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IMPORTANCE Primary prevention of atherosclerotic cardiovascular disease (ASCVD) relies on
risk stratification. Genome-wide polygenic risk scores (PRSs) are proposed to improve ASCVD
risk estimation.

OBJECTIVE To determine whether genome-wide PRSs for coronary artery disease (CAD) and
acute ischemic stroke improve ASCVD risk estimation with traditional clinical risk factors in an
ancestrally diverse midlife population.

DESIGN, SETTING, AND PARTICIPANTS This was a prognostic analysis of incident events in a
retrospectively defined longitudinal cohort conducted from January 1, 2011, to December 31,
2018. Included in the study were adults free of ASCVD and statin naive at baseline from the
Million Veteran Program (MVP), a mega biobank with genetic, survey, and electronic health
record data from a large US health care system. Data were analyzed from March 15, 2021, to
January 5, 2023.

EXPOSURES PRSs for CAD and ischemic stroke derived from cohorts of largely European
descent and risk factors, including age, sex, systolic blood pressure, total cholesterol,
high-density lipoprotein (HDL) cholesterol, smoking, and diabetes status.

MAIN OUTCOMES AND MEASURES Incident nonfatal myocardial infarction (MI), ischemic
stroke, ASCVD death, and composite ASCVD events.

RESULTS A total of 79 151 participants (mean [SD] age, 57.8 [13.7] years; 68 503 male [86.5%])
were included in the study. The cohort included participants from the following harmonized
genetic ancestry and race and ethnicity categories: 18 505 non-Hispanic Black (23.4%), 6785
Hispanic (8.6%), and 53 861 non-Hispanic White (68.0%) with a median (5th-95th
percentile) follow-up of 4.3 (0.7-6.9) years. From 2011 to 2018, 3186 MIs (4.0%), 1933
ischemic strokes (2.4%), 867 ASCVD deaths (1.1%), and 5485 composite ASCVD events
(6.9%) were observed. CAD PRS was associated with incident MI in non-Hispanic Black
(hazard ratio [HR], 1.10; 95% CI, 1.02-1.19), Hispanic (HR, 1.26; 95% CI, 1.09-1.46), and
non-Hispanic White (HR, 1.23; 95% CI, 1.18-1.29) participants. Stroke PRS was associated with
incident stroke in non-Hispanic White participants (HR, 1.15; 95% CI, 1.08-1.21). A combined
CAD plus stroke PRS was associated with ASCVD deaths among non-Hispanic Black (HR, 1.19;
95% CI, 1.03-1.17) and non-Hispanic (HR, 1.11; 95% CI, 1.03-1.21) participants. The combined
PRS was also associated with composite ASCVD across all ancestry groups but greater among
non-Hispanic White (HR, 1.20; 95% CI, 1.16-1.24) than non-Hispanic Black (HR, 1.11; 95% CI,
1.05-1.17) and Hispanic (HR, 1.12; 95% CI, 1.00-1.25) participants. Net reclassification
improvement from adding PRS to a traditional risk model was modest for the intermediate
risk group for composite CVD among men (5-year risk >3.75%, 0.38%; 95% CI,
0.07%-0.68%), among women, (6.79%; 95% CI, 3.01%-10.58%), for age older than 55 years
(0.25%; 95% CI, 0.03%-0.47%), and for ages 40 to 55 years (1.61%; 95% CI, −0.07% to
3.30%).

CONCLUSIONS AND RELEVANCE Study results suggest that PRSs derived predominantly in
European samples were statistically significantly associated with ASCVD in the multiancestry
midlife and older-age MVP cohort. Overall, modest improvement in discrimination metrics
were observed with addition of PRSs to traditional risk factors with greater magnitude in
women and younger age groups.
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A therosclerotic cardiovascular disease (ASCVD) is a tre-
mendous source of morbidity and mortality globally.1

Primary prevention with statin and aspirin therapy can
significantly decrease this burden; however, estimating pa-
tient risk is a key first step to identifying patients who would
benefit. Despite improvements in the last decade, current clini-
cal prediction models misclassify a considerable number of in-
dividuals, resulting in overtreatment or undertreatment of
ASCVD risk.2,3

Polygenic risk scores (PRSs) have been proposed to im-
prove CVD risk stratification. Advances in statistical meth-
ods, computational capability, and the size of genome-wide
association studies (GWASs) for discovery have improved the
performance of PRSs in discriminating disease cases from con-
trols and estimating risk of incident disease. Specifically, sig-
nificant advances have occurred in the development and vali-
dation of PRSs for coronary artery disease (CAD), including their
extension into populations of diverse genetic ancestry.4,5

Research and clinical efforts are now underway to evaluate the
utility of PRSs in patient risk stratification and disease
prevention.6-8 The advent of genetic research and promulga-
tion of polygenic risk analyses across the globe has added a new
perspective to CVD prevention.9-11

In current clinical practice in the US, standard of care in-
cludes using a risk calculator to estimate a patient’s absolute
risk for ASCVD, a composite outcome including CAD events
(nonfatal myocardial infarction, coronary heart disease death),
and fatal or nonfatal stroke. Prior research has demonstrated
that PRSs derived from CAD GWAS data may modestly im-
prove the risk estimation achieved by clinical risk prediction
models such as the Pooled Cohort Equations.2,12 However, few
studies have examined how leveraging GWAS data from mul-
tiple ASCVD phenotypes, namely CAD and acute ischemic
stroke, contributes to ASCVD risk estimation through the ad-
dition of PRSs and whether the degree of improvement in risk
prediction varies by ancestry.4

The hypothesis tested was that incorporating PRSs for both
CAD and ischemic stroke into a clinical ASCVD risk model im-
proves risk estimation compared with the clinical model alone.
Data were analyzed from the Million Veteran Program (MVP)
within the Veterans Health Administration (VHA). The MVP is
a large, national, ancestrally diverse longitudinal cohort study
with genetic, survey, and electronic medical record data.13 First,
previously published CAD and ischemic stroke PRSs derived
from cohorts of largely European descent were assessed for
their ability to predict individual and composite ASCVD out-
comes in a multiancestry population. Second, the perfor-
mance for predicting ASCVD events from traditional risk fac-
tor models was compared against PRS models and models
including both traditional risk factors and PRSs.

Methods
Study Population
This prognostic study was approved by the VA Central Insti-
tutional Review Board. All participants provided written in-
formed consent. Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guidelines were followed.

The study sample was drawn from MVP participants who
were genotyped and had at least 1 outpatient lipid measure-
ment in the year before enrollment. To create a primary
ASCVD prevention cohort, patients were excluded for history
of myocardial infarction (MI), revascularization, ischemic
stroke, or statin use at baseline.14 Additionally, participants with
serious comorbid conditions were excluded because a tradi-
tional ASCVD risk model would inadequately estimate risk in
these patient populations; these conditions included HIV posi-
tivity, chronic kidney disease, liver disease or hepatitis, can-
cer (other than nonmelanoma skin cancer), schizophrenia, de-
mentia, and amputation.14 Participants were categorized into
harmonized ancestry and race and ethnicity (HARE) groups.
As described previously, the HARE algorithm uses a machine
learning model to predict self-identified race and ethnicity
(SIRE) from principal components of genetic ancestry and was
developed to facilitate ancestry-specific GWAS in the MVP.15

The HARE algorithm was trained on SIRE groups based on par-
ticipant responses to the MVP baseline survey questions “Are
you Spanish, Hispanic, or Latino?” and “What is your race
(American Indian or Alaska Native, Asian, Black or African
American, Native Hawaiian or Other Pacific Islander, White,
or other)?” HARE was defined for the 4 largest race and eth-
nicity groups: non-Hispanic Asian, non-Hispanic Black,
Hispanic, and non-Hispanic White (abbreviated as Asian, Black,
Hispanic, and White, respectively). The Asian group was ex-
cluded in the present analyses due to limited ASCVD data
(<100 incident events). Although SIRE was previously used to
train the HARE algorithm, it was not used in these analyses.
Agreement between HARE and genetically informed ances-
try (GIA) classification was very high for all ancestries except
the Admixed American ancestry (ie, continental American
populations with different global proportions of European,
Native American, and Sub-Saharan African ancestry), among
whom 10% were classified by HARE as non-Hispanic White,
and 90% were classified as Hispanic (eTable 1 in Supple-
ment 1). This degree of overlap reflects recent admixture among
Native American, European and African ancestral popula-
tions and is appropriate for ASCVD risk estimation.16 Given the

Key Points
Question Do polygenic risk scores (PRSs) for coronary heart
disease and acute ischemic stroke predict incident atherosclerotic
cardiovascular disease (ASCVD) events?

