
Association of Pathogenic Variants in Hereditary Cancer Genes
With Multiple Diseases
Chenjie Zeng, PhD, MPH; Lisa A. Bastarache, MS; Ran Tao, PhD; Eric Venner, PhD; Scott Hebbring, PhD; Justin D. Andujar, BS; Sarah T. Bland, MPH, MBA;
David R. Crosslin, PhD; Siddharth Pratap, PhD, MS; Ayorinde Cooley, BS; Jennifer A. Pacheco, MS; Kurt D. Christensen, PhD; Emma Perez, MS;
Carrie L. Blout Zawatsky, MS; Leora Witkowski, PhD; Hana Zouk, PhD; Chunhua Weng, PhD; Kathleen A. Leppig, MD; Patrick M. A. Sleiman, PhD;
Hakon Hakonarson, MD, PhD; Marc. S. Williams, MD; Yuan Luo, PhD; Gail P. Jarvik, MD, PhD; Robert C. Green, MD, MPH; Wendy K. Chung, MD;
Ali G. Gharavi, MD; Niall J. Lennon, PhD; Heidi L. Rehm, PhD; Richard A. Gibbs, PhD; Josh F. Peterson, MD, MPH;
Dan M. Roden, MD; Georgia L. Wiesner, MD, MS; Joshua C. Denny, MD, MS

IMPORTANCE Knowledge about the spectrum of diseases associated with hereditary cancer
syndromes may improve disease diagnosis and management for patients and help to identify
high-risk individuals.

OBJECTIVE To identify phenotypes associated with hereditary cancer genes through a
phenome-wide association study.

DESIGN, SETTING, AND PARTICIPANTS This phenome-wide association study used health data
from participants in 3 cohorts. The Electronic Medical Records and Genomics Sequencing
(eMERGEseq) data set recruited predominantly healthy individuals from 10 US medical
centers from July 16, 2016, through February 18, 2018, with a mean follow-up through
electronic health records (EHRs) of 12.7 (7.4) years. The UK Biobank (UKB) cohort recruited
participants from March 15, 2006, through August 1, 2010, with a mean (SD) follow-up
of 12.4 (1.0) years. The Hereditary Cancer Registry (HCR) recruited patients undergoing
clinical genetic testing at Vanderbilt University Medical Center from May 1, 2012, through
December 31, 2019, with a mean (SD) follow-up through EHRs of 8.8 (6.5) years.

EXPOSURES Germline variants in 23 hereditary cancer genes. Pathogenic and likely
pathogenic variants for each gene were aggregated for association analyses.

MAIN OUTCOMES AND MEASURES Phenotypes in the eMERGEseq and HCR cohorts were
derived from the linked EHRs. Phenotypes in UKB were from multiple sources of
health-related data.

RESULTS A total of 214 020 participants were identified, including 23 544 in eMERGEseq
cohort (mean [SD] age, 47.8 [23.7] years; 12 611 women [53.6%]), 187 234 in the UKB cohort
(mean [SD] age, 56.7 [8.1] years; 104 055 [55.6%] women), and 3242 in the HCR cohort
(mean [SD] age, 52.5 [15.5] years; 2851 [87.9%] women). All 38 established gene-cancer
associations were replicated, and 19 new associations were identified. These included the
following 7 associations with neoplasms: CHEK2 with leukemia (odds ratio [OR], 3.81 [95% CI,
2.64-5.48]) and plasma cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gastric
cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic cancer (OR, 4.44 [95% CI, 2.66-7.40]),
MUTYH (biallelic) with kidney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with bladder
cancer (OR, 5.63 [95% CI, 2.75-11.49]), and APC with benign liver/intrahepatic bile duct
tumors (OR, 52.01 [95% CI, 14.29-189.29]). The remaining 12 associations with nonneoplastic
diseases included BRCA1/2 with ovarian cysts (OR, 3.15 [95% CI, 2.22-4.46] and 3.12 [95% CI,
2.36-4.12], respectively), MEN1 with acute pancreatitis (OR, 33.45 [95% CI, 9.25-121.02]),
APC with gastritis and duodenitis (OR, 4.66 [95% CI, 2.61-8.33]), and PTEN with chronic
gastritis (OR, 15.68 [95% CI, 6.01-40.92]).

