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Genome-wide association studies (GWAS) have identified 
thousands of genomic variants significantly associated with 
a range of common complex human diseases1,2. Given that 

the risk conferred by an individual common variant is usually insig-
nificantly small, investigators have aggregated risk alleles across 
the genome into genetic risk scores to provide a single measure of 
genetic association for a given trait due to known common variant 
effects. Although the earliest genetic scores consisted only of vari-
ants meeting genome-wide significance3–5, recent computational 
and methodological advances have leveraged the summary statis-
tics of all available variants from increasingly larger GWAS to calcu-
late polygenic risk scores (PRS)6–9. For some diseases, a PRS in the 
upper tail of the distribution approximates risks equivalent to those 
conferred by established clinical risk factors and by genetic variants 
associated with monogenic disease7,10. Although PRS are typically 
derived from weights from cross-sectional GWAS of prevalent dis-
ease cases and controls, further work has demonstrated their poten-
tial to estimate the risk of incident disease11–14.

Suitable clinical implementation of PRS is now an area of active 
research across many disease areas15–17. The translation of PRS from 
discovery to the clinic can be conceptualized as having at least three 
necessary phases (Fig. 1): the first phase relates to epidemiology 

and statistical genetics, in which PRS are developed and validated 
in large cohorts and improved with advances in statistical methods; 
the second phase involves the laboratory, in which laboratory genet-
icists must develop an analytically and clinically valid pipeline for 
calculating, interpreting and reporting PRS results for an individual 
patient; and the third phase involves patient care, in which a treat-
ing physician makes medical decisions after putting a patient’s PRS 
results into the larger clinical context, which involves non-genetic 
risk factors, comorbidities and patient preferences. The first phase 
has seen significant methodological advances18 but challenges for 
the second and third phases remain.

A key assumption underlying the laboratory phase is that a labo-
ratory can develop and implement a valid clinical assay and inter-
pretation pipeline to report PRS results for an individual patient. 
The development of a clinical assay from a published PRS is not 
trivial, and significant barriers to the process persist. First, uncer-
tainty exists about whether commonly used, cost-effective genotyp-
ing arrays and clinical imputation pipelines can calculate a PRS for 
an individual with the analytic validity expected of a clinical assay, 
as opposed to one that is adequate for research. Second, laborato-
ries must implement methods to account for the reduced validity 
of most PRS in patients of non-European and admixed ancestry19,20. 
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Implementation of polygenic risk scores (PRS) may improve disease prevention and management but poses several challenges: 
the construction of clinically valid assays, interpretation for individual patients, and the development of clinical workflows 
and resources to support their use in patient care. For the ongoing Veterans Affairs Genomic Medicine at Veterans Affairs 
(GenoVA) Study we developed a clinical genotype array-based assay for six published PRS. We used data from 36,423 Mass 
General Brigham Biobank participants and adjustment for population structure to replicate known PRS–disease associations 
and published PRS thresholds for a disease odds ratio (OR) of 2 (ranging from 1.75 (95% CI: 1.57–1.95) for type 2 diabetes to 
2.38 (95% CI: 2.07–2.73) for breast cancer). After confirming the high performance and robustness of the pipeline for use as a 
clinical assay for individual patients, we analyzed the first 227 prospective samples from the GenoVA Study and found that the 
frequency of PRS corresponding to published OR > 2 ranged from 13/227 (5.7%) for colorectal cancer to 23/150 (15.3%) for 
prostate cancer. In addition to the PRS laboratory report, we developed physician- and patient-oriented informational materials 
to support decision-making about PRS results. Our work illustrates the generalizable development of a clinical PRS assay for 
multiple conditions and the technical, reporting and clinical workflow challenges for implementing PRS information in the clinic.
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This limitation applies both to the calculation of the PRS itself for 
an individual patient and to its clinical interpretation, given that 
published effect sizes are from populations of primarily European 
ancestry19. Third, laboratories must make several decisions about 
the content and format of a clinical PRS report, including decisions 
about where the laboratory’s role as an interpretative service ends 
and where the role of the treating physician in patient care begins. 
In the patient care phase, there remain unanswered questions about 
the information and support that physicians need when contextual-
izing the PRS results of an individual patient to make clinical deci-
sions, and how those decisions affect patient outcomes.

In the Genomic Medicine at Veterans Affairs (GenoVA) Study 
(ClinicalTrials.gov identifier: NCT04331535) we have developed 
processes to advance the laboratory and patient care phases of the 
clinical translation of PRS. The GenoVA Study is a clinical trial in 
which patients and their primary care physicians receive a clinical 
PRS laboratory report on five diseases commonly screened for and 
initially managed in primary care: coronary artery disease (CAD), 

type 2 diabetes mellitus (T2D), atrial fibrillation (AFib), colorectal 
cancer (CRCa), and either prostate cancer (PrCa) in male patients or 
breast cancer (BrCa) in female patients. Because the objectives of the 
GenoVA Study are to observe how PRS impact existing disease screen-
ing and diagnosis paradigms and enable increased detection of undi-
agnosed prevalent or newly incident disease, eligible patients have 
no known diagnoses of the target diseases and are aged 50–70 years, 
an age range during which much guideline-recommended screening 
and diagnosis of new disease occurs. Here, we describe the processes 
created in the GenoVA Study to develop and validate a genotype 
array-based clinical assay and report for six PRS and to support their 
effective translation into clinical care by the treating physicians.