Findings In an ancestrally diverse, primary prevention sample of
almost 80 000 veterans observed for up to 7 years, PRSs were
significantly associated with incident myocardial infarction, acute
ischemic stroke, and cardiovascular death. Discrimination was
modest overall but greater among women and younger
participants.

Meaning PRSs provide modest incremental benefit for ASCVD
risk stratification in a general midlife and older age population over
and above traditional risk factors.
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high degree of concordance between HARE and GIA, no sepa-
rate analyses were performed for GIA. Patient follow-up ex-
tended from MVP enrollment in January 1, 2011, until Decem-
ber 31, 2018.

Data Sources
Electronic health records were extracted from the national VA
Corporate Data Warehouse.17 Outcomes ascertained in the
VHA were supplemented with records from the Centers for
Medicaid & Medicare Services (CMS) and National Death In-
dex databases.18,19 Genetic variants in MVP were genotyped
with an Applied Biosystems (formerly Affymetrix) microar-
ray (Thermo Fisher Scientific).20

PRSs
Primary analyses used PRSs for ischemic stroke21 and CAD,22

which combined GWAS associations from European and non-
European ancestries but were optimized in European co-
horts. Sensitivity analyses in young adults (age <40 years) were
conducted with PRSs from the UK Biobank (UKBB) for ischemic
stroke and CAD23 to better match previous UK studies of age-
related PRS trends. For variants not genotyped in MVP, dos-
ages were imputed using the 1000 Genomes Project refer-
ence panel24 and African Genome Resources panel.25

Other Risk Factors
Patient characteristics were assessed at baseline, which was
an outpatient VA clinic visit close to MVP enrollment date. Base-
line diabetes status was defined as outpatient hemoglobin A1c

level of at least 6.5% or any prescription for diabetes medica-
tion before enrollment plus 1 International Classification of
Diseases, Ninth Revision (ICD-9) 250.xx (or equivalent Tenth
Revision [ICD-10]) code in combination with a VA primary care
visit or at least 2 total ICD codes. Smoking status (current, for-
mer, never) was ascertained from smoking-related health fac-
tors and ICD-9 codes for tobacco dependence using an algo-
rithm previously validated in the VA.26 Statin therapy and
antihypertensive therapy were defined as an active prescrip-
tion for a relevant medication on the baseline date.14 Continu-
ous clinical measures were averaged over all outpatient mea-
sures recorded in the preceding year. Medications and ICD
codes used for inclusion/exclusion are available in a previous
publication.14

Outcomes
Incident ischemic stroke and MI events were defined as the
first occurrences of ICD-9, ICD-10, or CMS codes used by
phenotyping algorithms that had been validated with expert
medical record review in the VA.14,27,28 Incident ischemic
stroke ICD codes included 433.x1, 434 (excluding 434.x0),
436, 437.0, 437.6, I63.xx9, I63.20, I63.22, I63.30, I63.40,
I63.50, I63.59, I67.2, I67.6, and I67.89. Incident MI ICD
codes included 410, 411.0, I21, and I22. ASCVD death was
defined as any of the following ICD-10–Clinical Modification
diagnosis codes as the primary cause of death in the
National Death Index: I10, I11, I13, I16, I20 to I25, I46, I63,
I67, I70, I74, I75, and G45.14 Composite ASCVD events
included first occurrence of ischemic stroke, MI, or ASCVD

death. Revascularization was defined as any percutaneous
coronary intervention and coronary artery bypass graft
(eTable 2 in Supplement 1). Follow-up time for each ASCVD
outcome began at MVP enrollment date and ended at date
of first outcome, death, or administrative censoring (De-
cember 31, 2018).29

Statistical Analysis
Cox proportional hazard models were used to estimate the risk
of incident ASCVD events, using separate models for compos-
ite ASCVD and each component outcome of ASCVD events
(ischemic stroke, MI, or ASCVD death), stratified by HARE
group. Sex-stratified models were also estimated for compos-
ite ASCVD. Complete case analysis was used for all models, only
including patients with nonmissing risk factors. Polygenic
scores were validated in ancestry-specific models with stan-
dardized PRSs for each outcome, age, sex, and the first 5 prin-
cipal components of genetic ancestry (G model):

log[h(t) / h0 (t)] = β1age + β2female + β3-7PCs 1-5 + βT
GPRS,

where h(t) is the hazard for an outcome (composite ASCVD
events, stroke, MI, or ASCVD death), h0(t) is the baseline haz-
ard, PCs are principal components, and composite polygenic
score (G-score) is βT

GPRS = β8PRSAIS + β9PRSCAD for compos-
ite ASCVD events and ASCVD death, β8PRSAIS for stroke, and
β8PRSCAD for MI. Traditional risk scores were constructed using
nongenetic risk factors (E model) from a previously devel-
oped VHA model14:

log[h(t) / h0(t)] = β1Age + β2female + β3diabetes + β4current
smoker + β5former smoker + β6-8 total cholesterol(cubic

splines) + β9HDL-C + β10SBP + β11BP med Rx.

Models were estimated in 10-fold cross-validation, with coef-
ficients estimated on training samples, and traditional risk
scores (E scores) and composite polygenic scores (G scores)
computed for patients in validation folds.

A combined genetic and traditional risk (G × E) model was
constructed to evaluate whether polygenic scores improved
ASCVD risk prediction over and above traditional risk factors:

log[hG × E(t) / h0 (t)] = βEE score + βGG score + βG × EE score ×
G score,

where E score and G score were combined across the 10 vali-
dation folds. This iterative approach to model building is simi-
lar to the approach of Steinfeldt et al,30 with their Cox clinical
model corresponding to the E model here, Cox Sun PGS model
equivalent to the G model, and Cox clinical PGS × age equiva-
lent to our G × E model (just with PRS by age instead of PRS
and traditional risk).

Discrimination of the risk models was evaluated using the
Harrell C index, with improvement from PRS defined as the
difference between genetic and nongenetic models (ΔC = CG ×

E − CE). Categorical and continuous net reclassification im-
provement (NRI) were used to assess improvements in risk pre-
diction from addition of PRS.31 To define 5-year risk catego-
ries analogous to the guideline-recommended risk categories,32

the primary 10-year risk threshold was halved to define inter-
mediate-risk (3.75% to 10%) and high-risk (>10%) groups.
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Kaplan-Meier incidence curves were stratified by low (bot-
tom quintile of risk score), moderate (middle 3 quintiles), and
high risk (top quintile) using ancestry-specific scores.33 Cox re-
gressions for high- and low-risk groups used a reference of 45th
to 55th percentile of risk, adjusting for age, sex, and top 5 prin-
cipal components of genetic ancestry in PRS models. Data were
analyzed from March 15, 2021, to January 5, 2023, using R soft-
ware, version 4.0.2 (R Foundation for Statistical Computing).
Two-sided P values <.05 were considered statistically
significant.