CONCLUSIONS AND RELEVANCE The findings of this genetic association study analyzing the
EHRs of 3 large cohorts suggest that these new phenotypes associated with hereditary
cancer genes may facilitate early detection and better management of cancers. This study
highlights the potential benefits of using EHR data in genomic medicine.
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U nderstanding the phenotypic consequences of ge-
nomic variation is critical to genomic medicine. Un-
covering gene-phenotype associations facilitates clini-

cal diagnoses, leads to better treatment, improves prognosis,
and provides insights into disease etiology and potential thera-
peutic targets.1,2 The application of next-generation sequenc-
ing has markedly accelerated the discovery of novel mende-
lian disease genes and has expanded our knowledge of their
characteristic phenotypes. These are epitomized by heredi-
tary cancer genes. Their associated phenotypes have been
shown to extend beyond predisposition to cancer.3-6 How-
ever, substantial gaps in knowledge about the spectrum of phe-
notypes have been noted,7 suggesting the need for infrastruc-
ture and resources to systematically assess gene-phenotype
associations.7,8

Current approaches to uncover phenotypes include family-
based and population-based studies,9-14 most of which fo-
cused on 1 gene and/or 1 trait or similar traits. These studies
have fundamentally improved our understanding of diseases
and laid foundations for precision medicine.2 Systematic ef-
forts to collect information on gene-phenotype associations
include the Online Mendelian Inheritance in Man (OMIM),
which curates knowledge through literature review with de-
cades of efforts.15,16

In this study, we hypothesize that additional conditions
are associated with hereditary cancer genes. Using an alter-
native approach, namely, the phenome-wide association study
(PheWAS),17,18 we used the phenotypic data derived from health
record data from 3 cohorts, totaling 214 020 participants,
to investigate a broad range of phenotypes associated with
hereditary cancer genes.

Methods
Two clinical site–based cohorts and 1 population-based pro-
spective cohort were included in this PheWAS. All US-based
studies were approved by local institutional review boards, and
the UK-based study was approved by relevant research eth-
nics committees and organizations. Details are provided in
eMethods in the Supplement. All participants provided writ-
ten informed consent according to approved protocols. This
study followed the Strengthening the Reporting of Genetic
Association Studies (STREGA) guideline.

Study Populations
The Electronic Medical Records and Genomics Sequencing
(eMERGEseq) cohort consisted of 24 956 biobank and pro-
spectively recruited predominantly healthy individuals from
10 clinical sites under the eMERGE network from July 16, 2016,
through February 18, 2018.19 The primary goal of this project
was to provide clinical genetic testing and return actionable
genetic results to patients.20 A total of 52% of the partici-
pants were unselected and mainly recruited from primary care
clinics or identified from biobanks without specific indica-
tions, with the others recruited from specific clinics depend-
ing on site-specific interests.19 A detailed description of each
site, including enrollment criteria, specific research interest,

and enrichment of phenotypes is provided in eMethods in the
Supplement. For this study, we removed individuals without
International Classification of Diseases, Ninth Revision, Clini-
cal Modification (ICD-9-CM), or International Statistical Clas-
sification of Diseases and Related Health Problems, Tenth
Revision, Clinical Modification (ICD-10-CM), codes in the elec-
tronic health records (EHRs). A total of 23 544 individuals were
retained for analysis.

The Hereditary Cancer Registry (HCR) at Vanderbilt Uni-
versity Medical Center included all 3794 individuals who re-
ceived clinical genetic testing for hereditary cancer21 from May
1, 2012, through December 31, 2019, and who agreed to and
consented to be included in this registry. Results of genetic test-
ing were documented in the EHRs. We obtained the EHR data
of 3739 individuals through the Research Derivative, a data-
base of clinical and related data derived from EHR systems.22

Through reviewing clinical records in the HCR, we removed
patients who were also participants of the eMERGEseq proj-
ect (n = 14) and family members of the index patients who were
enrolled in the registry owing to cascade testing (n = 483).
A total of 3242 patients were retained for analyses.

The UK Biobank (UKB) is a prospective population-based
cohort of 500 217 participants recruited from March 15, 2006,
through August 1, 2010, who are continuously followed up.23

We included 200 619 participants with whole-exome sequenc-
ing data available at the time of this study. After removing re-
lated participants (n = 5007) and those without ICD-9 and
ICD-10 codes (n = 8378), 187 234 participants were included.

Sequencing and Variant Classification
Germline variant data in the eMERGEseq cohort were ob-
tained from targeted sequencing. Details on the design of the
sequencing panel have been described previously.19 Briefly, this
panel consists of a total of 109 genes, including 58 genes from
the American College of Medical Genetics and Genomics
[ACMG]) actionable finding list and 51 genes nominated by par-
ticipating sites.24 The full list of these genes is provided in
eTable 1 in the Supplement. Among the 58 genes from the
ACMG panel, we selected all genes (n = 25) determined to be
associated with cancer phenotypes by the ACMG Secondary
Findings Working Group.24,25 These genes were APC (OMIM
611731), BMPR1A (OMIM 601299), BRCA1 (OMIM 113705),

Key Points
Question What is the range of conditions associated with
hereditary cancer genes?

