are customized based on current legal
and institutional regulations. GIRA results without risk
factors are deemed “not high-risk”; the network elected to
avoid the terms “low risk” in any study communications to
avoid inappropriate reassurance. “Not high-risk” results are
returned via mail or patient portal and placed in the EHR.
Educational material for patients and clinicians, as well as
training of study staff about the study and its processes,
were harmonized across sites.
The effect of return of results on the process and clinical
outcomes will be assessed 6 months after the return of re-
sults through EHR data and participant survey and 12
months using EHR data alone. The participant survey will
examine individuals’ understanding, clarity of results, how
individuals felt after receiving results, and lifestyle changes.
The network will examine the following outcomes among
“high-risk” individuals compared with “not high-risk” in-
dividuals (Supplemental Figure 1): adoption of recommen-
dations, uptake of risk-reducing interventions, and new
diagnoses. Condition-specific analyses will be conducted
that analyze prespecified process and clinical outcomes and
will assess potential confounders and effect modifiers. For
example, we will conduct a stratified analysis of high-risk
individuals based on whether they have prevalent disease.
In addition, the propensity for high-risk individuals without
disease to have risk factors that could prompt testing will be
investigated with a regression discontinuity design that
controls for disease related confounders. A control analysis
will evaluate the contribution of an in-person, high-touch
return to changes in process outcomes independent of the
risk information, by assessing condition-specific outcomes
among individuals who receive high-touch return for an
unrelated condition.

The network estimated the overall effect size (difference
in adoption of recommendations among high-risk vs not
high-risk) under conservative assumptions that the uptake of
recommendations would be 20% in the high-risk group, and



J.E. Linder et al. 7
background rates of these recommendations in standard
health care (not high-risk group) would be approximately
10%. Provider surveys will focus on perceived utility and
understanding of the GIRA as well as assess if providers
communicated with individuals about results. Targeted
provider interviews are also planned to gain a more in-depth
understanding of the effect of the GIRA on care.
Results

Enrollment began in February of 2022. As of December
2022, the 10 sites have enrolled 5671 individuals. Of those,
3688 (65%) are female at birth; 1978 (35%) are male at
birth, and <1% did not indicate sex assigned at birth. Nearly
half (47%) of the individuals self-reported that they are
members of a racial or ethnic minority group, and an
additional 4% indicated more than one race. Hispanic
ethnicity accounted for approximately 18% of enrolled in-
dividuals (Supplemental Figure 2). Samples have begun
being processed by the Broad Institute, Invitae, and family
history data is currently being collected through MeTree.
GIRA generation is targeted to begin in December 2022
with the first return to individuals and providers shortly
thereafter.

GIRA

The network created the genome-informed risk assessment
(GIRA) report to concisely summarize the risk (polygenic,
monogenic, family history, and clinical factors) of devel-
oping 11 common, complex conditions and to display
clinical recommendations to providers and individuals. For
the breast cancer and coronary heart disease conditions in-
tegrated risk scores are displayed on the GIRA (BOADI-
CEA and PCE, respectively); for the remaining conditions,
the independent risk factors are displayed along with rele-
vant clinical factors for context). The GIRA report
(Supplemental Document 1) consists of a cover page, 1-
page summary of high-risk conditions, a breakdown of
risk type (monogenic, polygenic, family history), education
pages, frequently asked questions, methods, and a family
history pedigree. In addition, laboratory reports from both
Invitae (for adults) and the Broad Institute are attached to
the GIRA (laboratory reports not shown in supplemental
information). The example GIRA includes high-risk find-
ings for atrial fibrillation (pathogenic LMNA variant), breast
cancer (BOADICEA score result > 25%), and T2D (PRS
above threshold) with accompanying clinical risk factors.
The frequently asked questions and education materials
were included to clarify each risk type and increase overall
understanding. The network gathered multiple sources of
expertise including ELSI studies, physician, and potential
participant feedback to develop the report.34 Each GIRA
report is dichotomized into high-risk and not high-risk to
more clearly communicate actionability because interviews
with potential participants indicated a dichotomized risk was
much more understandable than a quantitative risk. Details
on the ORs and CIs for the high-risk cutoff are reported
stratified by ancestry in the Broad Institute laboratory report
to provide details for providers (or individuals) interested in
the specifics. A table of GIRA PRS text including ORs can
be found in Supplemental Table 3. For the 2 conditions
using integrated risk scores (breast cancer and CHD),
calculated absolute risks are displayed on the GIRA itself
because they are commonly used in health care for clinical
decision making.