Results
Replication of published PRS. Sample characteristics. To demon-
strate the accuracy of a prospective PRS pipeline, we first wanted 
to ensure that we could implement published PRS effectively. We 
used data from 36,423 Mass General Brigham Biobank (MGBB)  
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Fig. 1 | translation of PRS from discovery to the clinic, including a clinical PRS laboratory pipeline for prospectively collected samples. In phase 1, PRS 
are developed, validated and compared to optimize performance in large populations. In phase 2, a clinical laboratory chooses publicly available PRS to 
implement and develop an analytically and clinically valid assay. For the GenoVA Study, genotype array data are imputed against 1000 Genomes Project 
data and used to calculate published PRS (PRSraw). PRSraw is adjusted for population structure and standardized as described in the text (PRSstd-adj). High-risk 
status for each disease is defined as PRS values above published thresholds for OR > 2. A parallel pipeline annotates and filters variants for potentially 
actionable pathogenic (P) and likely pathogenic (LP) variants in the ACMG SF v2.0 secondary finding gene list. Variants are manually classified according 
to American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG-AMP) criteria by qualified laboratorians and 
confirmed using Sanger sequencing. Results from both components of the pipeline are included on the laboratory report. In phase 3 the treating physician 
uses the whole patient context to interpret the significance of the PRS for the patient’s health and healthcare management. Both the physician and patient 
will probably need educational and consultative support to make medical decisions based on PRS results.
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participants to replicate the performance of PRS for the six target 
diseases (Supplementary Table 1). The mean (s.d.) age of MGBB 
participants was 58.8 (17.1) years (range, 9–106 years), 19,719 
(54.1%) were female, and 5,706 (15.7%) were of reported race other 
than white (white, n = 30,716 (84.3%); Black, n = 1,807 (5.0%); 
Asian, n = 786 (2.2%); and other or unknown race, n = 3,113 (8.5%) 
as determined from electronic health record data). Case counts 
ranged from 392 for CRCa to 3,554 for CAD. Figure 2a shows the 
counts of participants with one or multiple target diseases. The most 
common disease co-occurrences were the combinations of CAD 
and T2D (n = 641) and CAD and AFib (n = 495).

Unadjusted and adjusted PRS distributions. We identified PRS from 
large GWAS for the six target diseases, for which the summary 
statistics (base files with alleles and weights) were publicly avail-
able from the Polygenic Score Catalog21 (AFib, CAD, T2D, BrCa) 
or the Cancer PRSWeb (CRCa, PrCa)22 as of 26 December 2019. 
Supplementary Table 2 lists the number of single-nucleotide poly-
morphisms (SNPs) in the base file for each of the six published PRS, 
ranging from 81 SNPs for CRCa23 to 6,917,436 for T2D7, and the 
subsets of these available as directly genotyped or imputed data 
from each of three arrays used for MGBB participants, demonstrat-
ing minimal loss of information compared with the original pub-
lished PRS. As shown in Fig. 3, when using the published weights 
to calculate standardized PRS (PRSstd-raw, see Methods) we observed 
marked variation in the distribution of each PRS by reported race in 
the MGBB, most notably in AFib, CAD, and T2D. For example, only 
1.7% of white MGBB participants (516/30,716) but almost all of the 
Black MGBB participants (88.9%, 1,606/1,807) had PRSstd-raw above 
the published threshold associated with an odds ratio (OR) = 2 
for T2D in the 2018 study by Khera et al.7 (Supplementary Tables 
3 and 4). The use of residualized, population structure-adjusted, 
standardized PRS (PRSstd-adj, see Methods) minimized this variation 
(Fig. 3), such that, for example, 8.6% of white MGBB participants 
(2,651/30,716) and 4.2% of Black MGBB participants (75/1,807) 
had a T2D PRSstd-adj above the published OR > 2 threshold. The 
distributions of PRSstd-adj were well aligned when examined by geno-
typing batch, decile of age, and sex (Extended Data Figs. 1–3).

Replication of PRS–disease association. As shown in Fig. 4, quantile of 
PRSstd-adj was highly correlated with log(odds) of disease across the six 
phenotypes in the MGBB, with correlation coefficients ranging from 
0.68 for CRCa to 0.95 for T2D. Extended Data Figs. 4–7 show the cor-
relation of PRSstd-adj quantile and log(odds) of disease in the reported 
racial groups separately. Our analyses also replicated the published 
PRS thresholds corresponding to OR > 2. As shown in Table 1, at the 
published PRSstd-adj thresholds we observed OR ranging from 1.75 
(95% CI: 1.57–1.95) for T2D to 2.38 (95% CI: 2.07–2.73) for BrCa 
in MGBB participants overall. Except for T2D, the 95% confidence 
interval of the replicated OR for all diseases either included or, in the 
case of BrCa and AFib, exceeded a point estimate of 2. Results were 
consistent in analyses restricted to white participants but were variable 
in other groups, largely because of the small number of disease cases 
in certain racial subgroups. In 22 of 24 analyses stratified by reported 
race, subjects with PRSstd-adj above the published OR > 2 thresholds 
had higher odds of disease than those below these thresholds. In the 
MGBB overall, the prevalence of a high-risk PRSstd-adj ranged from 
5.4% for CRCa to 13.2% for PrCa (in men). Figure 2b illustrates the 
number of participants with PRSstd-adj above the published OR > 2 
threshold for one or more of the target diseases. Of note, similar to 
the disease co-occurrences observed in MGBB participants, the most 
common co-occurrences of high-risk PRSstd-adj were the combinations 
of CAD and T2D (n = 333) and CAD and AFib (n = 211).

Prospective PRS assay. Sensitivity and specificity of array and impu-
tation. The replication results above supported the development of a 
genotype array-based clinical assay for PRS and secondary findings 
from the American College of Medical Genetics and Genomics v2.0 
list (ACMG SF v2.0)24. To determine the performance of the arrays 
used in the prospective assay and of the imputation pipeline, we used 
three reference Genome In A Bottle (GIAB) samples (NA12878, 
NA24385 and NA24631, Supplementary Table 5)25. Sensitivity and 
positive predictive value (PPV) for single-nucleotide variants (SNV) 
were > 99.7% on average, with lower performance for indels (sensi-
tivity, 96.3%; PPV, 97.8%). Of note, although sensitivity in the ACMG 
SF v2.0 regions was high (96.2%), PPV was low (63.6%) due to these 
regions having an excess of poorly performing rare variants26,27.
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Fig. 2 | Frequency of disease and high-risk PRS results by race in the MGBB. a, UpSet plot of total cases of each of six phenotypes in 36,423 biobank 
participants and the counts of participants with one or more diseases, by reported race. b, UpSet plot of total counts of high-risk PRS results (population 
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As expected, sensitivity and PPV decreased for imputed data, 
especially for indels (SNV sensitivity, 98.0%; SNV PPV, 97.5%; 
indel sensitivity, 92.8%; indel PPV, 90.7%) (Supplementary Table 5). 
NA12878 was not evaluated for imputation accuracy because it is 
present in the imputation reference dataset from the 1000 Genomes 
Project and has artificially high imputation accuracy. To further eval-
uate imputation accuracy, we compared genome sequencing data to 
array data for 22 diverse samples. Analytical performance was lower 
in this dataset than in the GIAB high-confidence data (~3% reduc-
tion in performance for sensitivity and PPV, Supplementary Table 6).