Findings This phenome-wide association study used genetic and
phenotypic data derived from health-related data from electronic
health records in 3 cohorts comprising 214 020 participants
to identify 19 new diseases and conditions associated with
pathogenic variants in 13 hereditary cancer genes. These new
phenotypes included both neoplastic and nonneoplastic diseases.

Meaning These findings contribute to recognition and
understanding of the full clinical spectrum of hereditary cancer
syndromes, which can facilitate early detection of cancers and
better management.
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BRCA2 (OMIM 600185), MEN1 (OMIM 613733), MLH1 (OMIM
120436), MSH2 (OMIM 609309), MSH6 (OMIM 600678),
MUTYH (OMIM 604933), NF2 (OMIM 607379), PMS2 (OMIM
600259), PTEN (OMIM 601728), RB1 (OMIM 614041), RET
(OMIM 164761), SDHAF2 (OMIM 613019), SDHB (OMIM
185470), SDHC (OMIM 602413), SDHD (OMIM 602690), SMAD4
(OMIM 600993), STK11 (OMIM 602690), TP53 (OMIM 191170),
TSC1 (OMIM 605284), TSC2 (OMIM 191092), VHL (OMIM
608537), and WT1 (OMIM 607102). We also included genes re-
lated to cancer phenotypes determined by field experts in the
eMERGE network from genes selected by participant sites.
These genes were ATM (OMIM 607585), BLM (OMIM 604610),
CHEK2 (OMIM 604373), PALB2 (OMIM 610355), POLD1 (OMIM
174761), and POLE (OMIM 174762). Clinical genetic testing for
patients in the HCR was performed by commercial Clinical
Laboratory Improvement Amendments (CLIA)– and College of
American Pathologists (CAP)–accredited molecular diagnos-
tic laboratories. Results from CLIA- and CAP-accredited labo-
ratories were considered highly accurate.26 Germline variant
data in UKB were obtained by whole-exome sequencing data
through the UKB data center as described elsewhere.27

Variant classification in eMERGEseq was performed by 2
CLIA- and CAP-accredited laboratories according to ACMG and
Association for Medical Pathology guidelines with modifica-
tions by experts as previously described.19 Variant classifica-
tion in the HCR was performed by commercial CLIA- and CAP-
accredited molecular genetic testing laboratories.26 Variant
classification in the UKB was performed according to the ACMG
and ClinGen guidelines.19 With the exception of APCI1307K,
which was classified as a risk allele, all detected variants were
classified into pathogenic, likely pathogenic, variant of uncer-
tain significance, likely benign, and benign. We compared re-
sults of shared variants and made the classifications identical
across all studies according to the aforementioned guide-
lines. Details are described in eMethods in the Supplement.

For each gene, we defined patients with pathogenic and
likely pathogenic variants as carriers and patients with no rare
variants or only benign or likely benign variants as noncarri-
ers, and patients with variants of uncertain significance as
carriers of these variants. Only genes with at least 10 carriers
in all cohorts combined were included. For MUTYH, only bi-
allelic variant carriers were considered. The frequency of
carriers in each cohort was consistent with that in previous
studies with similar settings.28-36

PheWAS Phenotypes
In the eMERGEseq and HCR cohorts, we extracted the ICD-
9-CM and ICD-10-CM data from linked EHRs. The validity of
this EHR-based PheWAS approach has been demonstrated in
previous studies.35,37-43 In the UKB, we extracted ICD-9 and
ICD-10 data from the harmonized health outcome data de-
rived from cancer and death registries, inpatient medical
records, and self-reported health outcomes.23 Details on the
clinical data linkage and standardized questionnaires and in-
terviews have been described previously.23 Specifically, self-
reported cancer diagnoses were validated against data from
cancer registries and mapped to ICD-10 codes. Noncancer self-
reported health outcomes were also mapped to ICD-10 codes

if applicable. Dates of first occurrence of diseases were also ex-
tracted. We mapped all ICD codes to phecodes to define the
phenotypes for the PheWAS.17,18,44 Details are provided in
eMethods in the Supplement. A total of 3483 unique pheco-
des were derived from the eMERGEseq data set; 2853, from the
HCR data set; and 2693, from the UKB data set. These pheco-
des covered 15 categories of diseases and conditions, includ-
ing congenital, cardiovascular, dermatologic, developmen-
tal, digestive, endocrine, hematopoietic, infectious, neoplastic,
pregnant, psychiatric, pulmonary, genitourinary, musculo-
skeletal, and symptoms and/or signs.

