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Summary

Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data
characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic
risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in
intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we
assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created ra-
dar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of
intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by
these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12
scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies
for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13
infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although
assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive
sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream
medical care in newborns and their family members.

Introduction apparently healthy infants from a newborn nursery

(NBN) and sick infants from intensive care units (ICUs)

Recent advances in the clinical deployment of genome-
scale sequencing now make it possible to determine an
infant’s complete genome sequence shortly after birth,
enabling the identification of deleterious variants associ-
ated with monogenic disorders." Genomic sequencing as
a screening tool in newborns is currently being explored®*
and supplementary genomic screening panels are offered
by several commercial laboratories,” but there are a
number of evidentiary, ethical, and cost concerns.'
The BabySeq Project is a series of NIH-funded clinical
trials of newborn screening by genomic sequencing (GS)
that has generated empirical data on mechanisms of con-
sent, gene curation, variant interpretation, and disclosure
methods as well as medical, behavioral, and economic out-
comes.'’"'* In the first phase of the project, we recruited

who were randomized to receive either standard of care
newborn screening (NBS) or NBS plus GS.'° Participants
randomized to GS underwent whole-exome sequencing
with clinical reporting of pathogenic or likely pathogenic
variants (PLPVs) for any genetic condition that was child-
hood onset and highly penetrant or childhood actionable
and at least moderately penetrant, such that 954 genes
were included as previously described.'''® A limited subset
of actionable adult-onset-only conditions from the Amer-
ican College of Medical Genetics and Genomics (ACMG)
secondary findings list version 2'” were also included in
the analysis of the newborn’s genome and offered sepa-
rately to families as previously described.'* Results were
disclosed to participants’ parents in a counseling session
and a disclosure letter was delivered to the family and
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the newborn’s clinician(s). Among the 325 newborns
enrolled in the initial phase of the BabySeq Project, 159
were randomized to the GS arm. We previously reported
that 18 (11.3%) of these were found to have a PLPV in
one of the genes evaluated, and in one of these infants,
the monogenic disease risk was recognized retrospectively
to be associated with their clinical presentation.'® Thus, 17
of these 159 infants had PLPVs characterized as unantici-
pated monogenic disease risks (uMDRs), in that the GS
was not performed to uncover genetic etiology for any
presenting indication or family history in either the appar-
ently healthy infants or the ICU infants. Among the 17
infants with uMDRs, we identified PLPVs in 13 unique
genes, all of which were inherited.

In this report, we examined the medical conditions asso-
ciated with each of these 17 uMDRs, mapping them onto a
standardized semiquantitative measure of potential action-
ability, and we created a visual representation of these
scores for each infant. We then tracked the actual down-
stream medical appointments, tests, imaging studies, and
procedures that were ordered by the pediatricians and spe-
cialists who followed these infants and their families to
ascertain the follow-up conducted in the 3-5 years
following disclosure.

Material and methods

The BabySeq Project is a series of NIH-funded randomized
controlled trials of GS in newborns. The initial phase of the study
enrolled families from the NBN or ICU who were randomized to
conventional care plus family history assessment and genetic
counseling alone or with GS. Detailed methodology for the study
design and recruitment has been previously reported.'®'® In brief,
parents and newborns from the NBN at Brigham and Women's
Hospital and parents and sick newborns from the neonatal ICU
and other ICUs at Brigham and Women'’s Hospital, Boston Chil-
dren’s Hospital, and Massachusetts General Hospital were ap-
proached, consented, and enrolled into the study. Infants from
ICUs were not selected for suspicion of genetic disease. A blood
sample was obtained from each newborn for DNA isolation and
analysis and parent(s) provided saliva samples. Within each
cohort, healthy and sick, the families were randomized to receive
family history assessment and standard newborn screening (NBS)
[the control arm] or to receive family history assessment and stan-
dard NBS plus GS [the GS arm]. Both arms had a three-generation
family history collected and evaluated by a study genetic coun-
selor, with genetic counseling provided if genetic risk was evident
on the basis of family history. Additionally, parental surveys at
enrollment (baseline), immediately post-disclosure, and 3 and
10 months after disclosure were administered.

