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Abstract: Hematopoietic stem cell transplants (HSCT) can prevent progression of several 

genetic disorders. Although a subset of these disorders are identified on newborn screening 

panels, others are not identified until irreversible symptoms develop. Genetic testing is an 

efficient methodology to ascertain pre-symptomatic children, but the penetrance of risk-

associated variants in the general population is not well understood. We developed a list of 127 

genes associated with disorders treatable with HSCT. We identified likely pathogenic or 

pathogenic (LP/P) and loss-of-function (LOF) variants in these genes in gnomAD, a dataset 

containing exome and genome sequencing data from 141,456 healthy adults. Within gnomAD, 

we identified 59 individuals with a LP/P or LOF variant in 15 genes. Genes were associated with 

bone marrow failure syndromes, bleeding disorders, primary immunodeficiencies, osteopetrosis, 

metabolic disorders, and epidermolysis bullosa. In conclusion, few ostensibly healthy adults had 

genotypes associated with pediatric disorders treatable with HSCT. Given that most of these 

disorders do not have biomarkers that could be cheaply and universally assessed on a standard 

newborn screen, our data suggest that genetic testing may be a complementary approach to 

traditional newborn screening methodology that has the potential to improve mortality and is not 

expected to lead to a high burden of false positive results.  
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 Hematopoietic stem cell transplant (HSCT) and gene therapy prevent progression of 

symptoms in several severe childhood-onset monogenic diseases. These disorders include bone 

marrow failure syndromes, primary immunodeficiency disorders, inborn errors of metabolism, 

genetic forms of hemophagocytic lymphohistiocytosis, hemoglobinopathies and bleeding 

disorders, disorders of the skin (i.e. epidermolysis bullosa), and disorders of bone metabolism 

(i.e. osteopetrosis).
1–8

 A genetic diagnosis of one of these conditions prior to the onset of 

symptoms provides an opportunity to initiate HSCT at an early stage of disease before 

neuroregression, potential life-threatening infections, or other sequelae occur.
9,10

  

 American newborn screening (NBS) protocols for some conditions treated with HSCT or 

gene therapy, such as various types of severe combined immunodeficiency, 

mucopolysaccharidosis type I (MPS1, MIM: 607014), and X-linked adrenoleukodystrophy 

(MIM: 300100), have been added to the Recommended Uniform Screening Panel (RUSP).
11,12

 

Krabbe disease (MIM: 606890), which is also treated with early HSCT, has also been added to 

NBS panels in 10 states within the United States.
13

 Screening for these conditions includes 

biochemical or immunologic assays in combination with genetic testing. For example, MPS1 is 

screened using an enzymatic assay, but many states reflex to second-tier genetic testing for 

positive biochemical screening results.  This second-tier testing greatly increases the positive 

predictive value of NBS for MPS1.
14

 For actionable disorders that lack an efficient or accurate 

screening assay, such as spinal muscular atrophy, type I (MIM: 253300) quantitative polymerase 

chain reactions have been introduced as a first-tier test in state newborn screening laboratories.
11

  

 Genomic screening of newborns has the potential to capture infants with a wider range of 

actionable childhood-onset genetic disorders than those which are currently included on the 

RUSP. Recent studies have demonstrated, however, that both false positives and false negative 
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results are identified via genomic screening compared with standard newborn screening 

practices.
15–17

 A better understanding of the phenotypic spectrum and penetrance of pathogenic 

genotypes associated with these disorders is needed, particularly when the appropriate 

treatments, like HSCT, are invasive, costly, and pose major health risks. 

 In this study, we used the Genome Aggregation Database (gnomAD), an aggregated data 

set from unrelated individuals sequenced as part of various disease-specific and population 

genetic studies, to identify likely pathogenic or pathogenic (LP/P) and presumed loss-of-function 

(LOF) variants in genes associated with early-onset Mendelian diseases that are treatable with 

HSCT or gene therapy.
18

 Given that gnomAD has been intentionally depleted of individuals with 

genetic disease, and that many individuals with severe forms of these disorders would not be 

expected to live until adulthood, these variants likely represent sequencing artifacts, non-

penetrant alleles, or very attenuated phenotypes which may not require neonatal intervention.
18

 

In some cases, non-penetrant alleles may be due to mosaicism, as has been previously 

demonstrated in genes such as NFKBIA.
19

 A higher than expected population frequency of 

disease variants could lead to low positive predictive value of screening and increase false 

positive rates of individuals for whom preventive treatment would be unnecessary.  