Statistical Analysis
Statistical analysis was conducted from April 2020 to October
2021. We performed gene-level association tests by collapsing
pathogenic and likely pathogenic variants in the same gene. We
removed participants with variants of uncertain significance in
the same gene from analyses. Each gene-phenotype association
was tested independently using the Firth logistic regression.45,46

In the eMERGEseq cohort, we adjusted for age, EHR length in
years, sites, the first 4 principal components, and sex if appli-
cable. In the HCR cohort, we adjusted for age, EHR length in
years, self-reported race, and sex if applicable. In the UKB co-
hort, we adjusted for age, length of follow-up in years, sites, the
first 16 principal components suggested by Privé et al,47 and sex
if applicable. The race variable (defined by principal components
or self-reported) was included to account for population strati-
fications. Analyses were performed assuming an autosomal
dominant inheritance for all genes except MUTYH, for which an
autosomal recessive inheritance was assumed, according to their
inheritance patterns as hereditary cancer genes documented in
the OMIM database,15 the comprehensive, authoritative collec-
tion of gene-phenotype correlations. The association of mono-
allelic MUTYH variants with cancer remains inconclusive48;
therefore, we did not perform analyses for these carriers. All
populations were included. The number of phenotypes evalu-
ated in each cohort is presented in eFigure 1 in the Supplement.
We only considered associations found in at least 2 of the 3 stud-
ies with the same direction of effect. Meta-analyses were per-
formed assuming a fixed-effect model. We defined 2.5 × 10−5 as
the empirical phenome-wide significance threshold at a signifi-
cance level of α = .05 through permutations (eFigure 2 and
eMethods in the Supplement). All statistical analyses were per-
formed using R, version 4.0.1 (R Project for Statistical Comput-
ing). Figure 2 was produced by the R package gganatogram,49

which uses the tissue coordinates from the Expression Atlas.50

We categorized all gene associations into 3 groups: known
or primary associations as documented in the OMIM data-
base, associations related to known phenotypes (eg, elevated
cancer antigen 125 for BRCA1/2), and potentially new associa-
tions. We considered that a known phenotype-gene associa-
tion was replicated in our analysis if the PheWAS had a P < .05
with the expected direction of the effect. Details are de-
scribed in eMethods in the Supplement.

Sensitivity Analysis
We conducted several sensitivity analyses to test the robust-
ness of the new associations. First, we tested associations lim-
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iting the individuals to those with European ancestry. For the
eMERGEseq and UKB cohorts, we also derived ancestral spe-
cific principal components from genetic data as additional
covariates. Second, to investigate whether associations with
noncancer phenotypes were associated with prior cancer di-
agnoses, we restricted analyses to those without any cancer
diagnoses (excluding basal cell carcinomas) before enroll-
ment. We used the UKB data set because dates of cancer di-
agnoses were ascertained through cancer registries. Second,
to investigate whether the observed associations between
CHEK2 and hematological malignant neoplasms were associ-
ated with prior cancer diagnoses, we restricted analyses to
those without cancer diagnoses before blood sampling in the
UKB data set. In addition, we conducted another analysis by
removing participants with any cancer diagnosis within 3 years
after blood sampling. Third, to investigate whether the ob-
served CHEK2 and leukemia association differed by sub-
types, we evaluated associations of CHEK2 with subtypes of
leukemia. Finally, we compared association results of BRCA1
with BRCA2 found in this PheWAS.

EHR Reviews
We conducted EHR reviews for participants with readily ac-
cessible EHRs at Vanderbilt University Medical Center to gather
more information about diagnoses related to new associa-
tions. We verified diagnoses by reviewing pathology reports,
radiology imaging results, and clinical narratives.

Results

We included 214 020 participants from the 3 cohorts. Base-
line demographic characteristics and the follow-up time for
each cohort are summarized in eTable 2 in the Supplement.
Participants in the eMERGEseq cohort (n = 23 544) had a mean
(SD) age of 47.8 (23.7) years with a mean (SD) follow-up of 12.7
(7.4) years; 5145 (21.9%) had non-European ancestry, 12 611
(53.6%) were women, and 10 933 (46.4%) were men. The HCR
cohort (n = 3242) had a mean (SD) age of 52.5 (15.5) years with
a mean (SD) follow-up of 8.8 (6.5) years; 413 (12.7%) had non-
European ancestry, 2851 (87.9%) were women, and 391 (12.1%)
were men. The UKB cohort (n = 187 234) had a mean (SD) age
at recruitment of 56.7 (8.1) years with a mean (SD) follow-up
time of 12.4 (1.0) years; 11 293 (6.0%) had non-European an-
cestry; 104 055 (55.6%) were women and 83 179 (44.4%) were
men. The distribution of carriers for each gene is summa-
rized in Table 1. A total of 858 carriers were identified in the
eMERGEseq cohort; 434, in the HCR cohort; and 5223 in the
UKB cohort. The distribution of carriers for each gene by an-
cestral group is summarized in eTable 3 in the Supplement.

