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A framework for automated gene selection in genomic
applications
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PURPOSE: An efficient framework to identify disease-associated genes is needed to evaluate genomic data for both individuals
with an unknown disease etiology and those undergoing genomic screening. Here, we propose a framework for gene selection
used in genomic analyses, including applications limited to genes with strong or established evidence levels and applications
including genes with less or emerging evidence of disease association.
METHODS: We extracted genes with evidence for gene–disease association from the Human Gene Mutation Database, OMIM, and
ClinVar to build a comprehensive gene list of 6,145 genes. Next, we applied stringent filters in conjunction with computationally
curated evidence (DisGeNET) to create a restrictive list limited to 3,929 genes with stronger disease associations.
RESULTS: When compared to manual gene curation efforts, including the Clinical Genome Resource, genes with strong or
definitive disease associations are included in both gene lists at high percentages, while genes with limited evidence are largely
removed. We further confirmed the utility of this approach in identifying pathogenic and likely pathogenic variants in 45 genomes.
CONCLUSION: Our approach efficiently creates highly sensitive gene lists for genomic applications, while remaining dynamic and
updatable, enabling time savings in genomic applications.
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INTRODUCTION
As genome and exome sequencing become standard in clinical
genetic testing for patients with unknown genetic etiology and in
broad genomic screening for population precision health, an
efficient framework to identify and capture all known disease-
associated genes is needed. With the scope of analysis in these
assays covering over 20,000 genes, it is challenging to rapidly
determine which genes have evidence of clinical relevance.
Hence, a well-defined “medical exome”, consisting of genes with
sufficient levels of evidence to warrant review in a clinical assay, is
needed to limit the interpretative burden of reviewing variants
from all genes.
There have been efforts to establish highly curated lists of

gene–disease associations (GDAs), but these are often small. Most
notably, the Clinical Genome Resource (ClinGen) has established a
robust framework to determine gene–disease validity through
manual assessment of strength of evidence that is used within
their multiple disease-specific expert panels and working groups.1

While these GDAs are well curated, the intense effort required has
limited the breadth of genes currently annotated. On the other
end of the spectrum, computational tools, such as DisGeNET,
attempt to classify the GDAs of all genes by integrating multiple
databases into a single GDA score.2–4 However, the accuracy and
validity of this scoring system has not been assessed. Other efforts
have taken the approach of crowd-sourcing and/or collating
GDAs, such as Genomics England’s PanelApp and the recently
launched Gene Curation Coalition (GenCC), which allow diagnostic
gene panels to be shared, downloaded, and evaluated by the

scientific community, though they may be limited by the interests
and thoroughness of the submitters.5,6

Generating and maintaining up-to-date gene lists remains
challenging since assessing all GDAs is prohibitively time-
consuming and evidence supporting new and existing GDAs is
continuously generated. Previously published projects from our
group, BabySeq and MedSeq, required manual curation resulting
in a list of 1,514 and 1,490 GDAs, respectively. In both projects, this
was a labor-intensive and time-consuming process that is not
easily replicated in an efficient manner.7,8 Therefore, a balance
between efficiency and thoroughness is required to make the
analysis of genomic data more feasible.
Here, we propose a framework that balances efficiency,

robustness, and accuracy to create gene lists for genomic analyses
that can be routinely updated with new genes as associations
emerge from the literature. This approach generates two lists of
disease-associated genes based on different levels of evidence
(comprehensive and restrictive) to be used in genomic
applications.

MATERIALS AND METHODS
Data sources used to generate the comprehensive and restrictive
gene lists
Extensive databases of gene and/or variant associations, including the
Human Gene Mutation Database (HGMD), ClinVar, OMIM, and DisGeNET,
were used to identify genes with any reported GDA.2–4,9–11 Each data
source was also parsed to identify, when applicable, the number of
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classified variants and their review date, publications, and gene identifiers
(Supplemental Methods).

Data sources used for validation of comprehensive and restrictive
gene lists
Data sources incorporated for gene list validation included (1) 1,490 GDAs
evaluated in MedSeq,8 (2) 1,514 GDAs evaluated in BabySeq,7 (3) 1,212
gene curations in 995 genes captured by ClinGen as of 14 March 2021,1 (4)
4,884 GDAs in the Incidentalome and Mendeliome panel from PanelApp
Australia (accessed 26 February 2021),5 (5) 6,378 GDAs in the Paediatric
panel from Genomics England PanelApp (accessed 26 February 2021),5 and
(6) 2,187 GDAs across five laboratories in GenCC (accessed 13 March
2021).6 Each data set included a list of GDAs and their strength of
evidence. Classifications derived from each data set and how they map to
an overall strength of evidence are provided in Table S1 and defined
in Supplemental Methods.

Genome sequencing and analysis
Genome sequencing data were generated from 45 individuals undergoing
non-indication-based genomic screening (Supplemental Methods) with

>30X mean coverage and a minimum completeness of >95% of all bases
at ≥15X. Variants were filtered to the comprehensive or restrictive gene
lists to identify pathogenic (P) or likely pathogenic (LP) variants
(Supplemental Methods). Only genes mapping to GRCh37 were analyzed
(Table S2). Evidence for GDAs was manually curated and each GDA was
assigned one the following categories: (1) definitive, (2) strong, (3)
moderate, or (4) limited using ClinGen criteria for gene–disease associa-
tion. Following gene and variant curation using 2015 American College of
Medical Genetics and Genomics/Association for Molecular Pathology
guidelines12 with ClinGen rule specifications, only P/LP variants in genes
with a strong or definitive GDA were considered reportable.