 The objectives of this study were to (1) identify a list of genes associated with Mendelian 

disorders that can be treated with HSCT or gene therapy and (2) assess of the number of 

individuals in gnomAD with disease-associated genotypes in these genes.  

 This study was exempt from review by the Institional Review Board. gnomAD is an 

aggregated data set of 125,748 exomes and 15,708 genomes from unrelated individuals 

sequenced as part of various disease-specific and population genetic studies.
18

 The data in 

gnomAD were obtained primarily from the control groups of case–control studies of common 
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adult-onset diseases, including cardiovascular disease, type 2 diabetes and psychiatric disorders. 

Samples with inadequate consent for the release of aggregate data have been removed.
18

 

Attempts have been made to deplete this data set of individuals known to be affected by severe 

pediatric disease, as well as their first-degree relatives.
18

 Samples judged to have lower 

sequencing quality, as well as samples from first- or second-degree relatives, samples with 

inadequate consent for the release of aggregate data have also been excluded.
18

  

 We identified a preliminary list of childhood-onset diseases treated with HSCT and gene 

therapy using medical literature and a commercial genetic panel for primary immunodeficiency 

disorders.
1–10

 After evaluating gene-disease association validity by reviewing the number of 

disease-causing variants reported in ClinVar and the Human Gene Mutation Database (HGMD), 

genes with insufficient evidence were removed.
20,21

 This list of genes was then distributed to 

content-area experts, who modified the list based upon their clinical experience, and included 

only genes and disorders that were childhood-onset, severe, and current or future targets of 

HSCT or gene therapy.  

 All gnomAD variants (v2.1.1) that passed quality metrics from the selected genes were 

filtered to include only variants with implicated genotypes, i.e. for genes associated with an 

autosomal recessive disorder, only variants with ≥1 homozygous counts were included, as the 

phase of heterozygous variants is unable to be determined. For genes associated with X-linked 

disorders, only variants with ≥1 homozygous count or ≥1 hemizygous count were included. This 

variant list was subsequently filtered to identify: (1) variants that have a minor allele frequency < 

5.0% in gnomAD and have been classified as pathogenic or likely pathogenic from "single 

submitter, criteria provided" submitters in ClinVar; (2) predicted loss-of-function (LoF) variants 

(i.e. nonsense, frameshift, and +/-1,2 splice-site variants) with a minor allele frequency ≤ 1.0% in 
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gnomAD. Predicted LoF variants tagged as low-confidence (LC LoF) were removed from 

analysis.   

 We identified 127 high-evidence genes associated with childhood-onset Mendelian 

disorders treated by HSCT (Supplement 1). This list includes genes associated with primary 

immunodeficiencies (n = 61), bone marrow failure disorders (n = 34), inborn errors of 

metabolism (n = 19), hemophagocytic lymphohistiocytosis (n = 4), bleeding disorders and 

hemoglobinopathies (n = 3), osteopetrosis (n = 3), and epidermolysis bullosa (n = 3). The 

majority of these disorders are associated with autosomal recessive inheritance (n = 91), with a 

minority caused by autosomal dominant (n = 22) and X-linked recessive inheritance (n = 14).  

 Within gnomAD, we identified 59 individuals (0.04%) with 36 distinct LP/P variants. 

Assuming that no individuals within gnomAD have severe Mendelian childhood-onset disease, 

the false positive rate of genomic screening in this population would be 0.04%.  