We first assessed whether the PheWAS could replicate
known gene-phenotype associations. Our PheWAS repli-
cated 38 of 38 primary gene-cancer associations (100%) and
164 of 235 gene-phenotype associations (69.8%) docu-
mented in OMIM, which reports diseases and symptoms as-

Table 1. Number of Carriers and Noncarriers in the eMERGEseq, HCR, and UKB Cohorts

Gene

eMERGEseq cohort (n = 23 544) HCR cohort (n = 3242) UKB cohort (n = 187 234)
No. of
carriers

No. of
noncarriers Carriers, %

No. of
carriers

No. of
noncarriers Carriers, %

No. of
carriers

No. of
noncarriers Carriers, %

APC 14 21 903 0.06 22 1931 1.09 28 175 664 0.01

ATM 82 21 863 0.34 29 2309 1.18 1189 153 496 0.64

BRCA1 82 23 012 0.34 92 2705 3.25 211 182 128 0.11

BRCA2 138 22 325 0.58 91 2658 3.22 609 178 147 0.33

CHEK2 272 22 697 1.10 45 2393 1.81 1721 179 702 0.92

MEN1 2 23 269 0.01 10 637 1.53 7 183 949 0.004

MLH1 14 23 214 0.06 15 2371 0.62 78 180 268 0.04

MSH2 16 22 361 0.06 24 2347 0.99 249 177 007 0.13

MSH6 50 22 634 0.21 16 2346 0.67 202 177 955 0.11

MUTYH
(biallelic)

4 22 436 0.02 3 2113 0.14 29 182 552 0.02

PALB2 28 22 925 0.13 30 2391 1.22 367 181 218 0.20

PMS2 54 22 300 0.23 17 2326 0.71 283 185 524 0.15

PTEN 13 23 184 0.06 3 2518 0.12 26 183 442 0.01

RB1 2 23 105 0.01 6 280 2.08 8 174 527 0.004

RET 34 22 745 0.14 10 370 2.58 35 176 515 0.02

SDHB 6 23 397 0.02 4 659 0.60 22 183 041 0.01

SDHC 6 23 340 0.02 0 704 0 27 179 271 0.01

SDHD 4 23 435 0.02 5 653 0.76 21 185 466 0.01

TP53 12 23 336 0.06 4 2557 0.15 28 183 238 0.01

TSC1 5 22 792 0.02 0 690 0 33 174 326 0.02

TSC2 12 21 598 0.05 0 680 0 23 183 078 0.01

VHL 5 23 329 0.02 8 872 0.90 16 184 649 0.01

WT1 3 23 215 0.01 0 241 0 11 186 298 0.01

Abbreviations: eMERGEseq, Electronic Medical Records and Genomics Sequencing; HCR, hereditary cancer registry; UKB, UK Biobank.
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sociated with the genes (Figure 1 and eTable 4 in the Supple-
ment). The probability of replicating associations in at least 164
of 235 tests by chance, under the null hypothesis of no asso-
ciation, is P = 2.13 × 10−154.

A total of 193 gene-phenotype associations exceeded the
phenome-wide significance (P < 2.5 × 10−5). After removing
known associations, 19 new associations that have not been
documented in the OMIM database were found in 13 heredi-
tary cancer genes (Table 2 and Figure 2). These consisted of
6 associations with malignant tumors, including CHEK2 with
leukemia (odds ratio [OR], 3.81 [95% CI, 2.64-5.48]) and plasma
cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gas-
tric cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic can-
cer (OR, 4.44 [95% CI, 2.66-7.40]), MUTYH (biallelic) with kid-
ney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with
bladder cancer (OR, 5.63 [95% CI, 2.75-11.49]), and an asso-
ciation of APC with benign liver/intrahepatic bile duct tu-
mors (OR, 52.01 [95% CI, 14.29-189.29]). Ten genes were as-
sociated with nonneoplastic diseases (eg, BRCA1 [OR, 3.15 (95%
CI, 2.22-4.46)] and BRCA2 [OR, 3.12 (95% CI, 2.36-4.12)] with

ovarian cysts, MEN1 with acute pancreatitis [OR, 33.45 (95%
CI, 9.25-121.02)], APC with gastritis and duodenitis [OR, 4.66
(95% CI, 2.61-8.33)], and PTEN with chronic gastritis [OR, 15.68
(95% CI, 6.01-40.92)]).