Gene selection and variant analysis

Detailed description of the rationale for gene selection and variant
analysis in the BabySeq Project have been previously pub-
lished.!""'® In brief, we annotated and filtered the exomes and
analyzed the results to identify PLPVs that met criteria for return,
including variants found in genes with definitive or strong disease-
gene association and high penetrance regardless of actionability or
variants found in genes with moderate evidence or moderate

penetrance but high actionability. GS was performed at the
CLIA/CAP-accredited Clinical Research Sequencing Platform of
the Broad Institute of MIT and Harvard, and Sanger confirmation
was performed at the CLIA-accredited Mass General Brigham Lab-
oratory for Molecular Medicine as previously described. All GS re-
sults were returned to parents and placed into the medical record
via a BabySeq report, which included an indication-based analysis
(IBA) for any additional diagnostic assessment related to a clinical
indication, if requested.

Disclosure protocol

Parents attended a disclosure session facilitated by a study physi-
cian and genetic counselor, on average 4 months after enrollment
(range: 1.2 to 10.2 months), where they were informed of their
randomization status and given their family history report. Par-
ents in the GS arm also received the BabySeq report, and if an
IBA was requested, received those results. At disclosure, the study
physicians (who are all trained in either clinical genetics,
neurology, and/or neonatology) performed detailed physical ex-
amination to identify features that might have been previously
missed. After disclosure of results, the genetic counselor and physi-
cian prepared a note summarizing the visit. These notes, along
with the family history report, NBS report, and, for those in the
sequencing arm, the BabySeq report/IBA, were then mailed to
the parents and faxed to the infant’s pediatrician and other pro-
viders, and all these documents were uploaded to the infant’s med-
ical record.

Actionability analysis

Clinical severity of potential conditions identified and available
interventions were graded with a modification of the ClinGen
actionability semiquantitative metric (CASQM).'® The CASQM
evaluates outcome-intervention pairs on four axes: severity (the
threat to health for an individual carrying the deleterious variant),
likelihood (the chance that a serious outcome will occur, similar to
penetrance), effectiveness (how effective is the proposed interven-
tion for preventing or diminishing the risk of harm), and nature of
the intervention (how medically burdensome or dangerous is the
intervention). We did not modify the domains themselves or their
scoring weights, i.e., the criteria upon which each domain was as-
signed a 0-3 score. However, instead of limiting the assessment to
actionability specifically during childhood or adulthood (as is the
case with the unmodified CASQM), we assessed potential action-
ability throughout the lifetime in order to determine the value
of returning this result. We shortened and clarified the domain la-
bels to improve readability. When more than one outcome was
possible on a domain within the CASQM, we scored outcome-
intervention pairs for outcomes anticipated to have the highest
penetrance. The scoring was carried out by one author (N.S.)
with review by all co-authors.

We then generated radar plots based on the modified CASQM to
more intuitively explore the data visually; a perfect diamond
shape represents the ideal actionable condition with high pene-
trance as well as higher morbidity/mortality that had a highly
effective yet low-burden intervention. We applied this visual rep-
resentation to several conditions associated with genes on the
ACMG secondary findings list as well as to the uMDRs in
BabySeq participants on the basis of their modified CASQM scores.
Healthcare utilization
For this analysis, we reviewed all available medical records to ascer-
tain downstream medical care provided both for the proband and
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Table 1. Clinical actionability of specific genes in which pathogenic and likely pathogenic variants (PLPVs) were identified in infants with uMDR
ClinGen NC NEXUS ASsQM
Knowledge actionability score (ASQM
Likelihood Efficacy of Burden of Total base score (where  knowledge
Infant Presentation Gene Disease intervention Severity of disease intervention intervention score strength available) base score)
1 well baby ELN supravalvular aortic stenosis, 2 2 3 3 10 3 - 11 (2)
AD; screening cardiac ultrasound
2 well baby BTD biotinidase deficiency, AR; 2 3 3 3 11 3 11CC 10 (3)
biotin supplementation
3 ICU admission GLMN glomuvenous malformations, 0 3 2 3 8 1 - -
for tetralogy of Fallot, AD; monitoring for lesions
pulmonic stenosis,
cryptorchidism
4 ICU admission for G6PD glucose-6-phosphate 0 3 3 3 9 3 - 9(3)
aortic coarctation dehydrogenase (G6PD)
deficiency, XLR; drug
safety interventions
5 well baby TTN dilated cardiomyopathy, AD; 2 1 2 3 8 2 - 9(2)
screening cardiac ultrasound
6 well baby TTN dilated cardiomyopathy, AD; 2 1 2 3 8 2 - 9(2)
screening cardiac ultrasound
7 well baby TTN dilated cardiomyopathy, AD; 2 1 2 3 8 2 - 9(2)
screening cardiac ultrasound
8 well baby I'TN dilated cardiomyopathy, AD; 2 1 2 3 8 2 - 9(2)
screening cardiac ultrasound
9 ICU admission BRCA2 hereditary breast and ovarian 2 2 3 3 10 3 8-10AA 10 (3)
for hypoplastic cancer syndrome, AD;
left heart syndrome screening mammography
10 well baby BRCA2 hereditary breast and ovarian 2 2 3 3 10 3 8-10AA 10 (3)
cancer syndrome, AD;
screening mammography
11 ICU admission for SLC7A9 cystinuria, AD; hydration, 1 1 3 3 8 2 - 8(2)
neonatal pneumonia urinary alkalization, thiol
medications
12 well baby KCNQ4 non-syndromic hearing 1 3 3 3 10 2 - 10 (2)
loss, AD; audiologic screening,
hearing aids/implants
13 well baby VCL dilated cardiomyopathy, AD; 2 2 2 3 9 2 - 10 (1)
screening cardiac ultrasound
14 well baby CD46 atypical hemolytic-uremic 2 2 2 1 7 2 - -