Results
The cohort comprised 79 151 veterans (mean [SD] age, 57.8 [13.7]
years; 68 503 male [86.5%]; 10 648 female [13.5%]) without

baseline ASCVD. As defined by HARE, veterans belonged to the
following harmonized genetic ancestry and race and ethnic-
ity categories: 18 505 Black (23.4%), 6785 Hispanic (8.6%), and
53 861 White (68.0%) (Table 1 and eTable 3 in Supplement 1).
Black and Hispanic participants were 6 to 10 years younger than
White participants on average (mean [SD] age, Black, 53.2 [12.6]
years; Hispanic, 49.4 [15.6] years; White, 59.3 [13.8] years). At
baseline, 36 673 participants (46.3%) had active prescrip-
tions for antihypertensive therapies, mean (SD) total choles-
terol level was 157.8 (40.6) mg/dL (to convert to millimoles per
liter, multiply by 0.0259), and prevalence of current smoking
was 10.7% (8435), of former smoking was 60.2% (47 670), and
of diabetes was 21.7% (17 177) (Table 1).

During follow-up (median [5th-95th percentile], 4.3 [0.7-
6.9] years), 5485 participants (6.9%) experienced a first ASCVD
event, among whom 3186 (4.0%) experienced an MI, 1933

Table 1. Baseline Characteristics and Atherosclerotic Cardiovascular Disease (ASCVD) Events
Among 79 151 Veterans

Baseline characteristic

No. (%)

Total cohort
(N = 79 151)

Harmonized ancestry, race, and ethnicity
Non-Hispanic
Black
(n = 18 505)

Hispanic
(n = 6785)

Non-Hispanic White
(n = 53 861)

Follow-up, median
(5th-95th percentile), y

4.3
(0.7-6.9)

4.3 (0.7-6.9) 4.1 (0.6-6.8) 4.3 (0.6-6.9)

Age, mean (SD), y 57.8 (13.7) 55.4 (11.8) 52.6 (14.8) 59.3 (13.8)

Cardiovascular risk factors

Sex

Male 68 503 (86.5) 15 153 (81.9) 5871 (86.5) 47 479 (88.2)

Female 10 648 (13.5) 3352 (18.1) 914 (13.5) 6382 (11.8)

Total cholesterol, mean (SD),
mg/dL

157.8 (40.6) 153.7 (40.0) 156.0 (41.5) 159.5 (40.6)

HDL-C, mean (SD), mg/dL 49.8 (17.0) 54.0 (18.1) 47.4 (15.0) 48.6 (16.6)

LDL-C, mean (SD), mg/dL 109.4 (33.3) 106.6 (33.1) 106.9 (35.0) 110.6 (33.1)

Systolic blood pressure, mean
(SD), mm Hg

131.3 (13.4) 132.5 (13.7) 129.6 (13.1) 131.0 (13.3)

Current smoker 8435 (10.7) 2034 (11.0) 812 (12.0) 5589 (10.4)

Former smoker 47 670 (60.2) 10 578 (57.2) 3527 (52.0) 33 565 (62.3)

Diabetes 17 177 (21.7) 5173 (28.0) 1663 (24.5) 10 341 (19.2)

Medications

Blood pressure treatment 36 673 (46.3) 9390 (50.7) 2723 (40.1) 24 560 (45.6)

No. of events (2011-2018)

Composite CVD (%) 5485 (6.9) 1227 (6.6) 322 (4.7) 3936 (7.3)

Composite CVD and
revascularization (%)

6628 (8.4) 1428 (7.7) 411 (6.1) 4789 (8.9)

ASCVD death (%) 867 (1.1) 189 (1.0) 52 (0.8) 626 (1.2)

Acute ischemic stroke (%) 1933 (2.4) 481 (2.6) 124 (1.8) 1328 (2.5)

Myocardial Infarction (%) 3186 (4.0) 677 (3.7) 182 (2.7) 2327 (4.3)

Crude incidence rate per 10 000 person-years (2011-2018)

Composite CVD
(95% CI)

177.7
(173.0-182.5)

168.1
(158.8-177.8)

124.7
(111.5-139.1)

187.5
(181.7-193.5)

Composite CVD and
revascularization
(95% CI)

216.6
(211.4-221.9)

196.8
(186.7-207.2)

160.5
(145.4-176.8)

230.4
(223.9-237.0)

ASCVD Death
(95% CI)

27.0
(25.2-28.8)

24.9
(21.5-28.8)

19.6
(14.6-25.7)

28.6
(26.4-30.9)

Acute ischemic stroke
(95% CI)

61.0
(58.3-63.8)

64.4
(58.8-70.4)

47.3
(39.3-56.4)

61.5
(58.2-64.9)

Myocardial infarction
(95% CI)

100.9
(97.4-104.4)

90.7
(84.0-97.8)

69.4
(59.6-80.2)

108.2
(103.9-112.7)

Abbreviations: CVD, cardiovascular
disease; HDL-C, high-density
lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol.

SI conversion factor: To convert total
cholesterol, HDL-C, and LDL-C to
millimoles per liter, multiply by
0.0259.
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(2.4%) experienced an ischemic stroke, and 867 (1.1%) died of
an ASCVD event, including multiple possible events for each
individual. Women had fewer first ASCVD events than men,
with only 310 composite ASCVD cases (2.9%) compared with
5175 (7.6%), respectively. Crude incidence rate of composite
ASCVD events was greatest among HARE-defined White par-
ticipants (187.5; 95% CI, 181.7-193.5 events per 10 000 person-
years [PY]), slightly lower for Black participants (168.1; 95% CI,
158.8-177.8 events per 10 000 PY), and much lower for Hispanic
participants (124.7; 95% CI, 111.5-139.1 events per 10 000 PY)
(Table 1).

Crude cumulative incidence curves for composite ASCVD
events are presented in Figure 1 and for each ASCVD outcome
in eFigure 1 in Supplement 1, stratified by percentile of com-
posite PRS and traditional risk score. Both scores generally de-
scribed a gradient of risk within the component and compos-
ite outcomes. The magnitude of this gradient from the lowest
to highest percentiles was greater for the traditional risk score
than the PRS. The trend in cumulative incidence of compos-
ite ASCVD events across PRS was largely driven by the CAD PRS.

Adjusted (for age, sex, and principal components of ge-
netic ancestry) hazard ratios (HRs) for more extreme risk groups
up to the top 0.5 percentile of PRS and traditional risk score
are presented in Table 2 and down to the bottom 0.5 percen-
tile in eTable 4 in Supplement 1, compared with the middle
decile of risk (45%-55%). The HRs differed by HARE group: a
1-SD increase of composite PRS increased the hazard for com-
posite ASCVD events by 11% (95% CI, 5%-17%) in Black veter-
ans, 12% (95% CI, 0-25%) in Hispanic veterans, and 20% (95%
CI, 16%-24%) in White veterans. The per-SD HRs for tradi-
tional ASCVD risk scores were an order of magnitude greater
than PRS in Black participants (HR, 1.96; 95% CI, 1.84-2.09),
Hispanic participants (HR, 2.29; 95% CI, 2.02-2.59), and White
participants (HR, 1.93; 95% CI, 1.86-2.00). In analyses of PRS
categories, among White participants, the risk for composite
ASCVD was positively associated with higher PRS groups, rang-

ing from an HR of 1.42 (95% CI, 1.26-1.61) in the top 20% (com-
pared with the middle decile) to an HR of 2.21 (95% CI, 1.55-
3.15) in the top 0.5% of PRS, which was comparable with the
top 0.5% of traditional risk score (HR, 2.62; 95% CI,
1.95-3.52).

Among component outcomes of ASCVD events, CAD PRS
was associated with incident MI in non-Hispanic Black (HR,
1.10; 95% CI, 1.02-1.19), Hispanic (HR, 1.26; 95% CI, 1.09-
1.46), and non-Hispanic White (HR, 1.23; 95% CI, 1.18-1.29) par-
ticipants. Stroke PRS was associated with incident stroke in
non-Hispanic White participants (HR, 1.15; 95% CI, 1.08-1.21).
The combined CAD plus stroke PRS was associated with AS-
CVD deaths among non-Hispanic Black (HR, 1.19; 95% CI, 1.03-
1.17) and non-Hispanic White (HR, 1.11; 95% CI, 1.03-1.21)
participants.