All results of the sensitivity analyses were consistent with
the main findings. Results of new associations remained largely
unchanged in the analyses conducted in European descen-
dants only (eTable 5 in the Supplement). After removing par-
ticipants with prior cancer diagnoses, associations between
BRCA1/2 and ovarian cyst, PTEN and chronic gastritis, and
MEN1 with acute pancreatitis remained statistically signifi-
cant (eTable 6 in the Supplement). For associations of CHEK2
with hematological cancers, removing participants with prior
cancer diagnoses or even those with cancer diagnoses within
3 years after blood draw did not substantially change the as-
sociations (eTable 7 in the Supplement). No substantial dif-
ferences were detected in the associations of CHEK2 with sub-
types of leukemia (eTable 8 in the Supplement). No substantial
differences in phenotypic associations between BRCA1 and
BRCA2 were found (eTable 9 in the Supplement).

Figure 1. Phenome-Wide Association Study to Confirm Known Gene-Phenotype Associations and Uncover New Associations for Hereditary Cancer
Genes
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Meta-analysis results of phenome-wide association study in the Electronic
Medical Records and Genomics Sequencing, Hereditary Cancer Registry, and
UK Biobank data sets are shown. Strength of the association is plotted along the
y-axis as −log10 P value summary, and phenotypes are represented on the
x-axis, grouped by each gene. Black dots represent the known associated
phenotypes. Labeled phenotypes with blue dots represent new

gene-phenotype associations. The dashed line indicates P = 2.5 × 10−5,
representing the empirical phenome-wide significance. GI indicates
gastrointestinal tract; IHBD, intrahepatic bile duct; MEN1, multiple endocrine
neoplasia syndrome type 1; and MEN2, multiple endocrine neoplasia syndrome
type 2.
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By reviewing EHRs of participants in the HCR cohort, we
verified the diagnosis of renal cell carcinoma in the biallelic
MUTYH variant carrier, which was consistent with the diag-
nosis of this cancer in the biallelic MUTYH variant carrier
in the UKB cohort. We found a diagnosis of thyroid cancer in
the RET carrier with diplopia. We also found that 7 of 20
BRCA1 carriers with ovarian cysts were diagnosed with ovar-
ian cancer, whereas only 2 such diagnoses were found in
BRCA2 carriers with ovarian cysts (2 of 24). However, the dif-
ference between BRCA1 and BRCA2 was not statistically sig-
nificant (P = .06). We also did not find evidence that patients
who were BRCA1/2 carriers with ovarian cysts were actually
cases of ovarian cancer that had been missed. We did not find
pancreatic cancer diagnoses among MEN1 carriers with acute
pancreatitis.

Discussion
In this study, we demonstrate the feasibility of rapid pheno-
type discovery by the PheWAS approach by replicating most

known associations documented in the OMIM that repre-
sented knowledge accumulated in decades. We identified 19
new gene-phenotype associations, which spanned catego-
ries of diseases, including the neoplastic, genitourinary,
digestive, congenital, metabolic, psychiatric, and neurologi-
cal categories, supporting our hypothesis that hereditary can-
cer syndromes are associated with multiple diseases.

This study revealed a novel gene-cancer association be-
tween biallelic MUTYH variants and kidney cancer. Although
monogenic germline MUTYH pathogenic variants have been
identified in patients with renal cell carcinoma,51 previous
studies11,48 that used data from high-risk families and pro-
bands reported no occurrence of this cancer among biallelic
MUTYH variant carriers but did report benign kidney lesions.
Although few studies have investigated the role of MUTYH
in kidney cancers, some mutation signatures of genomic in-
stability have been found to be more common in these tu-
mors than other solid tumors.52 Further molecular studies are
needed to illuminate the observed association.