syndrome, AD; screening,
plasma exchange, anti-C5
monoclonal antibody
treatment

(Continued on next page)
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family members as a direct result of the uMDR identified. We also
conducted phone interviews with the participant families at 37.6
to 60.6 months after the conclusion of the study to identify any
relevant information that may not have been captured in the med-
ical records. We collected pre-specified measures, such as down-
stream healthcare use attributable to the genomic results both
for primary care as well as specialty care. We also collected out-
comes that were not pre-specified, such as family member cascade
testing and family member healthcare utilization, which included
primary or specialty care initiated as a result of the uMDR finding
in the parent from whom the uMDR was inherited as well as other
family members at risk. We tracked both initial interventions
based on recommendations made by the disclosing medical
team/primary care physician as well as subsequent interventions
over the follow-up period for both the proband as well as family
members at risk. These interventions included primary care and
specialty care consultations and diagnostic imaging and labora-
tory studies as well as therapeutic interventions such as medica-
tions and risk-reducing surgical procedures in adult relatives of
the infants.

Results

Clinical actionability of uMDRs was classified with the
CASQM adapted in modified form from the ClinGen Ac-
tionability Working Group (Table 1) and visualized with
the radar plots (Figures 1 and 2).'®'? The uMDRs discov-
ered in our study had a mean score of 9 out of a maximum
possible score of 12 (range: 7-11) on the CASQM. On the
basis of criteria defined by the CASQM, potential interven-
tions were available for all of the 13 conditions associated
with uMDRs in the 17 infants, ranging from the initiation
of surveillance for cancer risk, hearing loss, and cardiac
abnormalities to biotin supplementation in the case of par-
tial biotinidase deficiency.

Having defined potential interventions, we examined the
actual interventions that followed in these infants. We
tracked immediate and long-term medical outcomes for
these infants and their families over 3-5 years, as shown
in Table 2. In three infants, genomic findings prompted
discovery of a subclinical phenotype that had not been
previously recognized (ELN [MIM: 130160], BTD [MIM:
60919], and GLMN [MIM: 601749], Table 2); for example,
echocardiogram revealed mild but abnormal aortic steno-
sis in the infant with a pathogenic variant in ELN (infant
1). In the remainder of the infants (14/17) molecular find-
ings were associated with future disease risk with PLPVs in
the following genes: TTN (MIM: 188840) in four infants;
BRCA2 (MIM: 600185) in two infants; and G6PD (MIM:
305900), SLC7A9 (MIM:604144), KCNQ4 (MIM:603537),
CD46 (MIM:120920), VCL (MIM:193065), MYBPC3 (MIM:
600958), MSH2 (MIM:609309), and CYP21A2 (MIM:
613815) in one infant each. In eight of those 14 infants,
post-disclosure review of the newborn’s family history
raised the possibility of additional previously unsuspected
and undiagnosed family members with the condition. For
example, the maternal grandfather of an infant with a
maternally inherited likely pathogenic variant in TTN
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Figure 1. Clinical radar
plots