The Harrell C indices for each incident ASCVD outcome are
presented in Figure 2 for the traditional risk model, com-
bined traditional and polygenic risk model, and improve-
ment of combined model over traditional risk model. The C sta-
tistics for traditional risk score (E model) and G × E models
ranged from 0.64 to 0.68 for ASCVD outcomes (composite
ASCVD events, MI, and stroke) and 0.70 to 0.71 for ASCVD death
among HARE-defined non-Hispanic Black and White partici-
pants. Concordance of the traditional and G × E model was
greater for Hispanic veterans, ranging from 0.70 to 0.73 for all
outcomes except ASCVD death (C index, 0.78; 95% CI, 0.75-
0.80). The addition of PRS to the traditional model (G × E vs
E) increased the C index for all ASCVD outcomes by roughly
0.01 among Hispanic and White participants, but the incre-
mental effects were smaller (C index, 0.004; 95% CI, 0-0.011)
for ischemic stroke and for all nondeath outcomes among Black
participants (composite CVD: C index, 0.004; 95% CI, 0.002-
0.006; MI: C index, 0.006; 95% CI, 0.002-0.010).

Adding PRS to the traditional ASCVD risk model signifi-
cantly improved reclassification of women around the inter-
mediate risk threshold (5-year risk >3.5%) by 6.8% (95% CI,

Figure 1. Cumulative Incidence of Composite Atherosclerotic Cardiovascular Disease Events

0.20

0.15

0.10

0.05

0

Cu
m

ul
at

iv
e 

in
ci

de
nc

e

Follow-up time, y

Polygenic risk scoreA

60 1 2 3 4 5

0.20

0.15

0.10

0.05

0

Cu
m

ul
at

iv
e 

in
ci

de
nc

e

Follow-up time, y

Traditional risk scoreB

60 1 2 3 4 5

Risk score percentile
0%-20%
21%-80%
81%-100%

Cumulative incidence curves for low
(light blue line), moderate (dark blue
line), and high (orange line) predicted
polygenic (A) and traditional (B) risk
are presented. Shaded regions are
95% exact Poisson CIs.

Cardiovascular Disease Risk Assessment in the Million Veteran Program Original Investigation Research

jamacardiology.com (Reprinted) JAMA Cardiology Published online May 3, 2023 E5

© 2023 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Harvard University User  on 05/03/2023

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamacardio.2023.0857?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamacardio.2023.0857
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamacardio.2023.0857?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamacardio.2023.0857
http://www.jamacardiology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamacardio.2023.0857


3.0%-10.6%) across all HARE groups combined (eTable 8 in
Supplement 1), with the most reclassification occurring among
Hispanic women at 19.0% (95% CI, 2.1%-39.9%), followed by
Black women at 10.6% (95% CI, 3.1%-18.4%), and lowest among
White women at 3.4% (95% CI, −0.1% to 7.4%) (Figure 3A). NRI
of men was modest for the intermediate risk group for com-
posite CVD (5-year risk >3.75%, 0.38%; 95% CI, 0.07%-
0.68%) and significant around the high-risk threshold (5-
year risk >10%) at 1.9% (95% CI, 1.0%-2.8%) overall, 1.9% (95%
CI, 1.0%-3.0%) among White veterans (Figure 3B), and 3.2%
(95% CI, −0.1% to 6.4%) among Hispanic veterans. Across both
risk thresholds, NRI was approximately 1.4% higher in middle-
aged adults aged 40 to 55 years (1.61%; 95% CI, −0.07% to
3.30%) compared with participants older than 55 years (0.25%;
95% CI, 0.03%-0.47%), with a net 3.2% (95% CI, 1.4%-5.0%)
of middle-aged reclassified above or below high risk com-
pared with the 1.8% (95% CI, 1.4%-5.0%) among participants

older than 55 years. NRI was not present among Black partici-
pants except around the intermediate risk threshold for
women. Hispanic participants had higher reclassification rates
compared with White participants across all subgroups ex-
cept for the intermediate risk group of middle-aged adults.

Although there were no reclassifications of the youngest
statin-naive participants younger than 40 years (eFigure 2 in
Supplement 1), a cohort including statin users exhibited a de-
creasing trend in reclassification with age: greatest among
young participants, reduced in middle-aged adults, and low-
est for older adults (eFigure 3 in Supplement 1). The median
age of first ASCVD event was also 10 years lower in the top decile
of PRS compared with traditional risk score (eFigure 4 in
Supplement 1).

Continuous NRI (eFigure 5 in Supplement 1) was weak
(<0.2) for HARE-defined Black and White participants and
moderate for Hispanic participants (0.2 to 0.4) across all ASCVD

Table 2. Incident Cardiovascular Disease (CVD) Hazard Ratios for High Traditional and Polygenic Risk Scores (PRSs)

High PRS definition

Hazard ratio (95% CI)

Non-Hispanic Black Hispanic Non-Hispanic White

PRS
Traditional risk
score PRS

Traditional risk
score PRS Traditional risk score

Composite CVD (CAD PRS + AIS PRS)

Continuous per SD
increment

1.11 (1.05-1.17) 1.96 (1.84-2.09) 1.12 (1.00-1.25) 2.29 (2.02-2.59) 1.20 (1.16-1.24) 1.93 (1.86-2.00)

Top 20%a 1.18 (0.95-1.46) 1.94 (1.60-2.36) 0.79 (0.54-1.16) 3.07 (2.03-4.67) 1.42 (1.26-1.61) 1.76 (1.58-1.96)

Top 10% 1.29 (1.02-1.64) 2.01 (1.62-2.50) 0.83 (0.53-1.32) 3.24 (2.07-5.07) 1.56 (1.36-1.79) 2.08 (1.85-2.34)

Top 5% 1.20 (0.90-1.61) 2.30 (1.81-2.93) NA 3.93 (2.40-6.41) 1.53 (1.30-1.81) 2.40 (2.10-2.74)

Top 1% NAb 3.07 (2.10-4.48) NA NA 2.13 (1.63-2.79) 2.69 (2.17-3.34)

Top 0.5% NA NA NA NA 2.21 (1.55-3.15) 2.62 (1.95-3.52)

Myocardial infarction (CAD PRS)

Continuous per SD
increment

1.10 (1.02-1.19) 2.01 (1.83-2.20) 1.26 (1.09-1.46) 2.46 (2.07-2.92) 1.23 (1.18-1.29) 1.97 (1.87-2.06)

Top 20% 1.25 (0.93-1.68) 2.17 (1.64-2.87) 0.71 (0.45-1.13) 3.60 (1.96-6.59) 1.36 (1.16-1.58) 2.05 (1.77-2.37)

Top 10% 1.35 (0.97-1.88) 2.32 (1.71-3.15) NA 4.09 (2.17-7.74) 1.50 (1.26-1.78) 2.32 (1.98-2.71)

Top 5% 1.40 (0.95-2.05) 2.82 (2.02-3.95) NA 5.47 (2.80-10.69) 1.61 (1.31-1.96) 2.63 (2.20-3.13)

Top 1% NA 4.06 (2.49-6.62) NA NA 2.23 (1.61-3.08) 3.61 (2.77-4.70)

Top 0.5% NA NA NA NA 2.19 (1.40-3.43) 3.09 (2.12-4.49)

Ischemic stroke (AIS PRS)

Continuous per SD
increment

1.05 (0.95-1.17) 1.90 (1.73-2.08) 1.08 (0.85-1.36) 2.09 (1.73-2.52) 1.15 (1.08-1.21) 1.79 (1.68-1.90)

Top 20% 0.85 (0.60-1.19) 2.48 (1.76-3.51) 1.71 (0.74-3.94) 2.14 (1.19-3.84) 1.22 (0.99-1.50) 1.64 (1.36-1.98)

Top 10% 0.94 (0.63-1.41) 2.77 (1.92-4.01) NA 2.55 (1.36-4.78) 1.21 (0.95-1.53) 2.01 (1.64-2.46)