Performance of prospective PRS assay. For the GIAB samples, PRSstd-adj 
was robust across different array versions and consistent with results 
from whole genome sequence (WGS) data; all three GIAB samples 
were below the high-risk threshold (OR > 2) for all diseases in all 
methods (Supplementary Table 7). In evaluating the 22 samples 
with WGS and prospective array data, PRSstd-adj scores were similarly 
concordant, particularly for AFib, CAD and T2D (Extended Data 
Fig. 8). Additionally, 108/110 high-risk status classifications were 
concordant in this dataset (98.2% agreement; Matthews correlation 
coefficient, 0.84; P < 0.001), with the two discordant values (one in 
CAD and one in CRCa) being very close to the high-risk thresh-
old (Supplementary Table 8). Finally, we compared nine individuals 
with high-risk PRS for 10 diseases identified in the MGBB genotyp-
ing data to their PRS risk status using the prospective assay (one 
individual at high risk for AFib, one individual at high risk for BrCa, 

three individuals at high risk for CAD, three individuals at high risk 
for CRCa, one individual at high risk for PrCa and one individual 
at high risk for T2D). All PRS categories were consistent across the 
two different arrays used for MGBB genotyping and for the clinical 
assay (Supplementary Table 9).

Clinical PRS report. We then developed a PRS laboratory report con-
sistent in format and content with other clinical genetic test reports 
(Supplementary File 1)28–30. That is, it includes a description of the 
test performed and a prominently displayed summary of important 
findings and their interpretations. Subsequent sections of the report 
give more detail about the results, including, for each disease, gen-
eral population prevalence and a brief summary of the GWAS from 
which the PRS was derived. Sections on methodology and literature 
references are at the end of the report. The report also reflects sev-
eral choices made during its development. A graphic highlights in 
red the disease(s) for which the patient has increased polygenic dis-
ease risk, as defined by a PRS corresponding to a published OR > 2 
for disease, mirroring both a common threshold from Mendelian 
genetics31 and the effect sizes for disease risk factors already con-
sidered in current clinical care32–36. Any PRS not categorized as high 
risk is described as conferring average risk. Monogenic disease vari-
ants and PRS results are reported separately, without comment on 
any possible interaction between a monogenic result and a relevant 
PRS (for example, an average-risk BrCa PRS and a pathogenic vari-
ant in BRCA1 associated with hereditary breast and ovarian cancer). 
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Fig. 3 | PRS distributions by reported race before and after adjustment for population structure. Plots to the left of each arrow show the distributions 
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Illustrating the boundary where the role of the clinical laboratory 
ends (phase 2 of Fig. 1) and the role of the treating physician begins 
(phase 3), the laboratory report does not include information about 

absolute disease risk or the role of other, non-genetic factors in dis-
ease risk, and it is not directive in its recommendations for clinical 
management of high-risk results.
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Table 1 | Prevalence and disease associations of high-risk PRS for six diseases in MGBB overall and by reported race

Disease High risk (%)a OR overall OR white OR Black OR Asian OR Other/unknown

OR (95% Ci)b (n/n, n/n)c OR (95% Ci)b (n/n, n/n)c OR (95% Ci)b (n/n, 
n/n)c

OR (95% Ci)b (n/n, 
n/n)c

OR (95% Ci)b (n/n, 
n/n)c

BrCa 8.6 2.38
(2.07–2.73)
(286/1,400, 1,427/16,606)

2.39
(2.07–2.76)
(270/1,156, 1,318/13,495)

2.24
(0.97–5.15)
(7/73, 43/1004)

0.51
(0.07–3.9)
(1/33, 24/405)

2.35
(1.08–5.1)
(8/138, 42/1,702)

CRCa 5.4 2.37
(1.74–3.24)
(46/1,913, 346/34,117)

2.29
(1.65–3.19)
(41/1,646, 312/28,717)

4.11
(1.17–14.48)
(3/83, 15/1706)

0
(0–NaN)
(0/35, 7/744)

3.30
(0.73–14.88)
(2/149, 12/2,950)

PrCa 13.1 2.22
(1.98–2.48)
(498/1,698, 1,693/12,813)

2.31
(2.05–2.59)
(468/1,448, 1,544/11,017)

1.39
(0.74–2.59)
(14/71, 74/521)

2.58
(0.5–13.28)
(2/36, 6/279)

1.41
(0.78–2.58)
(14/143, 69/996)

AFib 8.3 2.37
(2.12–2.64)
(450/2,589, 2,282/31,101)

2.40
(2.14–2.69)
(422/2,179, 2,101/26,014)

1.47
(0.72–3.01)
(9/137, 71/1590)

2.00
(0.57–7.03)
(3/62, 17/704)

2.28
(1.32–3.94)
(16/211, 93/2,793)

CAD 9.8 1.86
(1.69–2.05)
(562/3,018, 2,991/29,851)

1.91
(1.73–2.12)
(503/2,459, 2,680/25,074)

1.41
(0.86–2.29)
(21/177, 125/1484)

3.96
(1.79–8.76)
(9/51, 31/695)

1.47
(0.97–2.22)
(29/331, 155/2,598)

T2D 8.4 1.75
(1.57–1.95)
(439/2,612, 2,924/30,447)

1.93
(1.71–2.17)
(367/2,284, 2,159/25,906)

1.21
(0.7–2.09)
(18/57, 358/1374)

1.07
(0.37–3.08)
(4/49, 52/681)

1.58
(1.14–2.19)
(50/222, 355/2,486)

High-risk PRS, defined here as a standardized, adjusted PRS (PRSstd-adj) associated with OR > 2 for disease in the original publication. aProportion of MGBB participants exceeding the literature-derived 
OR > 2 threshold for each disease. bObserved OR (95% CI) in up to 36,423 MGBB participants in the overall cohort and by race reported in the MGBB. c(ncases

high-risk PRS/ncontrols
high-risk PRS, ncases

without high-risk PRS/ 
ncontrols

without high-risk PRS). NaN, not a number.
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Clinical processes and supportive materials. In recognition that phy-
sicians and patients require additional guidance in contextualizing 
high-risk PRS results, the GenoVA Study has developed processes 
and materials to support the clinical use of PRS. A genetic counselor 
contacts each patient with a high-risk PRS result or monogenic dis-
ease variant to discuss the result’s health significance and offer guid-
ance for a conversation to have with their physician. All patients and 
their primary care physicians receive a copy of the laboratory report, 
and each patient with at least one high-risk PRS result is addition-
ally given patient-oriented educational materials about the relevant 
disease(s) (Supplementary File 2). The patient’s primary care physi-
cian also receives a copy of physician-oriented educational materials 
to support their decision-making about PRS (Supplementary File 3). 
Given the current state of the evidence, the physician materials note 
that professional guidelines do not recommend specific changes to 
general screening or prevention recommendations based on PRS 
results, but these materials are updated over the course of the study 
as evidence accrues to support distinct recommendations.