 Variants were identified in 15 genes (Table 1). Associated genetic conditions included 

immunodeficiency disorders (n = 20), bone marrow failure syndromes (n = 18), 

hemoglobinopathies (n = 16), and inborn errors of metabolism (n = 5) (Figure 1). Most risk 

variants occurred in only one individual (n = 26), although several variants were identified in 

multiple individuals (n = 10). The highest number of individuals had variants in ELANE (n = 15), 

which is associated with AD congenital neutropenia (MIM: 202700).  

 Overall, individuals had variants that occurred predominantly in genes that confer disease 

in an AD pattern of inheritance (n = 24). A minority of individuals had homozygous variants in 

genes associated with AR (n = 6) and hemizygous variants associated with X-linked recessive 

conditions (n = 6). 
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 Within a large database of genome and exome sequence information, we identified only a 

small percentage of apparently healthy adults who harbor risk variants in a subset of genes 

associated with treatable Mendelian conditions. While issues regarding sensitivity of genomic 

sequencing versus traditional biochemical screening has been explored for inherited metabolic 

disorders, the reciprocal issue of specificity and positive predictive value of pathogenic 

genotypes has not been explored in as much detail. Incomplete penetrance or wide expressivity 

of childhood-onset conditions may lead to challenges in the screening and diagnosis of pre-

symptomatic individuals. However, our data suggest that this issue is likely rare in the general 

population for the subset of genes assessed. Overall, assuming that the individuals within 

gnomAD are free from severe Mendelian childhood-onset disease, the false positive rate of 

genomic screening of newborns for diseases treatable with HSCT was calculated to be 0.04%, 

better than that of many enzymatic assays.
15

  

 At present, most Mendelian disorders treatable with HSCT are diagnosed after the onset 

of symptoms or due to the presence of a known affected family member. Pre-symptomatic 

screening for those with risk variants offers a potential opportunity to evaluate additional 

biomarkers of the related condition or initiate disease-modifying therapy prior to the emergence 

of symptoms. The individuals we identified with LP/P variants likely have non-penetrant alleles 

or highly attenuated symptoms of disease; alternatively, the variants are sequencing artifacts.  

While not all individuals with disease genotypes would immediately proceed to HSCT, early 

identification of genetic diagnoses would facilitate surveillance by appropriate clinicians and the 

opportunity to monitor early disease progression.  

 Our findings demonstrate that first-tier genomic screening for these disorders would not 

lead to a surplus of false positives, which could negatively impact patients and families or burden 
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clinicians specializing in pediatric hematology-oncology, immunology, and other related 

specialties. We estimate that 0.04%, or 1 in 2500, individuals would be expected to have false 

positive genomic results, equal to approximately 1,500 of the 3,747,540 infants born in 2019.
22

  

Prior analyses of current newborn screening techniques for multiple inborn errors of metabolism 

(phenylketonuria, galactosemia, and biotinidase deficiency) and endocrinopathies (congenital 

hypothyroidism and congenital adrenal hyperplasia) have identified a positive predictive value of 

only 0.5-6.0%, generating more than 50 false positive results for every true positive result on 

newborn screening in the United States. For phenylketonuria alone, there were 8,867 false 

positive results generated during 1994.
23

 

 This study builds on previous analyses of the Exome Aggregation Consortium (ExAC) 

database that identified individuals with homozygous variants in genes associated with 

childhood-onset disease.
24

 Other descriptive studies of large-scale exome datasets have identified 

healthy individuals with pathogenic and likely pathogenic genetic variants.
24,25

 Our results 

reinforce prior observations regarding incomplete penetrance of some disease-related genotypes, 

although we found that in the genes of interest, incomplete penetrance or attenuated phenotypes 

were less common than previously reported.
24,25

  

 In general, the majority of disease-associated genotypes which we identified in ostensibly 

healthy adults were found in ELANE. A recent study utilizing CRISPR gene editing has found 

that variants in early exons of ELANE elicited nonsense-mediated decay, while terminal exon 

frameshift alleles escaped nonsense-mediated decay. Additionally, -1 frame insertions or 

deletions impeded neutrophil maturation and were associated with congenital neutropenia, 

whereas -2 frame late exon insertions and deletions supported neutrophil maturation.
26

 It is likely 

that this more detailed information regarding the mechanisms underlying pathogenicity in 
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ELANE will lead ClinVar submitters to reclassify many of the variants identified in gnomAD. 