(A and B) Radar plots that illustrate visual-
ization of clinical actionability. The plots
utilize a modified semi-quantitative metric
adapted from ClinGen as described in the
material and methods. As shown in (A),
the four points of the diamond on the ra-
dar graph (starting from the top and mov-
ing clockwise with each figure) represent
severity of the fully expressed genetic con-
dition, the penetrance or likelihood that
the condition will manifest over an indi-
vidual’s lifetime, the effectiveness of the
specific intervention shown in the figure,
and the tolerability of the intervention,

actionability

AN

FBN1 Marfan syndrome -
Aortic dilation - Beta blockers

RET MEN2B Medullary thyroid
cancer - Risk reducing surgery

(infant 5) had previously been clinically diagnosed with
dilated cardiomyopathy and, as a result of the finding in
his grandchild (the BabySeq infant-participant), was subse-
quently confirmed to carry the same variant. Conse-
quently, the infant’s mother is now routinely followed by
echocardiography.

The infants with uMDRs, and their families, were fol-
lowed for a median of 44.7 months following disclosure
(range: 37.6 to 60.6 months). We tracked all medical inter-
ventions taken on behalf of the infant, as well as medical
interventions taken by other family members as a result
of the uMDR findings in the sequenced infant (Table 2).
In all but one infant (G6PD deficiency), the disclosure of
uMDR findings generated recommendations for specialist
consultation and follow-up testing for the child and/or at
least one of the parents. Nearly two-thirds (11/17; 64.7%)
of the infants received immediate referrals for specialist
care as part of the results disclosure, of which ten
completed an initial referral and eight of the 10 continued
to receive ongoing specialty care. In three of these 17 in-
fants (17.6%), an exclusively cancer-related adult-onset
uMDR was identified in the infant, and parents were
encouraged to alert their child when older to seek appro-
priate screening and care in adulthood. Confirmatory
parental testing was performed for all infants with a
uMDR, and in 13 of 17 (76.5%) of the infants, genomic
findings prompted specialist evaluations and/or diagnostic
procedures for one or more family members. To date, at
least four of these family member evaluations (see data
associated with infants 3, 5, 6 and 7 in Table 2) have led
to medically significant findings. Of the at-risk parents of
the six infants with cardiovascular uMDRs, all six parents
carrying the PLPV of interest had screening workups, and

GLA Fabry disease - Stroke
prevention - Aspirin

i.e., its burden and acceptability to pa-
tients. A radar plot with maximum area
within the diamond would represent a se-
vere genetic condition that has high pene-
trance with a highly effective intervention
that is particularly acceptable to patients
because it is minimally invasive or
dangerous. (B) shows sample clinical ac-
tionability radar plots for three genes
from the ACMG secondary findings list.

two continue to receive ongoing surveillance and care.
Of the three parents discovered to have hereditary cancer
risk through their infant’s uMDR findings, all three have
undergone risk-reducing surgery.

Discussion

Among 159 infants sequenced, with interpretation of 954
genes, there were 17 infants (10.7%) with unanticipated
monogenic disease risks, and all of these met standardized
criteria for medical actionability. In three infants, the
genomic findings led to the discovery of a phenotype
that had not been previously detected or correctly diag-
nosed, and in eight infants, the genomic findings led to
the discovery of previously unknown at-risk family mem-
bers. In the 37-60 months following disclosure of the
unanticipated genetic findings, two-thirds of the infants
and all of their at-risk first-degree family members with
uMDRs were referred for specialty consultation, surveil-
lance, or treatment.