The network focused on PRS as the core component of
genomic risk assessment. ELSI studies of study candidates
were interested in receiving PRS even if they could not be
fully validated in all ancestral populations, demonstrating an
urgent need for developing risk assessment across pop-
ulations. Monogenic and family history risk could also
trigger high-risk status for many of the conditions. Table 1
displays how the different components of the GIRA
trigger high-risk status. Although not all conditions use all 3
risk types, overall risk was generally designated using the
following hierarchy: monogenic risk > polygenic risk >
family history. Although the overall risk on the first page of
the GIRA is triggered by the aforementioned hierarchy, all
risk types (monogenic, polygenic, family history) are dis-
played on the second page of the GIRA along with risk
specific text to provide the individual and provider with the
most comprehensive information. There are 2 exceptions in
which integrated scores are available. Breast cancer for adult
females at birth used a BOADICEA score; individuals with
greater than or equal to 25% lifetime breast cancer risk
conveyed a high-risk status. For individuals at high-risk for
CHD, the PCE both with and without the PRS incorporated
is displayed on reports and is intended to assist physicians
with next steps while providing standard of care informa-
tion. Unlike for BOADICEA, the PCE is not used to
determine risk, it is displayed as context for the provider and
individual.

The network modeled the expected number of high-risk
return of conditions (Table 1) to determine maximum ef-
fect and sample sizes; approximately 25% (~6200) of the
25,000 individuals are expected to receive at least one high-
risk return. Estimates were primarily based on frequency of
high monogenic and polygenic risk because those elements
were the main components to generate a one-on-one (high-
touch) return for most conditions. These calculations do not
account for potential correlations between conditions in
same individual or the small overlap between monogenic
and high PRS risk.
Care recommendations

The GIRA report includes clinical recommendations for
individuals receiving high-risk results. The network con-
ducted multiple physician-led discussion groups, compiled
recommendations from experts across 10 clinical sites, and
went through multiple iterations of the care
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recommendations to supply the providers with artifacts that
accurately reflected clinical care based on other risk factors
(clinical, family history, monogenic) in this novel risk space.
The network aimed to supplement current guidelines and to
provide recommendations for those with a high PRS.
Table 2 summarizes the projected clinical utility and next
steps recommended for each of the 11 conditions, and
Supplemental Table 4 provides the detailed recommenda-
tions for high-risk PRS results along with references for
rationale on recommendations. Recommended actions
included counseling and education as well as additional
screening to consider involving laboratory tests, imaging,
and referrals. Monogenic risk recommendations and family
history-based recommendations were taken directly from
clinical guidelines by the National Comprehensive Cancer
Network1,2 and cardiology societies3; these recommenda-
tions are not displayed in the supplemental materials.
Outcomes assessments (Table 2) are derived directly from
the care recommendations.
Table 2 Clinical utility and actionability of eMERGE return

Condition Clinical Utility Co

Asthma Early intervention and therapy,
4× more common in AA

Redu

Atrial fibrillation Cost effective screening, early
detection

Emph
ass

Breast cancer Enhanced screening and therapy,
higher mortality in AA,
BOADICEA score returned

Emph
scr

Chronic kidney disease Early noninvasive screening, high
prevalence >10% adults, 3.7×
more common in AA

Emph
scr

Colorectal cancer Early noninvasive screening, risk
varies by race and ethnicity

Early

Coronary heart disease Noninvasive screening and
intervention, highly prevalent
disease, pooled cohort
equation returned

Emph
scr

Hypercholesterolemia Noninvasive, accessible
screenings, disproportionate
burden in AA

Emph
scr

Obesity/BMI Early intervention to modify
behavior, weight in childhood
is predictive of adult obesity

Emph
ref

Prostate cancer Noninvasive, accessible
screenings, population
disparities in incidence and
mortality

Share
ear

Type 1 diabetes Treatment dependent on
distinguishing between
diabetes types

Educa
scr

Type 2 diabetes Noninvasive screening, highly
prevalent disease, racial
disparities in care

Emph
scr

HgA1c, glycated hemoglobin; AA, African American; BMI, body mass index;
Estimation Algorithm; CT, computed tomography; ECG, electrocardiogram; eMER
imaging.
Data harmonization and EHR integration

Multiple types of data representing the 3 types of genomic
risk will be generated, collated, and used to produce the
GIRA report for each individual (Figure 3). The study aims
to track how providers make use of the GIRA to inform
medical decision making and care once it is incorporated
into the EHR and into existing workflows for the review of
medical information. Educational materials are being
developed for linkage through info buttons and different
versions of clinical decision support to assist clinicians
receiving GIRA results. eMERGE sites primarily use the
Epic EHR, with one site using Cerner. The network
attempted to harmonize EHR GIRA integration methodol-
ogy in advance, but discussions during monthly EHR Inte-
gration Workgroup meetings indicated that some
heterogeneity across sites was unavoidable. In addition to
the configuration differences of each EHR, sites considered
the GIRA a “research report,” in that it is generated on
Actionability

unseling and Education Laboratory Tests and Procedures

ce environmental triggers Provider encounter (education)

asize healthy lifestyle,
ess symptoms

Test ordered (ECG, rhythm
monitor)

asize healthy lifestyle,
eening

Imaging order (breast MRI,
mammogram)

asize healthy lifestyle,
eening

Laboratory order (serum
creatinine, urine albumin to
creatinine ratio)

screening Procedure order (stool test, flex
sigmoidoscopy, colonoscopy,
CT colonography)

asize healthy lifestyle,
eening

Laboratory order (lipid profile),
imaging order (coronary CT,
carotid ultrasound)

asize healthy lifestyle,
eening, medication

Laboratory order (lipid profile)

asize healthy lifestyle,
erral

Referral (weight loss or nutrition
consultation)

d decision making about
ly screening

Provider encounter, examination

tion regarding symptoms,
eening

Laboratory order
(autoantibodies)

asize healthy lifestyle,
eening

Laboratory order (fasting blood
glucose, HgA1c)

BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier
GE, electronic Medical Records and Genomics; MRI, magnetic resonance
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behalf of a research study. Although all sites are able to
make a PDF of the GIRA accessible to providers within
their EHR, site-specific policies resulted in variation about
where in the EHR the report was displayed or localized. In
addition to the GIRA PDF, sites also had to develop inte-
gration plans for the 2 component genetic reports (mono-
genic and PRS) and had to consider whether structured data
representations of any of the 3 reports would also be
incorporated into the EHR, particularly for use in providing
context-aware decision support for clinicians and
individuals.35
Discussion

This phase of the eMERGE network was established to
formulate scalable methods for returning integrated genomic
risk to individuals and providers, including PRS, monogenic,
and family history-based risks in the context of traditional
clinical risks. Using a prospective cohort design, the study
will determine whether returning the GIRA with recom-
mendations and counseling for high-risk individuals is
effective at increasing appropriate clinical actions to mitigate
the risk of future disease or detect unrecognized disease.

Predicting the onset of common diseases or other health
outcomes is essential to tailoring preventive care to individual
risk. Established models focused on clinical variables for car-
diovascular disease (PCE) and breast cancer (eg, Breast Cancer
Risk Assessment Tool—BRCAT) lack simultaneous consider-
ation ofmonogenic andpolygenic risk, and family history-based
risk is inconsistently measured and applied.36,37 Developing
more comprehensive tools, similar to the BOADICEA equation
used in the eMERGE GIRA, will improve risk prediction and
promises to guide clinical management more effectively, espe-
cially for individuals who do not know their family history of
disease. In addition, adding PRS to existingmodels, as has been
done for the PCE, could identify an expanded group of in-
dividuals for whom primary prevention or intensified surveil-
lance is appropriate.38 To learn how best to maximize the utility
of the GIRA, the eMERGE study will both identify and address
barriers to implementing health recommendations as well as
assess psychosocial harms incurred from learning high-risk or
overinterpreting not high-risk results.

A major obstacle the network had to overcome while
developing PRS for the chosen conditions was ensuring that
they were applicable to the diverse range of individuals that
the network aims to recruit. Sufficiently diverse GWAS data
are lacking to support cross-ancestry scores for many
common medical conditions, even though it has been
demonstrated how genetically diverse population data are
critical to the accuracy of the method.9,39,40 By limiting
clinically implemented scores to those validated in multiple
ancestral populations, the network aimed to increase the
applicability of the risk scores.

The network’s decisions regarding conditions included in
the GIRA implementation, selection of PRS thresholds or
integrated scores, and clinical recommendations were based
on review of evidence, expert opinion, and the application
of clinical guidelines written to address risks of comparable
magnitude. However, there are currently no clinical stan-
dards for PRS implementation, and the study may reveal the
strengths and weaknesses of these early decisions. We
expect significant refinements will be needed within PRS
development, reporting, and integration with other genetic
findings for future implementations. The study will also be
challenged to ensure provider and individuals understanding
of the limitations and clinical significance of the GIRA re-
sults and appropriately translate the report recommendations
to changes to screening practices or lifestyle. By measuring
the uptake of follow-up testing and recommendations in
parallel with provider and individuals understanding, the
study will shed light on how integrated genomic risk will be
received in clinical practice.

As currently designed, the GIRA report is limited to in-
formation that is available within electronic records and
laboratory reporting. Tailored preventive care plans rec-
ommended by providers at the point of care may need to
consider many patient factors not included in the report,
such as medical history, personal preferences, access to care,
influence of social and physical environments, and the cost
of care. In addition, by limiting the recruited population to
those already receiving longitudinal care at established
health care institutions, the study will not reflect the full set
of challenges experienced by the general population in
obtaining individualized preventive care. Finally, because
the report summarizes evidence within a rapidly evolving
scientific field, it is likely that report redesign and updates to
the underlying PRS, integrated score algorithms, and clin-
ical recommendations will be necessary if it is proven
valuable to adopt in clinical practice.

This eMERGE study aims to improve understanding of risk
stratification in the field of genomics by implementing a novel
integrated genomic risk with increased applicability to diverse
populations. Demonstrating clinical uptake and understanding
will help to establish clinical utility and facilitate additional
comparative or clinical implementation studies.

Data Availability

The de-identified individual data that underlie the results
reported in this article (including text, tables, figures, and
appendices) will be made available for noncommercial,
academic purposes upon request. De-identified data derived
from individuals enrolled in the study will be made available
on the AnVIL platform (https://anvil.terra.bio/) at periodic
intervals over the course of the study as it is generated.
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