Results from the first 227 prospective samples. As of 21 October 2021, 
227 GenoVA trial participants have been assayed using the prospec-
tive PRS pipeline from two primary sample types (130 blood, 97 
saliva). Of these, 108 participants (48%) self-report as white race and 
non-Hispanic/Latinx ethnicity, and 78 (34%) identify as women. In 
this preliminary sample of trial enrollees, the proportions of par-
ticipants whose PRS are above the study threshold for high risk are 
consistent with those observed in the MGBB, ranging from 5.7% for 
CRCa to 15.3% for PrCa (Table 2). Two actionable ACMG SF v2.0 
variants have been identified and confirmed in the first 227 enroll-
ees (BRCA1:NM_007294 c.2748delT (p.Asn916LysfsX84), likely 
pathogenic; BRCA2:NM_000059 c.3545_3546delTT (p.Phe1182X), 
pathogenic). The reporting of these results to trial participants and 
their physicians is underway. The study will determine whether PRS 
implementation affects clinical management and enables the detec-
tion of undiagnosed prevalent cases and incident cases during the 
observation period.

Discussion
Bridging two significant gaps between PRS development and clini-
cal implementation, we developed a clinical genotyping array-based 
assay for six PRS and a process to report the results to patients and 
primary care physicians. The PRS were robust across multiple geno-
typing arrays and imputation pipelines. The distributions of unad-
justed PRS varied by reported race in a large biobank, impeding 
clinical validation, but adjustment for population structure enabled 
the replication of published PRS–disease associations. These results 
supported the development of a population structure-adjusted pipe-
line for PRS calculation and reporting for individual patients, now 
implemented in a clinical trial of PRS testing along with patient and 
physician educational materials and genetic counseling support.

The development and implementation of our PRS assay and 
report illustrate key choices that laboratories must make in what we 
term phase 2 of the PRS implementation pathway. First, for each tar-
get disease, we had to choose the specific PRS to implement among 
multiple publicly available options (that is, PRS developed and  

validated by others in phase 1)21,22. Considerations include the per-
formance of the PRS in both the published discovery and replication 
cohorts in addition to the population that the laboratory is interested 
in targeting. Guidelines are emerging on what defines high-quality 
PRS reporting37, and this improved transparency should help labo-
ratories to select appropriate PRS from the many available. Second, 
we chose to use a genotype array-based approach instead of genome 
sequencing. Like genotyping, low-coverage genome sequencing 
technology is also relatively low cost38. We chose the Illumina GDA 
because its widespread use in the All of Us Research Program39, 
eMERGE Consortium15 and other projects optimizes the likeli-
hood that it will be a well-supported genotyping platform for future 
improvements, and enhances the generalizability of our methods to 
other institutions looking to implement clinical PRS testing. Third, 
although published methods can adjust for population structure in 
large cohorts of people40,41, these methods are not immediately appli-
cable for correcting a PRS for a prospectively genotyped individual 
patient, whose sample is at best part of a small clinically analyzed 
batch with insufficient data for robust population structure adjust-
ment. Correction thus requires additional decisions about how to 
adjust for population structure and which reference to use. We chose 
to impute data against 1000 Genomes Project phase 3 data and to 
project each new individual patient sample onto the principal com-
ponents from the MGBB. Other laboratories may choose to impute 
against the larger TOPMed (Trans-Omics for Precision Medicine) 
population42, although issues of genome build discrepancy and regu-
latory prohibition against sending patient data to external research 
servers are limitations. Fourth, once a platform is selected, a clinical 
laboratory must determine the benchmarks that define an analyti-
cally valid PRS assay. We chose to verify the PRS performance in our 
laboratory to determine the appropriate parameters for our assay; 
calculate the analytical performance of the genotyping array and 
imputation pipeline using both well-characterized reference samples 
and individual level genome data; and calculate the robustness and 
performance of the PRS using genome data and multiple array plat-
forms from both reference and individual samples. This multi-step 
approach helped ensure the accuracy of the data going into the PRS 
as well as the final performance of the PRS itself.

We also made numerous choices in how to report PRS results 
and interpretations to patients and physicians. We decided to report 
a dichotomous PRS interpretation (that is, high risk versus average 
risk) instead of a continuous result (for example, percentile rank, 
relative risk or absolute risk). We have previously described the 
trade-offs of these approaches, including the need for actionability 
thresholds; transparency about the limitations of PRS, particularly 
in underrepresented populations; and the absence of validated pre-
dictions models that incorporate both PRS and other clinical risk 
factors43. For the GenoVA Study we favored a dichotomous result to 
indicate a possible clinical action threshold to the treating physician. 
We chose OR > 2 to define high polygenic risk, consistent with effect 
sizes of traditional risk factors considered for the target diseases32–36. 
Another laboratory may use the methods we describe to produce 
measures of continuous risk or of categorical risk at different thresh-
olds thought to be clinically meaningful, which will probably vary 
among the diseases for which they choose to implement PRS. 

Table 2 | Summary of PRS results from the first six batches of clinical samples in the GenoVA Study

BrCa CRCa PrCa AFib CAD t2D

Total analyzed, n 77 227 150a 227 227 227

Average risk, n (%) 67 (87.0) 214 (94.3) 127 (84.7) 203 (89.4) 211 (92.9) 210 (92.5)

High risk, n (%) 10 (13.0) 13 (5.7) 23 (15.3) 24 (10.6) 16 (7.1) 17 (7.5)

Results from the first 227 GenoVA participants. High-risk PRS, defined here as PRSstd-adj associated with OR > 2 for disease in the original publication. All other results are considered as average risk. aOne 
participant with male sex identifies as female.
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Estimating absolute disease risk (for example, with the BOADICEA 
model for breast cancer44 or the Pooled Cohort Equations for ath-
erosclerotic cardiovascular disease45) may be considered the gold 
standard for risk stratification, but validated absolute risk models are 
not available for most diseases and require patient information (for 
example, mammographic breast density and blood pressure) that is 
often unavailable to the interpreting laboratory. Drawing on other 
examples from primary care, we chose not to include directive clini-
cal recommendations on the PRS laboratory report itself, instead 
assigning such activities to phase 3 of the PRS implementation path-
way, supported by informational materials and genetic counseling 
support. We note that, for example, although a laboratory reports 
the results of a patient’s low-density lipoprotein cholesterol and ref-
erence range for the assay, it is the treating physician who contex-
tualizes that result with the patient’s other characteristics to decide 
whether to offer cholesterol-lowering therapy.