Top 5% 1.29 (0.82-2.04) 2.90 (1.92-4.38) NA NA 1.16 (0.86-1.56) 2.43 (1.95-3.04)

Top 1% NA NA NA NA 1.82 (1.14-2.90) 3.06 (2.16-4.35)

Top 0.5% NA NA NA NA NA NA

ASCVD death (CAD PRS + AIS PRS)

Continuous per SD
increment

1.19 (1.03-1.37) 2.61 (2.20-3.10) 1.24 (0.94-1.65) 3.84 (2.72-5.41) 1.11 (1.03-1.21) 2.60 (2.34-2.88)

Top 20% 1.30 (0.77-2.19) 2.89 (1.69-4.93) NA 8.06 (1.93-33.68) 1.32 (0.97-1.81) 2.39 (1.81-3.15)

Top 10% 1.36 (0.76-2.45) 3.42 (1.95-6.01) NA NA 1.60 (1.13-2.27) 3.42 (2.58-4.55)

Top 5% NA 4.54 (2.50-8.22) NA NA 1.49 (0.97-2.28) 3.92 (2.88-5.33)

Top 1% NA NA NA NA NA 5.41 (3.52-8.33)

Top 0.5% NA NA NA NA NA NA

Abbreviations: AIS, acute ischemic stroke; ASCVD, atherosclerotic
cardiovascular disease; CAD, coronary artery disease; NA, not applicable.
a Reference group equals middle 10% (45th to 55th percentiles) of risk score.

b NA, less than 10 events in risk group.
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outcomes, except ASCVD death. Compared with the tradi-
tional risk model, the combined traditional and PRS model pre-
dicted a greater ASCVD risk among events (and reduced risk
for nonevents) for a net 12.2% (95% CI, 5.8%-18.4%) of Black
participants, 26.0% (95% CI, 13.6%-37.1%) of Hispanic partici-
pants, and 13.8% (95% CI, 10.0%-17.4%) of White partici-
pants. Continuous NRI increased when including statin users
and was moderate across all HARE groups at 14.4% (95% CI,
8.1%-20.5%) among Black participants, 25.7% (95% CI, 14.7%-
36.3%) among Hispanic participants, and 20.1% (95% CI, 16.7%-
23.7%) among White participants. Reclassification tables for

other ASCVD outcomes are presented in eTables 5 to 7 in
Supplement 1.

Discussion
In this large multiancestry prognostic cohort study, PRSs de-
rived from both CAD and ischemic stroke GWAS summary sta-
tistics were associated with incident ASCVD events in a pri-
mary prevention population. Among the 3 populations
examined, PRSs were statistically significantly associated with

Figure 2. Harrell C Index for Traditional (Model E) and Combined Gene-Environment (Model G × E) Risk Models
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incident MI, ischemic stroke, ASCVD death, and composite
ASCVD events with a higher (but still modest) degree of im-
proved reclassification observed for women compared with
men and for younger-onset disease compared with older-
onset disease.

Previous studies of incident ASCVD in predominantly
European-ancestry populations have reported small but con-
sistent improvements in model performance when adding
PRS.34 These studies have demonstrated changes in C statis-
tics between 0.009 to 0.02 and 10-year NRI between 2.7% to
4.7%. Fewer studies have evaluated PRS in non-European co-
horts and have generally observed attenuated magnitudes of
association and reclassification.4,5,12 The present study in-
cluded 18 505 Black and 6785 Hispanic participants, repre-
senting an important contribution to polygenic ASCVD risk
stratification research, where to date the largest study has in-
cluded only 55 ASCVD events among 823 Hispanic
participants.4 Similar to prior reports, European-derived PRS
was significantly associated with incident ASCVD events in
Black and Hispanic MVP participants but with reduced or no
improvement in net reclassification. Continued advances in
multiancestry GWAS and PRS development are expected to fur-
ther improve PRS performance in populations of diverse ge-
netic ancestry.35 Whether to include the sociocultural con-
structs of race and ethnicity in clinical prediction models is
controversial but remains the standard of care in ASCVD risk
estimation and prevention.36,37 Further research is needed be-
fore consensus can be reached about the role of socially de-
fined race and ethnicity and genetically defined ancestry in risk
prediction, with or without PRS.38,39

Although most other studies have evaluated a CAD PRS for
ASCVD risk stratification, this study examined the utility of

published PRSs for 2 components of ASCVD (CAD and ische-
mic stroke) across 4 ASCVD outcomes (MI, ischemic stroke,
ASCVD death, and composite ASCVD events). Physicians use
models that estimate 10-year risk of ASCVD events, and thus,
the inclusion of both CAD- and stroke-associated PRS may be
more appropriate to evaluate the potential for PRSs to im-
prove existing clinical models. Across HARE groups, this study
observed that the CAD PRS was associated with incident MI,
the stroke PRS was associated with incident ischemic stroke,
and the combination of the 2 PRSs was associated with AS-
CVD death and composite ASCVD events. In all models, the risk
scores constructed from traditional risk factors conferred
greater ASCVD risk per SD compared with PRS. Further re-
search is needed to determine the best approach to combin-
ing PRS for clinical risk stratification of multiple phenotypes,
perhaps leveraging transcriptomic data or more advanced com-
putational approaches to PRS construction.4,30,40 Improved un-
derstanding of the genetic architecture of CVD may inform a
paradigm change in clinical practice, favoring the identifica-
tion and risk management of more precise disease pheno-
types and corresponding prevention strategies. Either way, for
a clinical prediction model to be widely implemented, it re-
quires inputs that are already clinically available or readily at-
tainable, and several challenges impede the implementation
of increasingly complex prediction models at the point of pa-
tient care.

Despite few cases and low statistical power among younger
strata, the higher NRI observed among younger participants
in the MVP is largely concordant with independent studies of
Europeans aged 40 to 55 years (NRI = 10.3%)4 and younger than
50 years (13.5% reclassified to intermediate risk) in the UK41

and Black participants in the US (8.5%). A Finnish study simi-

Figure 3. Net Reclassification Improvement for Composite Cardiovascular Disease (CVD) From Inclusion of Polygenic Risk Scores
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larly observed that 12.6% of the coronary events that oc-
curred before 55 years of age were attributable to high PRS risk
compared with 2.5% for later-onset events.42 The older VHA
patient population and analysis of first ASCVD events after MVP
enrollment likely excluded other early-life events where ge-
netic factors may contribute more to ASCVD development. Still,
to our knowledge, this was the first multiancestry study to
evaluate PRS for predicting first ASCVD events in individuals
younger than 40 years.43,44

Limitations
There are a few study limitations to note. First, the PRSs used
were developed in predominantly European ancestry popu-
lations and were not multiancestry or transancestry scores. Sec-
ond, due to limited follow-up in the MVP, only 5-year ASCVD
risk was estimated instead of the usual 10-year risk. Third, the
high rate of statin use at baseline and the large number of par-
ticipants with clinical CAD who may have undergone revas-
cularization procedures without experiencing a qualifying out-
come during the short follow-up period may have reduced the
discriminative potential of a PRS for CAD across all ages. Sup-
porting this possibility is a growing body of evidence demon-
strating that participants in the highest tertile of a PRS derive
the greatest benefit from a statin, with a near halving of risk
in both primary and secondary prevention settings, whereas
those in the bottom tertile derive little to no benefit over the
same period of follow-up.45-47 Lastly, demographic composi-
tion was predominantly male. Although the sample included
almost 11 000 women, sex-specific differences in event rates
may make the results less generalizable to women.