Additionally, asymptomatic individuals harboring pathogenic ELANE variants exhibit mutant 

variant mosaicism in all examined cell types except neutrophils, which may provide the 

mechanism of decreased penetrance in the studied patient population.
27

 For asymptomatic 

individuals with pathogenic variants in ELANE, there may be a need for the development of 

management guidelines to determine the frequency with which complete blood counts should be 

followed by a primary care doctor or hematologist.  

 This study provides a preliminary model for assessing the specificity of genomic 

screening, but has several limitations due to the constraints of the available data. First, we cannot 

rule out that the gnomAD variants have been identified in error or that prior variant 

classifications as recorded in ClinVar are flawed.
28

 Next, we cannot be certain that the 

individuals whose data are included in gnomAD do not have manifestations of Mendelian 

disease and may benefit from appropriate treatment. Given the phenotypic heterogeneity of 

associated with some genes included in this study (i.e. hemoglobinopathies), it is also possible 

that some individuals may have mild or subclinical symptoms of disease, which would not 

require HSCT. Importantly, because biallelic variants cannot be ascertained in the gnomAD 

database, our analysis focused only on heterozygous and hemizygous variants associated with 

AD and X-linked disorders, as well as homozygous variants associated with AR conditions. We 

did not include compound heterozygotes, as these individuals cannot be definitively ascertained 

without parental data, and as such may increase rates of false positivity. Additionally, structural 

variants were not a target of this analysis and should be included in future work. This analysis 

could be replicated using other datasets such as dbGaP or genetic information aggregation tools 

such as AnVil.
29,30

 Finally, while this analysis assesses the specificity of genomic sequencing, 
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further investigations of the sensitivity of sequencing must be pursued to determine the 

suitability of this test for population-wide screening in newborns. Future analyses, including 

compound heterozygous variants and structural variants, should aim to improve the sensitivity of 

analyses.  

 Given these limitations, we suggest that identification of individuals with heterozygous 

and hemizygous LP/P variants associated with AD and XL disorders, as well as homozygous 

LP/P variants associated with AR conditions might be an initial target of genomic screening of 

newborns. A stepwise approach toward including biallelic should be considered in the future. 

However it should be noted that screening of biallelic variants may give rise to downstream 

bioethical challenges, as a newborn with two parents available for genetic testing stands to 

benefit from this screening information more than a newborn who only has one available parent. 

The overall clinical utility, costs, scalability, and equity of genomic screening are important 

future research directions. 

 New and effective therapies for Mendelian disorders are rapidly being developed. Many 

of these therapies are most efficacious if begun before clinical symptoms emerge. Our findings 

suggest that first-tier genomic screening for disorders treated with HSCT may be of value for 

affected newborns and in some circumstances would not lead to an undue burden of false 

positive results.  
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Tables 

Table 1. Individuals (n = 59) with variants in genes associated with severe pediatric-onset 

disease treatable with HSCT or gene therapy identified in gnomAD. 

 

Gene Variant 

Individuals 

with 

disease-

associated 

genotypes 

Phenotype 

ABCD1 NM_000033.3:c.2106_2122del 

(p.Leu703AspfsTer25) 

1 Adrenoleukodystrophy 

CARD11 NM_032415.4:c.3261-2A>G  2 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.2704-1G>C  1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.3260+1G>A  1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.1518+1G>A  1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.7+2T>G  1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.2585delA 

(p.His862ProfsTer52) 

1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.2671C>T (p.Arg891Ter) 1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.1876G>T (p.Glu626Ter) 1 B-cell expansion with 

NKFB and T-cell 
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anergy/Immunodeficiency 

11B with atopic dermatitis 

CARD11 NM_032415.4:c.1156C>T (p.Arg386Ter) 1 B-cell expansion with 

NKFB and T-cell 

anergy/Immunodeficiency 

11B with atopic dermatitis 

CHD7 NM_017780.3:c.5051-2A>T  1 CHARGE syndrome 

CHD7 NM_017780.3:c.401_402insAA 

(p.His134GlnfsTer78) 