The question of how to support physician management of PRS 
results without under- or overselling the potential benefits of PRS 
is controversial, given the lack of prospective data showing that the 
clinical use of PRS improves patient outcomes. In this early era of 
PRS implementation, the most prudent course of action is prob-
ably to develop educational and consultant resources, such as those 
used in the GenoVA Study, to present transparently the evidence 
for and limitations of PRS interpretations without being overly pre-
scriptive in their recommendations. Given the participant age range 
and choice of diseases in the GenoVA Study, we anticipate that most 
physician actions will fall within already clinically acceptable prac-
tices (for example, more frequent hemoglobin A1c screening for 
T2D or favoring colonoscopy screening over fecal immunochemi-
cal testing for CRCa screening). Stronger evidence of benefit will 
be needed to justify actions that deviate more significantly from 
accepted practice, such as screening starting at much younger ages 
or requiring more invasive or expensive procedures. As they do in 
all areas of medicine, physicians will need to use available evidence 
and clinical judgment to make the best decisions with their patients. 
The GenoVA Study is collecting data on what physicians do with 
PRS results and their preferences for how they can be supported in 
this decision-making.

Although other laboratories are developing PRS assays in both 
clinical and research settings and have reported the aggregate 
performance of these PRS in a population, including biobanks 
or customers of direct-to-consumer companies15,38,46–48, none has 
described the development and validation of a clinical, popula-
tion structure-adjusted assay for prospectively tested individuals. 
Although the eMERGE consortium and other studies are actively 
developing trans-ancestry PRS for a number of common dis-
eases15,49, we report, here, a single clinical assay for population 
structure-adjusted PRS for multiple diseases. And while other labo-
ratories may make different decisions about the number of disease 
PRS they choose to implement, whether and how to compare the 
performance of multiple available PRS for each disease, and the for-
mat of the clinical PRS report, our work provides a framework for 
how a laboratory can clinically validate and implement a prospec-
tive PRS suitable for an individual patient.

Much has been written about the reduced validity of most 
PRS in populations of non-European ancestry, due to their use 
of non-causal loci and effect sizes from GWAS in predominantly 
European discovery cohorts19,20,50,51. As we await larger datasets 
from more diverse populations and the methodological advances 
that will improve the performance of trans-ancestry PRS10,15,49, 
a clinical laboratory looking to develop a PRS assay for a given 
disease has the following options: (1) postpone implementa-
tion, as done by some commercial laboratories;52,53 (2) imple-
ment separate ancestry-specific published PRS only in those 
ancestral groups from which they were derived and validated; 
or (3) implement a single PRS that aims for applicability across  

ancestry groups and report transparently any applicable limita-
tions in the underlying evidence and its interpretation for spe-
cific individuals or ancestral groups. Because the second option 
requires the assignment of an individual patient to a specific 
ancestry group, either before or during PRS analysis, and, prob-
lematically, risks the inequitable provision of PRS to some popula-
tions but not to others, we chose the third option for the GenoVA 
Study and implemented a single method of adjustment for popu-
lation structure. After doing so, we observed that the chosen PRS 
threshold corresponding to OR > 2 generally identified subjects at 
higher risk of disease across reported race in the MGBB replica-
tion cohort. The magnitude and precision of this effect did vary 
by reported race, probably due to two factors: small numbers of 
MGBB cases for certain diseases in certain racial groups; and real 
differences in the ability of these PRS to correlate with disease risk 
in non-European ancestry groups, as has been observed even in 
well-developed trans-ancestry PRS10,54. Methodological advances 
that leverage local ancestry or GWAS summary statistics from 
multiple diverse populations will improve the performance of PRS 
across ancestry groups55,56. In the meantime, we have developed a 
clinically validated PRS assay, the application of which in diverse 
ancestry groups is defensible but the results of which, nonethe-
less, have limitations. These limitations are clearly presented in 
a clinical laboratory report (phase 2), which can then be contex-
tualized by the physician for each individual (phase 3). Applying 
population-level data to individual patient care represents  
both the science and art of medical practice, particularly when  
the individual patient is not well represented in the available 
data57,58.

In conclusion, data from increasingly larger and more diverse 
populations, coupled with computational advances, are propelling 
PRS into consideration for clinical implementation. We have shown 
that laboratory assay development and PRS reporting to patients 
and physicians are feasible (but non-trivial) next phases in PRS 
implementation. As the performance of PRS continues to improve, 
particularly for individuals of underrepresented ancestry groups, 
the implementation processes we describe can serve as generaliz-
able models for laboratories and health systems looking to realize 
the potential of PRS for improved patient health.
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Methods
Selection of PRS for implementation. We identified large GWAS for the six target 
diseases for which the summary statistics (base files with alleles and weights) were 
freely available from the Polygenic Score (PGS) Catalog21 (AFib, CAD, T2D, BrCa) 
or the Cancer PRSWeb (CRCa, PrCa)22 as of 26 December 2019. For the three 
cardiometabolic diseases (AFib, CAD and T2D) we chose the PRS derived from 
the UK Biobank in Khera et al. 2018 (ref. 7): for AFib, the PGS Catalog Publication 
(PGP) ID is PGP000006 and the PGS ID is PGS000016; for CAD, the PGP ID is 
PGP000006 and the PGS ID is PGS000013; and for T2D the PGP ID is PGP000006 
and the PGS ID is PGS000014. For the three cancers we chose PRS derived from 
the largest published GWAS at the time: for BrCa we used Michailidou et al. 2017 
and Mavaddat et al. 2019 (PGS ID = PGS000007, PGP ID = PGP000002) (ref. 59,60); 
for CRCa we used Huyghe et al. 2019 (PRSWEB_PHECODE153_CRC-Huyghe_
PT_MGI_20191112, PRS tuning parameter: 3.98107170553497e-07) (ref.23); 
and for PrCa we used Schumacher et al. 2018 (PRSWEB_PHECODE185_Pca- 
PRACTICAL_LASSOSUM_MGI_20191112, PRS tuning parameter: s0.5_
Lambda0.00695192796177561) (ref. 61).