Whether the improved discrimination observed in this
study (and others) supports the integration of PRSs in clinical
practice cannot be answered definitively without clinical
trials.48,49 Arguments against clinical utility of PRSs have his-
torically been rooted in the low absolute magnitude of incre-

mental discrimination such as the delta C statistic—a low-
power procedure—or the NRI.48,50 However, there remains
considerable debate on which metrics should be used to dem-
onstrate clinical validity. Net benefit, for example, may be most
appropriate when the harm of overtreatment is minimal, such
as lifestyle counseling.31,51-56 The 2019 American College of
Cardiology/American Heart Association cholesterol guide-
line emphasizes shared decision-making between physician
and patients at moderate or high 10-year risk (ie, >5.0%),
including consideration of risk-enhancing factors beyond tra-
ditional ASCVD risk models.57 Under these circumstances, a
specific threshold of risk does not exist and even small im-
provements in discrimination may be clinically helpful when
applied to large populations at risk. The recent American Heart
Association scientific statement on PRSs further clarifies these
potential benefits for CAD risk stratification.11 It may be rea-
sonable to consider a PRS as an additional risk-enhancing fac-
tor based on the performance of the most recently con-
structed genome-wide PRS. This may be better supported if
anticipated improvements in PRSs are actualized over time.49

Conclusions
In conclusion, results of this prognostic study suggest that PRSs
for CAD and ischemic stroke derived from largely European an-
cestry populations were statistically significantly associated
with first ASCVD events in the multiancestry MVP cohort, but
reclassification improvement was modest. This study also re-
inforces the need for multiancestry PRSs to improve risk strati-
fication of non-European populations. The results suggest the
possibility that the predictive utility of PRS may be relatively
higher for women and younger populations, but more stud-
ies, especially clinical trials, are needed before definitive con-
clusions can be made in this regard.
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eTable 1. Genetically Informed Ancestry (GIA) and HARE Classification in the Million Veteran Program (MVP) 

  Genetically Informed Ancestry (GIA) HARE total 
  AFR EAS EUR AMR NA (not NA) 

Harmonized 
Ancestry and 

Race/Ethnicity 
(HARE) 

Non-Hispanic Black 122,114 0 0 181 825 122,295 
Asian 2 6,684 32 25 1,586 6,743 

Non-Hispanic White 3 1 456,030 5,650 3,277 461,684 
Hispanic 190 28 485 51,195 285 51,898 

NA 1,019 363 1,173 4,060 3,374  
GIA Total (not NA) 122,309 6,713 456,547 57,051   

* GIA super populations: AFR = African, EAS = East Asian, EUR = European, AMR = Ad Mixed American 
 
eTable 1 caption: Agreement between HARE and GIA classifications were very high (>99%) for all ancestries except the AMR (Ad Mixed 
American) super population. 5,650 participants from the AMR-ancestry were classified as non-Hispanic White by the HARE algorithm, and a further 
4,060 were excluded due to disagreement between self-identified race/ethnicity and GIA. 
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eTable 2. Electronic Health Record Codes (ICD-9, ICD-10, CPT/HCPCS) for ASCVD Outcomes 

Outcome ICD-9 Codes ICD-10 Codes CPT/HCPCS Codes 
Composite ASCVD Myocardial Infarction, Ischemic Stroke, or ASCVD Death Codes 

Composite ASCVD and 
Revascularization Composite ASCVD, Percutaneous Coronary Intervention, and Coronary Artery Bypass Graft 
Myocardial Infarction 410, 411.0, I21, I22 410, 411.0, I21, I22   

Ischemic Stroke 433.x1, 434 (excluding 
434.x0), 436, 437.0, 437.6 

I63.xx9, I63.20, I63.22, 
I63.30, I63.40, I63.50, 
I63.59, I67.2, I67.6, I67.89 

  

ASCVD Death   

I10, I11, I13, I16, I20-I25, 
I46, I63, I67, I70, I74, I75, 
G45   

Percutaneous Coronary Intervention     

C9602-C9608, 92920-92921, 
92924-92925, 92933-92934, 
92937, 92995, 92966, 93540, 
93564, 93570, 92928, 92929 

Coronary Artery Bypass Graft     

C9600-C9608, G8574, 33510-
33523, 33533-33536, 33572, 
excluding 3351F, 3352F, 3353F, 
33515 
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eTable 3. Baseline Characteristics and ASCVD Events Stratified by Sex 
 Number (%) 
  Total cohort Male Female 
Baseline Characteristic (N = 79,151) (n = 68,503) (n = 10,648) 
Follow-up, years, median (5th-95th percentile) 4.3 (0.7-6.9) 4.3 (0.7-6.9) 4.0 (0.5-6.8) 
Age, mean (SD), y 57.8 (13.7) 59.3 (13.3) 48.6 (12.6) 
Cardiovascular Risk Factors       
Total cholesterol, mean (SD), mg/dL 157.8 (40.6) 157.3 (40.3) 161.4 (42.3) 
HDL-C, mean (SD), mg/dL 49.8 (17) 48.6 (16.6) 57.4 (17.4) 
LDL-C, mean (SD), mg/dL 109.4 (33.3) 108.6 (33.2) 114.4 (34.1) 
Systolic blood pressure, mean (SD), mm Hg 131.3 (13.4) 132.1 (13.2) 125.7 (13.1) 
Current smoker 8,435 (10.7) 7,530 (11) 905 (8.5) 
Former smoker 47,670 (60.2) 42,705 (62.3) 4,965 (46.6) 
Never smoker 23,046 (29.1) 18,268 (26.7) 4,778 (44.9) 
Diabetes 17,177 (21.7) 15,643 (22.8) 1,534 (14.4) 
Medications       
Blood pressure treatment 36,673 (46.3) 33,365 (48.7) 3,308 (31.1) 
No. of events (2011 - 2018) 
Composite ASCVD (%) 5,485 (6.9) 5,175 (7.6) 310 (2.9) 
Composite ASCVD and revascularization (%) 6,628 (8.4) 6,265 (9.1) 363 (3.4) 
ASCVD Death (%) 867 (1.1) 836 (1.2) 31 (0.3) 
Acute ischemic stroke (%) 1,933 (2.4) 1,781 (2.6) 152 (1.4) 
Myocardial Infarction (%) 3,186 (4) 3,036 (4.4) 150 (1.4) 
Crude Incidence rate / 10k Person Years (2011 - 2018) 
Composite ASCVD (95% CI) 177.7 (173.0-182.5) 193.0 (187.8-198.3) 76.4 (68.2-85.4) 
Composite ASCVD and revascularization (95% 
CI) 216.6 (211.4-221.9) 235.9 (230.1-241.8) 89.7 (80.7-99.5) 
ASCVD Death (95% CI) 27.0 (25.2-28.8) 29.9 (27.9-32.0) 7.5 (5.1-10.6) 
Acute ischemic stroke (95% CI) 61.0 (58.3-63.8) 64.5 (61.5-67.6) 37.2 (31.5-43.6) 
Myocardial Infarction (95% CI) 100.9 (97.4-104.4) 110.5 (106.6-114.5) 36.5 (30.9-42.9) 
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eTable 4. Hazard Ratios for MVP Incident ASCVD Events for Low Traditional and Polygenic Risk Scores  
  Hazard Ratio (95% CI) 
High PRS definition Non-Hispanic White Non-Hispanic Black Hispanic 
  Polygenic Risk 

Score 
Traditional Risk 

Score 
Polygenic Risk 

Score 
Traditional Risk 

Score 
Polygenic Risk 

Score 
Traditional Risk 

Score Composite ASCVD Events 

Continuous per SD reduction 0.80 (0.77, 0.82) 0.48 (0.46, 0.50) 0.86 (0.81, 0.91) 0.45 (0.42, 0.48) 0.79 (0.72, 0.88) 0.35 (0.32, 0.40) 

Bottom 20%* 0.75 (0.67, 0.84) 0.16 (0.13, 0.20) 0.95 (0.76, 1.19) 0.17 (0.12, 0.25) 0.74 (0.50, 1.10) N/A 

Bottom 10% 0.66 (0.58, 0.76) 0.10 (0.07, 0.14) 0.90 (0.68, 1.18) N/A 0.76 (0.47, 1.24) N/A 