In the three infants with previously unrecognized phe-
notypes, uMDRs were no longer considered to be “risk var-
iants” but were discovered to be penetrant—albeit with
mild or subclinical features. This finding highlights how
difficult it is to determine the true penetrance of most
monogenic conditions and the importance of considering
differences in expressivity over time. While it is well recog-
nized that estimations of penetrance for many genetic con-
ditions are biased toward higher estimates because clini-
cians are more likely to recognize genetic disease in
families with robust inheritance patterns, our findings sug-
gest that penetrance may also be underestimated when
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Figure 2. Clinical actionability of the spe-
cific uMDR genes

Radar plots that illustrate the pattern of
clinical actionability in the 13 specific genes
in which pathogenic and likely pathogenic

N

GLMN Glomuvenous
malformations, AD -
Monitoring for lesions

BTD Biotinidase deficiency,

. . G6PD Gl -6-phosphat
AR - Biotinsupplementation ucose-o-pnosphate

dehydrogenase deficiency, XLR-Drug
safety interventions

CD46 Atypical hemolytic-uremic
syndrome, AD - Screening, plasma
exchange, anti-C5 monoclonal antibody

treatment thiolmedications

KCNQ4 Non-syndromic hearing loss,
AD - Audiologic screening, hearing
aids/implants

MYBPC3 Hypertrophic cardiomyopathy,
AD - Screening cardiac ultrasound,
implantable cardiac defibrillator
CYP21A2 Congenital adrenal

hyperplasiadueto 21-hydroxylase

deficiency, AR - Anticipatory guidance,

glucocorticoid therapy

ELN Supravalvular
MSH2 Lynch syndrome, AD

- Screening colonoscopy

genetic diseases present with milder or subclinical symp-
toms or in families without obvious family history. Indeed,
the very concept of penetrance depends on which partic-
ular phenotype is being measured and over what time
period. For example, in an epidemiological study where
penetrance of hereditary cardiomyopathy was defined as
asymptomatic thickening of the cardiac septum or as one
of several electrophysiological abnormalities, penetrance
could be recognized far earlier than if penetrance were
designated as the appearance of exercise intolerance or
sudden cardiac death.”’ This phenomenon highlights
the importance of describing uMDRs detected through
screening in terms of “risk stratification” rather than in

SLC7A9 Cystinuria, AD -
Hydration, urinaryalkalization,

TTN Dilated cardiomyopathy, AD -
Screening cardiac ultrasound

VCL Dilated cardiomyopathy, AD -
Screening cardiac ultrasound

aortic stenosis, AD -
Screening cardiac ultrasound

BRCAZ2 Hereditary breast and ovarian cancer
syndrome, AD - screening, mammography

variants (PLPVs) were identified in the 17
infants with an unanticipated monogenic
disease risk. Axes labels correspond to refer-
ence diamond plot in Figure 1.

terms of “diagnosis” and suggests that
the use of terms such as “false positive”
to describe the discovery of pathogenic
variants in apparently healthy new-
borns is inappropriate, since the clin-
ical syndrome in question may require
additional testing to detect or years of
follow-up to manifest.

In the BabySeq Project, we only re-
ported variants from genes that were
selected for definitive and strong
disease-gene association and high
penetrance regardless of actionability
or moderate evidence or moderate
penetrance but high actionability in
childhood or adolescence.'' In addi-
tion, the parents of infants enrolled
in BabySeq were offered the opportu-
nity to have their infants’ DNA
analyzed for additional genes related
to actionable adult-onset conditions
such as hereditary breast and ovarian
cancer. Since the majority of the 954
genes ultimately interpreted were
selected without regard for actionabil-
ity, it was surprising to find that all of
the uMDRs discovered in sequenced
infants were associated with condi-
tions that were scored as actionable
on a modified version of the
CASQM. This suggests that the differ-
ential in results disclosed between
‘“parents who just want actionable in-
formation” and “parents who want
any information that is of medical significance to their in-
fant” may not be large.

The concept of actionability is difficult to discuss
because for some the ability to provide enhanced surveil-
lance or even knowledgeable anticipation justify a broader
definition, while for others this concept only includes con-
ditions where a treatment can slow or stop progression or
unequivocally improve the individual’s prognosis. Figure 1
illustrates how the modified CASQM domains can be rep-
resented visually to facilitate interpretation through
pattern recognition. A full diamond with a score of 3 in
each domain represents the most actionable manifestation
of a condition whereas alternative shapes can signal
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variations in which, for example, penetrance is expected to
be lower or treatment is expected to be more burdensome.
This or other types of visual dashboards could allow policy-
makers, clinicians, and parents to intuitively understand
the specific pros and cons around the actionability of the
genetic information they are choosing or are receiving by
reducing complex information into digestible features.
There is a wide range of opinion around the specific dis-
ease-gene pairs that are recommended for newborn
sequencing by rare disease experts, but in a recent survey
of over 200 such experts, 87.9% agreed that NBSeq for
monogenic treatable disorders should be made available
to all newborns, 58.5% agreed that NBSeq should include
genes associated with treatable disorders even if those con-
ditions were low penetrance, 37.2% agreed that actionable
adult-onset conditions should be sequenced in newborns
to facilitate cascade testing in parents, and 27.9% agreed
that NBSeq should include screening for conditions for
which there were no established therapies or management
guidelines.”!