Replication of published PRS. Population and sample. Given that the GenoVA 
Study is enrolling participants from eastern Massachusetts, USA, we used data 
from the Mass General Brigham (formerly Partners Healthcare) Biobank (MGBB)62 
to evaluate the performance of the selected PRS in a similar population and 
workflow for our study and assay. MGBB participants were not included in the 
published derivation and validation studies for the PRS used. In brief, MGBB 
was launched in 2010 with the initial goal of collecting DNA, plasma, and serum 
samples from 75,000 patients from Brigham and Women’s Hospital, Massachusetts 
General Hospital, and other MGBB-affiliated healthcare facilities, and obtaining 
patient consent for the linkage between biospecimen data, medical record data 
and survey data. We use the terms ‘race’ and ‘ethnicity’ to refer to social constructs 
often used in healthcare operations and biomedical research to evaluate and 
address disparities between populations. Racial categories of participants in the 
MGBB (for example, white or Asian) are derived from electronic health record 
(EHR) data. For the present analysis we collapsed reported race in MGBB into 
four categories: Asian, Black, white, and other/unknown. Race and ethnicity of 
GenoVA Study participants were collected through EHR data and self-report and 
categorized using the five racial categories (American Indian or Alaska Native, 
Asian, Black or African American, Native Hawaiian or Other Pacific Islander, 
and white) and two ethnic categories (Hispanic/Latinx and Not Hispanic/Latinx) 
required by US federal data collection standards. We use the term ‘ancestry’ to 
describe the genetic construct describing inheritance of variants from global 
ancestral populations.

Disease phenotyping. We used validated computed phenotypes from MGBB 
to define case and control status for each of the six diseases (Supplementary 
Table 1). Validated MGB phenotypes are available for CAD (PPV = 95%), AFib 
(PPV = 94%), T2D (PPV = 95%), and colorectal (PPV = 100%), breast (PPV = 95%) 
and prostate cancer (PPV = 100%)63–65. For each disease, ‘caseness’ was defined as 
prevalent disease on 16 December 2019. For subgroup analyses, participant age 
was determined on 16 December 2019 or at death, if earlier. Only women and men 
were assigned case or control status for breast and prostate cancer, respectively.

Genotyping and imputation. We used genotype data from the 36,423 MGBB 
participants with available genotyping data as of 16 December 2019. Genotyping 
was performed using standard processing described previously on one of three 
Illumina Infinium genotyping arrays: (1) a pre-release version developed by 
the Multi-Ethnic Genotyping Array Consortium (Multi-Ethnic Genotyping 
Array (MEGA), n = 4,924); (2) an expanded version of this pre-commercial 
array (Expanded Multi-Ethnic Genotyping Array (MEGAEX), n = 5,345); and 
(3) the final commercial version (Multi-Ethnic Global (MEG), n = 26,157). The 
MEGA, MEGAEX and MEG arrays consisted of 1.39, 1.74 and 1.78 million 
probes, respectively66. For MEGA and MEGAEX data, only probes found in 
the commercial version of the array (MEG) were used in the present analysis. 
Quality control for the genotyping requires samples to have at least a 99% call 
rate and concordant sex between the EHR and what is computed from the array 
data. We used existing MGBB imputed data generated by batching sets of ~5,000 
participants and imputing against the 1000 Genomes Project phase 3 data using 
the Michigan Imputation Server67 (https://imputationserver.sph.umich.edu/index.
html#!), with ShapeIT (v2.r790) (ref. 68) used for phasing and Minimac3 used 
for imputation with default settings. Sets of imputed variants were compared 
with the base files for each PRS to ensure sufficient representation of probes 
(Supplementary Table 2) (ref. 67).

Calculation of PRS and adjustment for population structure. Unadjusted raw PRS 
(PRSraw) for each disease were calculated using PLINK (v.2.0a) by taking the 
product of the count of risk alleles and the risk allele weight at each locus in the 
PRS and then summing across available risk loci. The loci included in each PRS, 
the risk alleles and the corresponding weights were downloaded from the PGS 
Catalog or Cancer PRSWeb. A population structure-adjusted PRS was calculated 
for each disease, using a previously described approach40 implementing principal 

components analysis to compute adjusted residualized PRS for each disease. 
Principal components were calculated using all genotyped MGBB participants and 
a set of 16,385 of 16,443 previously reported ancestry-informative SNPs69. For each 
disease we then fit a linear model for PRSraw as a function of the first four principal 
components in controls for that disease (PRSraw ~ PC1 + PC2 + PC3 + PC4) in R 
(v.4.0.3). We then applied this model to calculate a predicted PRS (PRSpred) for each 
disease in all cases and controls. Residualized, population structure-adjusted PRS 
(PRSadj) were then computed for each individual for each disease as the difference 
between the raw and the predicted PRS (PRSraw − PRSpred). For PRSraw, values were 
standardized (PRSstd-raw) using the mean and standard deviation in the MGBB of 
the PRSraw values (Supplementary Table 3). Similarly, PRSstd-adj was computed using 
the mean and standard deviation in the MGBB of the PRSadj values (Supplementary 
Table 3). The distributions of PRSstd-raw and PRSstd-adj by genotype array, sex, age 
deciles and reported race were compared among all subjects using the density 
function in R (v.4.0.3).

PRS–disease association. The association of PRSstd-adj with the odds of disease was 
replicated in MGBB participants using the six disease phenotypes described above. 
For each PRS and disease, odds of disease (ncases/ncontrols) were calculated for each 
of 50 PRS quantiles. For race-stratified analyses, PRS deciles were used if too few 
cases were available for analysis across 50 quantiles. To visualize the PRS–disease 
associations, we plotted the log(odds) of disease against the mean PRSstd-adj in each 
quantile. Correlation was measured with Pearson correlation coefficients using 
RStudio (v.1.1.383) with R (v.4.0.3).