Bottom 5% 0.64 (0.54, 0.76) N/A 0.79 (0.55, 1.15) N/A N/A N/A 

Bottom 1% 0.61 (0.42, 0.86) N/A N/A N/A N/A N/A 

Bottom 0.5% N/A** N/A N/A N/A N/A N/A 
Myocardial Infarction             

Continuous per SD reduction 0.75 (0.73, 0.78) 0.52 (0.50, 0.54) 0.88 (0.82, 0.94) 0.47 (0.44, 0.51) 0.77 (0.68, 0.87) 0.36 (0.31, 0.41) 

Bottom 20% 0.70 (0.61, 0.81) 0.19 (0.15, 0.24) 0.89 (0.67, 1.17) 0.23 (0.15, 0.35) 0.40 (0.25, 0.66) N/A 

Bottom 10% 0.63 (0.53, 0.75) N/A 0.88 (0.63, 1.23) N/A 0.52 (0.30, 0.91) N/A 

Bottom 5% 0.60 (0.48, 0.75) N/A 0.62 (0.39, 0.99) N/A N/A N/A 

Bottom 1% N/A N/A N/A N/A N/A N/A 

Bottom 0.5% N/A N/A N/A N/A N/A N/A 
Ischemic Stroke             

Continuous per SD reduction 0.89 (0.84, 0.94) 0.48 (0.45, 0.52) 0.87 (0.78, 0.96) 0.43 (0.39, 0.48) 0.85 (0.69, 1.04) 0.36 (0.29, 0.44) 

Bottom 20% 0.91 (0.72, 1.14) 0.23 (0.16, 0.33) 0.92 (0.63, 1.35) N/A 0.76 (0.35, 1.63) N/A 

Bottom 10% 0.95 (0.73, 1.24) N/A 0.75 (0.45, 1.24) N/A N/A N/A 

Bottom 5% 0.83 (0.59, 1.16) N/A 0.97 (0.51, 1.83) N/A N/A N/A 

Bottom 1% N/A N/A N/A N/A N/A N/A 

Bottom 0.5% N/A N/A N/A N/A N/A N/A 
ASCVD Death             

Continuous per SD reduction 0.82 (0.77, 0.88) 0.29 (0.26, 0.32) 0.89 (0.77, 1.03) 0.31 (0.26, 0.37) 0.85 (0.68, 1.07) 0.25 (0.19, 0.34) 

Bottom 20% 0.82 (0.62, 1.08) N/A 0.58 (0.34, 0.99) N/A N/A N/A 

Bottom 10% 0.67 (0.48, 0.94) N/A 0.78 (0.42, 1.44) N/A N/A N/A 

Bottom 5% 0.64 (0.42, 0.97) N/A N/A N/A N/A N/A 

Bottom 1% N/A N/A N/A N/A N/A N/A 

Bottom 0.5% N/A N/A N/A N/A N/A N/A 
* Reference group = middle 10% (45th to 55th percentiles) of risk score 
** N/A = <10 events in the selected risk group. 
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eTable 5. Reclassification of 5-Year Predicted Myocardial Infarction Including Both Statin-Naïve and Statin Users 

   
Correctly 

Reclassified 
Incorrectly 
Reclassified         

 A. All participants       B. Non‐Hispanic White     
  Traditional x Polygenic Risk Score (GxE) Model      Traditional x Polygenic Risk Score (GxE) Model 

Ev
en

ts
 

Traditional 
Model  ≤ 3.75%  > 3.75%  Total N (%)   

Ev
en

ts
  Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 

≤ 3.75%  786  186  972 (27.9)    ≤ 3.75%  459  149  608 (23.9) 
> 3.75%  146  2360  2506 (72.1)    > 3.75%  125  1811  1936 (76.1) 

Total N (%)  932 (26.8)  2546 (73.2)  3478 (100)    Total N (%)  584 (23.0)  1960 (77.0)  2544 (100) 

            

N
on

ev
en

ts
  Traditional 

Model  ≤ 3.75%  > 3.75%  Total N (%)   

N
on

ev
en

ts
 

Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 
≤ 3.75%  18657  1714  20371 (50.6)    ≤ 3.75%  10645  1392  12037 (43.9) 
> 3.75%  2451  17432  19883 (49.4)    > 3.75%  2111  13248  15359 (56.1) 

Total N (%)  21108 (52.4)  19146 (47.6)  40254 (100)    Total N (%)  12756 (46.6)  14640 (53.4)  27396 (100) 

C. Non‐Hispanic Black  D. Hispanic 
  Traditional x Polygenic Risk Score (GxE) Model      Traditional x Polygenic Risk Score (GxE) Model 

Ev
en

ts
 

Traditional 
Model  ≤ 3.75%  > 3.75%  Total N (%)   

Ev
en

ts
  Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 

≤ 3.75%  241  23  264 (38.8)    ≤ 3.75%  86  14  100 (39.5) 
> 3.75%  14  403  417 (61.2)    > 3.75%  7  146  153 (60.5) 

Total N (%)  255 (37.4)  426 (62.6)  681 (100)    Total N (%)  93 (36.8)  160 (63.2)  253 (100) 
            

N
on

ev
en

ts
  Traditional 

Model  ≤ 3.75%  > 3.75%  Total N (%)   
N
on

ev
en

ts
 

Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 
≤ 3.75%  5668  224  5892 (64.0)    ≤ 3.75%  2344  98  2442 (67.0) 
> 3.75%  200  3120  3320 (36.0)    > 3.75%  140  1064  1204 (33.0) 

Total N (%)  5868 (63.7)  3344 (36.3)  9212 (100)    Total N (%)  2484 (68.1)  1162 (31.9)  3646 (100) 
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eTable 6. Reclassification of 5-Year Predicted Acute Ischemic Stroke Including Both Statin-Naïve and Statin Users 

   
Correctly 

Reclassified 
Incorrectly 
Reclassified         

 A. All participants       B. Non‐Hispanic White     
  Traditional x Polygenic Risk Score (GxE) Model      Traditional x Polygenic Risk Score (GxE) Model 

Ev
en

ts
 

Traditional 
Model  ≤ 3.75%  > 3.75%  Total N (%)   

Ev
en

ts
  Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 

≤ 3.75%  1276  49  1325 (83.0)    ≤ 3.75%  871  32  903 (86.2) 
> 3.75%  32  239  271 (17.0)    > 3.75%  21  124  145 (13.8) 

Total N (%)  1308 (82.0)  288 (18.0)  1596 (100)    Total N (%)  892 (85.1)  156 (14.9)  1048 (100) 

            

N
on

ev
en

ts
  Traditional 

Model  ≤ 3.75%  > 3.75%  Total N (%)   

N
on

ev
en

ts
 

Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 
≤ 3.75%  37290  534  37824 (93.3)    ≤ 3.75%  25853  354  26207 (94.7) 
> 3.75%  465  2249  2714 (6.7)    > 3.75%  291  1186  1477 (5.3) 

Total N (%)  37755 (93.1)  2783 (6.9)  40538 (100)    Total N (%)  26144 (94.4)  1540 (5.6)  27684 (100) 

            
C. Non‐Hispanic Black  D. Hispanic 

Traditional x Polygenic Risk Score (GxE) Model  Traditional x Polygenic Risk Score (GxE) Model 

Ev
en

ts
 

Traditional 
Model  ≤ 3.75%  > 3.75%  Total N (%)   

Ev
en

ts
  Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 

≤ 3.75%  303  15  318 (73.1)    ≤ 3.75%  102  2  104 (92.0) 
> 3.75%  11  106  117 (26.9)    > 3.75%  0  9  9 (8.0) 

Total N (%)  314 (72.2)  121 (27.8)  435 (100)    Total N (%)  102 (90.3)  11 (9.7)  113 (100) 
            

N
on

ev
en

ts
  Traditional 

Model  ≤ 3.75%  > 3.75%  Total N (%)   
N
on

ev
en

ts
 

Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 
≤ 3.75%  7922  164  8086 (87.9)    ≤ 3.75%  3515  16  3531 (96.6) 
> 3.75%  157  956  1113 (12.1)    > 3.75%  17  107  124 (3.4) 