Of the infants identified with uMDRs, 64.7% were seen
by specialists knowledgeable about the genetic condition
and 76.5% had findings that prompted specialist evalua-
tions and/or follow-up procedures for one or more family
members, including life-saving risk-reducing surgeries.
This speaks to the benefits of alerting family members to a
genotype carried by one individual and to the powerful ad-
vantages of cascade testing, a phenomenon that has been
recognized as far more efficient and cost-effective than pop-
ulation screening”>** but that is implemented inconsis-
tently and with variable success in clinical genetics today.”*

Recommendations for best practices from most expert
bodies caution against testing children for adult-onset con-
ditions,”~*® but several contain language that recognizes
the possibility of mitigating circumstances within specific
families, and the need for expanded considerations in
research studies such as ours in order to collect outcomes
data on this point.”” In this project, we elected to screen
a limited number of genes associated with adult-onset
conditions deemed actionable by the ACMG secondary
findings recommendations'”*** under the logic that
identification of such infants could permit the further
identification of parents or other adult relatives who
were carrying the same variant and that efforts to preserve
the health and life of the parent and extended family of
the infant were very much in the best interests of the
child."**" Tt is striking that among only 159 infants
sequenced and only 17 with uMDRs, we discovered two
infants carrying pathogenic variants in BRCA2 and one
carrying a pathogenic variant in MSH2 that together
have stimulated three risk-reducing surgeries among the
mothers of these infants (Table 2). Our experience illus-
trates the real-world value of disclosing unanticipated find-
ings of adult-onset risk variants discovered in minors. A
number of recent ethical analyses have also indicated
that the current consensus position on genetic testing in
children is evolving.*'**

The BabySeq Project is a rigorous examination of uMDR
findings in an unselected cohort of newborns, yet it has
several limitations. Participation in the first phase of this
project was offered to the parents of infants born in a single
urban tertiary care medical center, and those who enrolled
were more educated and of higher socio-economic status
than the general population.'”'* The sample size of infants
carrying uMDRs is small and the constellation of unantici-
pated genetic findings will not be representative of what
might be found in population-level sequencing. In five in-
stances of uMDR disclosure, the physical examination, sub-
sequent testing, and the family history did not reveal any
new or useful information, leaving these five families with
risk information that may be less medically useful at this
point in their lives and therefore more emotionally burden-
some. A larger study with a more diverse population will be
needed to ascertain whether the distress to parents and cost
to the healthcare system associated with specialty consulta-
tions and surveillance around these risks is justified. Our
most recently NIH-funded second phase of the BabySeq
Project has begun recruitment to perform similar screening
and examine downstream outcomes including healthcare
utilization in a larger, more diverse population. Moreover,
it is reassuring that in a separate report we recently demon-
strated that neither sequencing nor receiving uMDRs was
associated with greater parental distress or disruption of
the parent-child bond and that parents felt empowered by
both positive and negative results.'” In assessing the reac-
tions of parents, it is important to keep in mind that parents
self-select to enroll, and their self-selection reflects a desire
to receive risk information and may be biased toward
greater optimism around the results.

In summary, these early data on medical utilization from
the BabySeq Project suggest that over 10% of infants may
carry unanticipated monogenic risks for actionable condi-
tions that over 3-5 years will result in important medical
consequences for those infants and their families.

Data and code availability

The genomic data/analyses reported in this paper have been
deposited in the NBSTRN LPDR (https://nbstrn.org/tools/lpdr) un-
der accession identifier nbs000002.v1.p1. Data access is restricted;
for information on how to request access, please contact the corre-
sponding author.
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