PRS threshold for high risk. We set a predicted polygenic OR > 2 to identify 
individuals at high polygenic risk for each disease, mirroring both a common 
threshold from Mendelian genetics31 and the effect sizes for disease risk factors 
already considered in current clinical care32–36. To operationalize this OR > 2 
threshold, we compared standardized PRS Z scores for each individual to a 
disease-specific cut off 𝛕, based on previously published estimates of the change in 
odds of disease per standard deviation change in the PRS (Supplementary Table 3). 
Specifically, 𝛕 = ln(2)/ln(ORs.d.), where 2 is the target OR threshold defining high 
risk and ORs.d. is the estimated multiplicative change in odds per standard deviation 
change in the PRS. Assuming that the published ORs.d. accurately captures the 
relationship between PRS and disease, the odds of disease for individuals with 
standardized PRS Z score = 𝛕 are twofold that of individuals with a median PRS Z 
score. These standardized PRS thresholds were used to assign individual patients to 
risk categories as described below (PRS calculation for clinical assay for individual 
samples).

Clinical PRS assay for individual samples. Based on the results of the above 
methods, we developed and validated a genotype array-based clinical assay for 
PRS, in addition to secondary findings from the ACMG v2.0 list (ACMG SF 
v2.0, Fig. 1)24. We include additional variants identified by the ACMG or other 
organizations as important secondary findings as updated recommendations 
accrue70.

Validation samples. Replicates of each of three reference samples from GIAB25 
maintained by the National Institute of Standards and Technology were included 
in the validation assay: NA12878 × 9, NA24631 × 6 and NA24385 × 6. Analytical 
performance (sensitivity and PPV for presence or absence of variant sites) was 
determined in the benchmarking regions (v3.3.2). In addition, we included 22 
samples with polymerase chain reaction-free genome sequencing data (described 
below) and 9 samples with high-risk PRS for one of the six diseases as determined 
by the MGBB data, including one individual with high-risk PRS for two diseases. 
To test the sensitivity of the secondary finding analysis, we genotyped 20 samples 
with previously identified pathogenic or likely pathogenic variants in the ACMG 
SF v2.0 list.

Genotyping and imputation. Validation samples were genotyped according to 
manufacturer-standard workflows on either a pre-commercial release of the 
Illumina Global Diversity Array (GDA-PC) or the final commercial release of 
the Global Diversity Array (GDA). The Illumina-specific files containing called 
genotypes in AA/AB/BB format (GTC files) generated by genotype array were 
converted to variant call format (VCF) using a modified version of the gtc2vcf 
script from Illumina. All samples required an overall call rate of greater than 98.5%. 
Imputation was performed using updated software, with EAGLE v2.4.1 (ref. 71) for 
phasing and Minimac4 (ref. 67) for imputation using the 1000 Genomes Project 
phase 3 dataset. Importantly, monomorphic sites were not removed during the 
imputation process due to the small batch sizes used in the prospective assay.

PRS calculation for clinical assay for individual samples. PRSraw was calculated for 
each sample as described above. To determine PRSadj, unadjusted PRS (PRSraw) 
were first calculated for each individual sample as described for the overall MGBB 
cohort. For each individual, the eigenvariable, eigenvalue and frequency output 
from the MGBB principal components analysis were used to project each new 
individual sample onto the MGBB principal components, using the following 
command in PLINK v.2.0a:72
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plink2 —pfile individual_data —read-freq ref_pcs.
acount —score ref_pcs.eigenvec.allele 2 5 header-read 
no-mean-imputation variance-standardize —score-col-nums 
6-15 —out new_projection

The resulting projected principal components were then scaled to match the 
MGBB principal components by taking the square root of the eigenvalue and then 
multiplying by 2. The scaled principal components (PCs) were fitted into the linear 
model for each disease developed in the MGBB data to obtain PRSpred:

B rC a: P  R S  pr  ed = 1 7. 60 93 41-
*PC1 − 4.146935*PC2 + 5.335144*PC3 + 3.833931*PC4 − 0.421679

CRCa: P RS pr ed = −1 3. 65 91 21-
*PC1 + 6.411109*PC2 − 2.483703*PC3 − 6.869127*PC4 + 6.131384

P rC a: P  R S  pr  ed = 2  3 .  44  1 1  47 *PC1 + 1 3. 72 47 71-
*PC2 − 9.528270*PC3 + 4.118756*PC4 + 11.506243

AFib: P    R  S   p r  ed = 9 .6 26 98 81 *PC1 −    3 .2 87 82 38­
*PC2 − 6.6519006*PC3 − 3.0149108*PC4 + 32.4067610

CAD: PRSpred = −­6 .1 97 43 27 *PC1 −    3 .6 75 70 94­
*PC2 − 1.3488677*PC3 − 1.3490566*PC4 + 18.0582457

T 2D : P  R S  pr  ed = 2  6 .  47  0 0  78  2*PC1 − 7 .4-
283370*PC2 + 9.3782116*PC3 + 1.6994457*PC4 + 55.6998719

PRSadj was then calculated as the difference between PRSraw and PRSpred. 
Standardized, adjusted PRS values (PRSstd-adj) were calculated using the mean 
and standard deviation of PRSadj in MGBB and compared against the PRS 
threshold corresponding to OR > 2 as determined from the original publications 
(Supplementary Table 3). Any PRSstd-adj result above the PRS threshold 
corresponding to OR > 2 was categorized as high polygenic risk.

Genome sequencing. We selected 22 diverse samples that had previously undergone 
clinical whole genome sequencing to determine the robustness of PRS across different 
platforms. Genome sequencing was performed at the Clinical Research Sequencing 
Platform of the Broad Institute using polymerase chain reaction-free library 
construction and sequencing on an Illumina NovaSeq with two 150 bp paired-end 
reads with ≥95% of bases covered at ≥20-fold. Reads were aligned to GRCh37 using 
the Burrows–Wheeler Aligner (BWA v.0.7.15)73 and variant calls were made using 
HaplotypeCaller from the Genomic Analysis Tool Kit (GATK v.4.0.3.0)74,75. PRSraw, 
PRSstd-raw, PRSadj and PRSstd-adj were calculated as above for the other prospective 
samples. As stated above, these 22 samples were also analyzed on the GDA-PC array 
to compare PRS between genome sequencing and array. The difference between 
the sequence-based and array-based PRS were visualized, and dichotomous risk 
classifications were formally compared using the Matthews correlation coefficient76.

Identification of actionable variants associated with monogenic disease. Variants 
from the original genotyping VCF were annotated and filtered to the 59 genes 
suggested for screening of secondary findings as recommended by the ACMG 
(ACMG SF v2.0)24 to find: (1) variants previously identified as disease causing by 
the MGB Laboratory for Molecular Medicine; (2) variants classified as pathogenic 
or likely pathogenic in ClinVar with a minor allele frequency (MAF) < 0.1%; (3) 
variants classified as a disease-causing mutation in the Human Gene Mutation 
Database with a MAF < 0.03%; and (4) loss-of-function variants (nonsense, 
frameshift, canonical splice-site, and initiating methionine variants) with a 
MAF < 0.1% in genes in which that is a disease mechanism. Clinical variant 
classification was carried out in accordance with the criteria set by the guidelines 
by the ACMG and the Association of Molecular Pathology77, with disease-specific 
modifications as recommended by the Clinical Genome Resource Expert Panels78.