Total N (%)  8079 (87.8)  1120 (12.2)  9199 (100)    Total N (%)  3532 (96.6)  123 (3.4)  3655 (100) 
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eTable 7. Reclassification of 5-Year Predicted ASCVD Death Including Both Statin-Naïve and Statin Users 

   
Correctly 

Reclassified 
Incorrectly 
Reclassified         

 A. All participants       B. Non‐Hispanic White     
  Traditional x Polygenic Risk Score (GxE) Model      Traditional x Polygenic Risk Score (GxE) Model 

Ev
en

ts
 

Traditional 
Model  ≤ 3.75%  > 3.75%  Total N (%)   

Ev
en

ts
  Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 

≤ 3.75%  716  21  737 (79.8)    ≤ 3.75%  508  19  527 (76.5) 
> 3.75%  15  172  187 (20.2)    > 3.75%  13  149  162 (23.5) 

Total N (%)  731 (79.1)  193 (20.9)  924 (100)    Total N (%)  521 (75.6)  168 (24.4)  689 (100) 

            

N
on

ev
en

ts
  Traditional 

Model  ≤ 3.75%  > 3.75%  Total N (%)   

N
on

ev
en

ts
 

Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 
≤ 3.75%  38832  256  39088 (95.5)    ≤ 3.75%  26142  231  26373 (94.4) 
> 3.75%  249  1602  1851 (4.5)    > 3.75%  219  1332  1551 (5.6) 

Total N (%)  39081 (95.5)  1858 (4.5)  40939 (100)    Total N (%)  26361 (94.4)  1563 (5.6)  27924 (100) 

            
C. Non‐Hispanic Black  D. Hispanic 

Traditional x Polygenic Risk Score (GxE) Model  Traditional x Polygenic Risk Score (GxE) Model 

Ev
en

ts
 

Traditional 
Model  ≤ 3.75%  > 3.75%  Total N (%)   

Ev
en

ts
  Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 

≤ 3.75%  155  2  157 (90.2)    ≤ 3.75%  53  0  53 (86.9) 
> 3.75%  2  15  17 (9.8)    > 3.75%  0  8  8 (13.1) 

Total N (%)  157 (90.2)  17 (9.8)  174 (100)    Total N (%)  53 (86.9)  8 (13.1)  61 (100) 
            

N
on

ev
en

ts
  Traditional 

Model  ≤ 3.75%  > 3.75%  Total N (%)   
N
on

ev
en

ts
 

Traditional Model  ≤ 3.75%  > 3.75%  Total N (%) 
≤ 3.75%  9099  18  9117 (97.7)    ≤ 3.75%  3591  7  3598 (97.7) 
> 3.75%  23  194  217 (2.3)    > 3.75%  7  76  83 (2.3) 

Total N (%)  9122 (97.7)  212 (2.3)  9334 (100)    Total N (%)  3598 (97.7)  83 (2.3)  3681 (100) 
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eTable 8. Net Reclassification Improvement From Inclusion of Polygenic Scores Stratified by 
Age and Sex 

5-year Risk 
Group 

Subgroup 

Net Reclassified Total N     

NRI [95% CI] Event Non-Event Event Non-event NRI+ NRI- 

Intermediate 
(3.75% - 10%) 

Male -4 110 4731 23856 -0.08% 0.46% 0.38% [0.07%, 0.68%] 

Female 20 -6 287 3450 6.97% -0.17% 6.79% [3.01%, 10.58%] 

>55 yrs -6 72 4151 18267 -0.14% 0.39% 0.25% [0.03%, 0.47%] 

40 to 55 yrs -2 122 777 6526 -0.26% 1.87% 1.61% [-0.07%, 3.30%] 

High (≥10%) 

Male 62 140 4731 23856 1.31% 0.59% 1.90% [0.97%, 2.82%] 

Female 5 15 287 3450 1.74% 0.43% 2.18% [0.11%, 4.24%] 

>55 yrs 31 194 4151 18267 0.75% 1.06% 1.81% [0.81%, 2.81%] 

40 to 55 yrs 33 -69 777 6526 4.25% -1.06% 3.19% [1.41%, 4.97%] 

 
eTable 8 contains an abbreviated reclassification table for all ancestries combined. Net reclassified events are the number 
of events reclassified upwards (into the Intermediate or High risk groups) minus the number of events reclassified 
downwards. Net reclassified non-events are the number of non-events reclassified downwards minus the number of 
events reclassified upwards. The traditional model includes age, sex, and 5 principal components of genetic ancestry (to 
be comparable to the genetic model), and the 5-year risk cutoffs are half the clinically relevant 10-year risk thresholds 
from the ACC2019 guidelines. Among ASCVD events in the middle-aged subgroup (ages 40 to 55 years), the net 
proportion of correct reclassifications was NRI+ = 33/777= 4.25%, and among non-events was NRI- = -69/6526 = -1.06%. 
The overall net reclassification index is defined as the sum of the net reclassification proportions for events and nonevents 
(NRI = 4.25% + -1.06% = 3.19%).   
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eFigure 1. Cumulative Incidence of ASCVD Events 

 
eFigure 1 caption: Cumulative incidence of Composite ASCVD, Acute Ischemic Stroke, Myocardial Infarction (MI), and 
ASCVD Death are plotted over 6 years of follow up according to percentile groups for Polygenic Risk Scores and 
Traditional Risk Scores.  
Key: Risk score percentile 0-20% (dotted, blue), 21-80% (dashed, black), 81-100% (solid, red).  
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eFigure 2. Categorical Net Reclassification Index for Incident Composite ASCVD Among 
Statin-Naïve Participants Outcomes Stratified by Age Group 

 
eFigure 2 caption:  
Top Panel: Categorical Net Reclassification Improvement for intermediate risk (5-year risk >3.75%) among statin-naïve 
patients is shown for Composite ASCVD, Myocardial Infarction, Ischemic Stroke, and ASCVD Death.  
Bottom Panel: Categorical Net Reclassification Improvement for high risk (5-year risk >10%) among statin-naïve patients 
is shown for Composite ASCVD, Myocardial Infarction, Ischemic Stroke, and ASCVD Death.  
Key: Estimates and 95% confidence intervals are shown for White (black, triangle), Black (red, circle), and Hispanic (blue, 
square) population groups. 
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eFigure 3. Net Reclassification Index for Intermediate Risk (5-year risk > 3.75%) From Inclusion 
of Polygenic Risk Scores Including Statin Users Stratified by Age 

 
eFigure 3 caption: Panel A presents net reclassification improvement (NRI) from the addition of polygenic scores to the 
traditional risk model for each ASCVD outcome, stratified by ancestry and age group. Panels B to E contain 
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reclassification tables for all ancestries combined, stratified by age group. Rows refer to predicted 5-year risk categories 
from the traditional risk model, and columns refer to predicted risk from the combined traditional and polygenic risk score 
model. Blue cells indicate correct reclassifications: i.e. the GxE model predicted a higher risk group, compared to the 
traditional model, for a patient who experienced an event, or a lower risk group for a non-event. Orange shaded cells 
highlight incorrect reclassifications. The traditional model includes age, sex, and 5 principal components of genetic 
ancestry (to be comparable to the genetic model), and the risk cutoff (>3.75%) represents a clinically relevant 5-year risk. 
Among ASCVD events in the youngest subgroup (ages < 40, panel E), the net proportion of correct reclassifications was 
NRI+ = (11-2)/102 = 8.82%, and among non-events was NRI- = (30-84)/4696 = -1.15%. The overall net reclassification 
index is defined as the sum of the net reclassification proportions for events and nonevents (NRI = 8.82% + -
1.15% = 7.67%). 
Key: Estimates and 95% confidence intervals are shown for White (black, triangle), Black (red, circle), and Hispanic (blue, 
square) population groups. 
 
  