This study provides additional evidence for associations
of cancers that have not been documented in the OMIM data-

Table 2. New Associations Discovered via PheWASa

Gene Phenotype

Cohort, OR (95% CI) P value

eMERGEseq HCR UKB Meta-analysis Summary Het

Neoplastic diseases

ATM Pancreatic cancer 2.54 (0.39-16.39) 3.68 (0.77-17.52) 4.79 (2.72-8.43) 4.44 (2.66-7.40) 7.88 × 10−8 .79

ATM Gastric cancer 4.62 (0.61-34.79) NA 4.24 (2.27-7.90) 4.27 (2.35-7.74) 1.80 × 10−6 .94

CHEK2 Leukemia 4.42 (2.18-8.94) 5.04 (1.00-25.41) 3.52 (2.26-5.47) 3.81 (2.64-5.48) 6.18 × 10−12 .81

CHEK2 Plasma cell
neoplasmsb

2.66 (0.90-7.90) NA 3.28 (1.79-5.98) 3.12 (1.84-5.28) 2.30 × 10−5 .74

MSH6 Bladder cancer 8.30 (2.33-29.54) 18.98 (4.32-83.30) 2.28 (0.79-6.61) 5.63 (2.75-11.49) 1.33 × 10−5 .06

MUTYH Kidney cancer NA 84.13 (8.47-836.11) 12.57 (1.29-122.74) 32.28 (6.40-162.73) 2.50 × 10−5 .25

APC Benign liver/IHBD
tumor

61.01 (7.66-485.98) 26.47 (3.48-201.34) 146.80
(16.10-586.83)

52.01 (14.29-189.29) 1.57 × 10−8 .62

Nonneoplastic diseases

APC Gastritis and
duodenitis

3.32 (0.98-11.25) 9.43 (3.66-24.31) 2.91 (1.16-7.29) 4.66 (2.61-8.33) 1.34 × 10−6 .18

BRCA1 Ovarian cyst 5.91 (3.40-10.29) 1.80 (1.05-3.07) 2.94 (1.30-6.64) 3.15 (2.22-4.46) 9.09 × 10−10 .01

BRCA1 Vitamin D
deficiency

0.51 (0.28-0.93) 0.17 (0.08-0.38) 0.57 (0.34-0.97) 0.43 (0.30-0.62) 2.50 × 10−5 .04

BRCA2 Ovarian cyst 4.07 (2.56-6.48) 2.64 (1.56-4.46) 2.72 (1.71-4.33) 3.12 (2.36-4.12) 1.29 × 10−14 .37

MEN1 Acute pancreatitis 48.47 (3.07-765.51) 27.26 (4.68-158.68) 37.49 (2.86-490.91) 33.45 (9.25-121.02) 6.09 × 10−7 .94

PTEN Chronic gastritis 3.84 (0.51-28.68) 15.93 (1.30-194.97) 26.06 (7.75-87.58) 15.68 (6.01-40.92) 1.35 × 10−7 .28

MUTYH Polycystic ovaries 33.94 (2.30-501.28) 53.76 (5.76-502.08) NA 44.57 (7.99-248.73) 1.50 × 10−5 .80

MLH1 Lower GI ulcer 26.8 (5.15-139.47) 12.39 (1.98-77.46) NA 18.97 (5.57-64.67) 2.50 × 10−5 .54

PMS2 Spermatocele 20.48 (4.14-101.22) 19.13 (1.51-242.84) NA 20.09 (5.19-77.7) 1.38 × 10−5 .96

PMS2 Cannabis
dependence

15.68 (2.57-95.76) 184.31
(12.71-2491.54)

NA 29.34 (6.15-139.97) 2.24 × 10−5 .18

RET Diplopia 9.90 (3.04-32.23) 7.99 (0.82-77.72) NA 9.46 (3.32-26.97) 2.49 × 10−5 .87

VHL Splenic anomalies 111.40
(6.60-1880.13)

131.16
(4.97-3463.79)

NA 119.45
(14.07-1014.39)

1.17 × 10−5 .94

Abbreviations: eMERGEseq, Electronic Medical Records and Genomics
Sequencing; GI, gastrointestinal tract; HCR, Hereditary Cancer Registry;
IHBD, intrahepatic bile duct; NA, not applicable; OR, odds ratio;
PheWAS, phenome-wide association study; UKB, UK Biobank.
a We used Firth logistic regression in this PheWAS assuming a dominant model

except for MUTYH, which assumed a recessive model. Owing to the scarceness
of carriers of VHL and APC and a low prevalence of cannabis use in the HCR

cohort, wide CIs were observed, and caution should be exercised when
interpretating these results. NA indicates no phenotype was found among
carriers for the gene in the cohort, and thus we were not able to evaluate the
association. Results with a P < 2.5 × 10−5 with a consistent direction of effect
in at least 2 cohorts are included.