Prospectively enrolled trial participants. The assay described above is now in 
use in the ongoing GenoVA Study randomized trial of clinical PRS (ClinicalTrials.
gov identifier: NCT04331535), in which eligible participants are patients of the VA 
Boston Healthcare System, aged 50–70 years, without known diagnoses of the six 
target diseases. Enrollees provide a clinical blood or saliva sample for analysis at 
the Laboratory for Molecular Medicine.

Ethics declaration. Analyses of the genomic and MGBB samples and data have 
been reviewed and approved by the Mass General Brigham institutional review 
board (2019P001933). Analyses for the prospective pipeline, including the use 
of prior clinical samples, were conducted under the Mass General Brigham 
institutional review board (2004P001056); all individuals with clinical testing, 
including those with genome sequencing data, gave consent for clinical testing, 
and all individual data were de-identified. The GenoVA Study is approved by the 
VA Boston Healthcare System (no. 3241) and Harvard Medical School institutional 
review board (IRB19-0594), and all enrollees provided written informed consent.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The majority of the MGBB genotyped samples are deposited in dbGAP as part 
of the eMERGE consortium, phase 3 (https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=phs001584.v2.p2). Additional MGBB data were 
accessed under institutional review board protocol for this current study and are 
not publicly available due to restrictions on the data. Data from the GenoVA Study 
trial will be made publicly available after study completion. The 1000 Genomes 
Project phase 3 dataset used in this study was v5a and was downloaded from ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

Code availability
The code used to adjust the PRS for population structure is available for download 
here: https://github.com/MGB-Personalized-Medicine/PRS-adjustment.
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Extended Data Fig. 1 | Distribution of standardized, adjusted PRS by release batch for six diseases in MGBB. Standardized, adjusted PRS (PRSstd-adj) 
plotted by eight batches of three versions of Illumina genotyping arrays (MEG, MEGA, MEGAEX) used to analyze data from up to 36,423 MGBB 
participants. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery disease; CRCa, colorectal cancer; MEG, Multi-Ethnic Global; 
MEGA, Multi-Ethnic Genotyping Array; MEGAEX, Expanded Multi-Ethnic Genotyping Array; MGBB, Mass General Brigham Biobank; PrCa, prostate 
cancer; PRS, polygenic risk score; T2D, type 2 diabetes.
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Extended Data Fig. 2 | Distribution of standardized, adjusted PRS by age for six diseases in MGBB. Standardized, adjusted PRS (PRSstd-adj) plotted by 
decade of age among up to 36,423 MGBB participants. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery disease; CRCa, 
colorectal cancer; MGBB, Mass General Brigham Biobank; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 diabetes.
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Extended Data Fig. 3 | Distribution of adjusted PRS by sex for four diseases in MGBB. Standardized, adjusted PRS plotted by sex among 16,704 male 
and 19,719 female MGBB participants. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery disease; CRCa, colorectal cancer; 
MGBB, Mass General Brigham Biobank; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 diabetes.

NAtuRE MEDiCiNE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNature MediciNe

Extended Data Fig. 4 | Correlation between standardized, adjusted PRS and odds of disease in reported white MGBB participants. Plots show log(odds) 
of each of six diseases versus quantile (n = 50) of standardized population structure-adjusted PRS (PRSstd-adj) among up to 30,716 MGBB participants of 
reported white race. The correlation coefficient, r, is shown in each panel. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery 
disease; CRCa, colorectal cancer; MGBB, Mass General Brigham Biobank; OR, odds ratio; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 
diabetes.
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Extended Data Fig. 5 | Correlation between standardized, adjusted PRS and odds of disease in reported Black MGBB participants. Plots show log(odds) 
of each of six diseases versus quantile (n = 10) of standardized population structure-adjusted PRS (PRSstd-adj) among up to 1,807 MGBB participants of 
reported Black race. Results not reported for CRCa due to 0 CRCa cases in at least one quantile. The correlation coefficient, r, is shown in each panel. 
Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery disease; CRCa, colorectal cancer; MGBB, Mass General Brigham Biobank; 
OR, odds ratio; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 diabetes.
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Extended Data Fig. 6 | Correlation between standardized, adjusted PRS and odds of disease in reported Asian MGBB participants. Plots show log(odds) 
of each of six diseases versus quantile (n = 10) of standardized population structure-adjusted PRS (PRSstd-adj) among up to 786 MGBB participants of 
reported Asian race. Results not reported for CRCa, PrCa, or AFib due to 0 cases in at least one quantile. The correlation coefficient, r, is shown in each 
panel. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery disease; CRCa, colorectal cancer; MGBB, Mass General Brigham 
Biobank; OR, odds ratio; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 diabetes.
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Extended Data Fig. 7 | Correlation between standardized, adjusted PRS and odds of disease in MGBB participants of unknown or other reported race. 
Plots show log(odds) of each of six diseases versus quantile (n = 50 for T2D, n = 10 for all other disease) of standardized population structure-adjusted 
PRS (PRSstd-adj) among up to 3,113 MGBB participants of unknown or other reported race. Results not reported for CRCa due to 0 cases in at least one 
quantile (n = 10). The correlation coefficient, r, is shown in each panel. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery 
disease; CRCa, colorectal cancer; MGBB, Mass General Brigham Biobank; OR, odds ratio; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 
diabetes.
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Extended Data Fig. 8 | Difference in standardized, adjusted PRS between WGS and imputed genotyping arrays for 22 individual samples. The PRSstd-adj 
of 22 samples obtained from WGS and from imputed genotyping arrays are subtracted, and the distribution of the difference of the scores is plotted for 
each disease. Abbreviations: AFib, atrial fibrillation; BrCa, breast cancer; CAD, coronary artery disease; CRCa, colorectal cancer; IMPU, imputed genotype 
data; MGBB, Mass General Brigham Biobank; PrCa, prostate cancer; PRS, polygenic risk score; T2D, type 2 diabetes; WGS, whole genome sequencing.
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