1 CHARGE syndrome 

CHD7 NM_017780.3:c.395_399delAGAGG 

(p.Glu132AlafsTer153) 

1 CHARGE syndrome 

CHD7 NM_017780.3:c.8522C>A (p.Ser2841Ter) 1 CHARGE syndrome 

CTLA4 NM_005214.4:c.255_256delTG 

(p.Ala86GlyfsTer8) 

1 Autoimmune 

lymphoproliferative 

syndrome, type V 

ELANE NM_001972.2:c.258_269dup 

(p.His87_Ser90dup) 

1 Neutropenia, severe 

congenital 1 

ELANE NM_001972.2:c.427C>T (p.Arg143Cys) 5 Neutropenia, severe 

congenital 1 

ELANE NM_001972.2:c.573G>C (p.Arg191Ser) 2 Neutropenia, severe 

congenital 1 

ELANE NM_001972.2:c.659G>A (p.Arg220Gln) 1 Neutropenia, severe 

congenital 1 

ELANE NM_001972.2:c.628G>A (p.Gly210Arg) 6 Neutropenia, severe 

congenital 1 

F8 NM_000132.3:c.6935dupT 

(p.Val2313GlyfsTer72) 

1 Hemophilia A 

F8 NM_000132.3:c.6089G>A (p.Ser2030Asn) 3 Hemophilia A 

F8 NM_000132.3:c.1834C>T (p.Arg612Cys) 3 Hemophilia A 

F9 NM_000133.3:c.316G>A (p.Gly106Ser) 3 Hemophilia B 

GAA NM_001079803.1:c.-32-13T>G  1 Glycogen storage disease 

II 

GATA2 NM_001145661.1:c.16_17insC 

(p.Glu6AlafsTer179) 

1 GATA2 syndromes 

GBA NM_001005741.2:c.1226A>G 

(p.Asn409Ser) 

3 Gaucher disease 

HBB NM_000518.4:c.19G>A (p.Glu7Lys) 1 Beta thalassemia major 

HBB NM_000518.4:c.79G>A (p.Glu27Lys) 1 Beta thalassemia major 

HBB NM_000518.4:c.20A>T (p.Glu7Val) 4 Beta thalassemia major 

NFKBIA NM_020529.2:c.875_876delAG 

(p.Glu292ValfsTer14) 

1 Ectodermal dysplasia, 

anhidrotic, with T-cell 

immunodeficiency 

NFKBIA NM_020529.2:c.735_736delAG 1 Ectodermal dysplasia, 
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(p.Arg245SerfsTer39) anhidrotic, with T-cell 

immunodeficiency 

NFKBIA NM_020529.2:c.438_493del 

(p.Pro147ValfsTer43) 

1 Ectodermal dysplasia, 

anhidrotic, with T-cell 

immunodeficiency 

RPS10 NM_001014.4:c.373_374delGA 

(p.Asp125TyrfsTer34) 

1 Diamond-Blackfan 

anemia  

SBDS NM_016038.2:c.258+2T>C  2 Shwachman-Diamond 

syndrome 

XIAP NM_001167.3:c.758C>G (p.Ser253Ter) 1 Lymphoproliferative 

syndrome, X-linked, 2 
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Figure legends 

Figure 1. Variants in genes associated with disorders treatable by HSCT in gnomAD.  

 

Supplemental tables 

Supplemental table 1. Genes associated with severe pediatric-onset Mendelian disorders 

treatable with hematopoietic stem cell transplant or gene therapy (n = 127). 
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Hematopoietic stem cell transplant can prevent progression of many genetic disorders. 

Penetrance of these disorders is unknown, however, limiting the application of early diagnosis. 

Among 141,456 healthy adults, only 59 had disease-associated variants, indicating that most of 

these disorders are highly penetrant. Genomic screening may facilitate early diagnosis and 

treatment.  
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