b Plasma cell neoplasms also include multiple myeloma.
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base but were reported in previous literature, including ATM
with gastric and pancreatic cancer,53,54 MSH6 with bladder
cancer,55 and CHEK2 with leukemia.56-58 Notably, a recent
study59 suggested that loss of CHEK2 function increased the
risk of clonal hematopoiesis of indeterminate potential, which
was a risk factor for hematological malignant neoplasms.60

Furthermore, it was found that prior cancer therapies could
increase the risk of clonal hematopoiesis of indeterminate
potential.61 We observed that associations with leukemia or
multiple myeloma persisted after removing participants
with cancer diagnosed before and within 3 years of blood
sampling. Nonetheless, we could not fully exclude the possi-
bility that somatic variants of CHEK2 detected owing to
clonal expansions contribute to the observed association.
Future studies that include additional types of tissues can
help exclude the somatic variants and validate the observed
associations.

This study also revealed new noncancer associations that
would have been difficult to detect in studies focusing on can-
cers or using prior knowledge.62 These phenotypes included
inflammation-related disorders, which were consistent with
previous findings.63,64 For example, a recent study63 identi-
fied an essential role of MEN1 in exocrine pancreas homeosta-

sis in response to inflammation that contributes to pancreati-
tis in mouse models. A previous study65 suggested that MUTYH
contributed to inflammatory-related disorders. We found that
homozygous or compound heterozygous MUTYH carriers had
an association with polycystic ovaries, for which chronic in-
flammation has been proposed to be a key contributor.66 We
also found a Beçhet syndrome diagnosis in a MUTYH biallelic
variant carrier in this study. Taken together, these findings pro-
vide supporting evidence for a role of MUTYH in inflammatory-
related disorders.

Results of EHR review suggested that some of the non-
cancer phenotypes could be symptoms of underlying dis-
eases that had been known. For example, the association of
RET with diplopia was likely to be mediated by neuroendo-
crine disorders, including tumors. However, diplopia has been
largely underreported in patients with multiple endocrine neo-
plasia type 2 in previous studies and thus has not been docu-
mented in the OMIM database. We believe that recognizing
such relevant symptoms can be important for the manage-
ment of multiple endocrine neoplasia type 2. Identification of
symptoms such as these may also serve an early sign of under-
lying diseases such as cancers and thus facilitate early detec-
tion, as shown in previous studies.67,68

Figure 2. New Gene-Phenotype Associations Uncovered by Phenome-Wide Association Study,
Organized by Organs

PMS2: cannabis dependenceBRCA1: vitamin D deficiency

RET: diplopia

CHEK2: leukemia and plasma cell neoplasms

APC: benign liver/IHBD tumor

MUTYH: kidney cancer

VHL: splenic anomalies

ATM: pancreatic cancer;
MEN1: acute pancreatitis

ATM: gastric cancer; PTEN: chronic gastritis

APC: gastritis/duodenitis

MLH1: lower GI ulcer

MSH6: bladder cancer

PMS2: spermatocele

BRCA1/2: ovarian cysts

MUTYH: polycystic ovaries

Organs labeled blue represent
neoplastic sites; organs labeled
yellow represent nonneoplastic sites.
GI indicates gastrointestinal tract,
IHBD, intrahepatic bile duct.
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Owing to the small number of carriers identified for genes
including MUTYH, VHL, and APC, additional studies are
needed to validate the new associations identified in this study.
A previous study69 suggested that BRCA1/2 could have a dif-
ferent role in diseases. However, we did not observe different
associations in our PheWAS. Follow-up studies are needed to
test this hypothesis.

Limitations
Limitations of this study include a relatively small sample size
of populations of non-European descendants. This could po-
tentially limit the generalizability of our findings to these popu-
lations, although we included them in analyses. We antici-
pate that large EHR-based cohorts including more diverse
populations, such as the All of Us research program,70 will iden-
tify additional phenotypes associated with these genes and
increase the generalizability of the findings to these under-
studied populations.

Conclusions

In this PheWAS of 3 cohorts using data derived from the EHRs
of 214 020 participants, we studied a wide range of pheno-
types associated with hereditary cancer genes. We identified
19 new gene-phenotype associations, including both neoplas-
tic and nonneoplastic diseases. These findings suggest that
PheWAS in EHR data sets has the potential to expand our
knowledge of the phenotypes and disease processes in pa-
tients with pathogenic and likely pathogenic variants in he-
reditary cancer genes. New clinical management protocols
could be developed based on these findings, so future re-
search replicating these new associations will be important.
Large EHR-based cohorts of diverse populations will help
reveal the true clinical spectrum of genetic diseases, aid in vari-
ant interpretation, and ultimately facilitate precision medi-
cine for all patients.
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