RESULTS
Generation of comprehensive and restrictive gene lists
To build a comprehensive gene list for clinical genomic
applications, we extracted all genes from extensive data sets
meeting any of the following criteria: (1) ≥1 P/LP variant in ClinVar,
excluding copy-number variants (CNVs) overlapping multiple
genes, (2) ≥1 variant classified as pathogenic (disease-causing
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HGMD: 12,080 genes
OMIM: 8,087 genes

a

Lists filtered to genes fulfilling
any of the following criteria:

O

R

ClinVar

≥≥1 LP or P variants ≥1 DMs

Level 3 genes
listed in Morbid
Map, excluded

susceptibility {}
and non-disease []

genes

N/A

N/A

HGMD OMIM DisGeNET

DisGeNET
GDA

Scores

1

Comprehensive
List:

6,145 genes

2 2

1

3

3

Restrictive List: 3,929
genes

1321
388

371
182

169

ClinVar

3825
Genes in all Sources

Comprehensive List:
6,145 genes

85

41114 OMIM

HGMD

HGMD    ClinVar

R
es

tr
ic

ti
ve

 L
is

t

≥0.7 GDA
score

≥0.3 GDA
score

≥ 4 DMs with
supporting

publications
within the

past 6 years
(≥2015)

Supporting
publication
within the

past 2 years
(≥2019)

≥ 4 P or LP
variants last

evaluated within
the past 6 years
≥1 2-star P or LP

variants OR
MT genes with ≥1 P

or LP variants

MT genes with ≥1 P
or LP variants OR

Last evaluation
date within the past

2 years (≥2019)

N/A

3427
Genes in all Sources

Restrictive List:
3,929 genes

63

35
944

ClinVar    OMIM

HGMD    OMIM

O

R

O

R

O

R

O

R

O

R

O

R

O

R

O

R

b

⊂

⊂

⊂

Fig. 1 Overview of comprehensive and restrictive gene list. (a) Schematic of the criteria fulfilled at each stage of the gene filtration process.
Genes with entries in ClinVar (11,234 genes), OMIM Morbid Map (8,087 genes), and the Human Gene Mutation Database (HGMD) (12,080
genes) were integrated to generate the comprehensive and restrictive gene lists. Filtration parameters for each stage are presented in the
right panel. (b) Venn diagram of the comprehensive (left) and restrictive (right) gene lists, including the number of genes meeting criteria in
the initial databases. DM disease-causing mutation, P/LP pathogenic, likely pathogenic.
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mutation; DM) in HGMD, or (3) listed in Morbid Map from OMIM,
excluding susceptibility and nondisease genes (Fig. 1a). Following
these filters, the comprehensive list included 6,145 genes that
have been implicated in Mendelian disease. Of note, 3,825 genes
were present in all three data sets, with HGMD contributing the
most unique genes (Fig. 1b).
For many genomic applications, restricting the analysis to

genes with stronger disease associations is preferable to reduce
the burden on the laboratory. Thus, we further limited the
comprehensive list by applying criteria using the number of
P/LP variants, the recency of interpretation, and computational
predictions for GDAs from DisGeNET. Specifically, only genes
fulfilling any of the following criteria were retained: (1) ≥4 P/LP
variants in ClinVar evaluated within the last 6 years (2015 or
more recently) by any submitter, (2) ≥1 two-star P/LP variant in
ClinVar, (3) mitochondrial genes with ≥1 P/LP variant in ClinVar,
(4) ≥4 DMs in HGMD with supporting publications within the last
6 years (2015 or more recently), (5) genes with a DisGeNET GDA
score ≥0.7. To add more stringency, we filtered this intermediate
list to remove genes with lower levels of evidence, only keeping
genes that met at least one of the following criteria: (1) ≥1 DM in
HGMD with a supporting publication within the last 2 years
(2019 or more recently), (2) ≥1 P/LP variant with a last evaluated
date in ClinVar within the last 2 years (2019 or more recently), or
(3) genes with a DisGeNET GDA score ≥ 0.3. All mitochondrial
genes in the intermediate list were also kept at this stage. After
applying both sets of filters, a restrictive gene list of 3,929 genes

remained, with 3,427 genes present in all original data sources
(Fig. 1).

Comparing gene lists to previous curations
To determine the utility of the gene lists and specificity of the
filtering strategy, we compared the comprehensive and restrictive
lists to manual gene curations, including rigorous expert curations
in ClinGen, manual gene assessments by an individual lab for
BabySeq and MedSeq, crowdsourced approaches in PanelApp
Australia and Genomics England PanelApp, and a consensus-
based method from GenCC. When both lists were compared to
the 995 genes from ClinGen, we observed that all definitive (655
genes) or strong (20 genes) gene–disease pairs in ClinGen were
captured by both lists except for one definitive GDA missing from
the restrictive list: the CD79B gene associated with agammaglo-
bulinemia 6. This gene only had two P/LP variants in ClinVar and
three DMs in HGMD. The latest ClinVar submission date was in
2007 and there were no publications after 2015 in HGMD
(Table S2). Some gene–disease pairs with limited, disputed,
refuted, or no evidence were removed from the comprehensive
list (6.2%; 13/210), while many more were removed from the
restrictive list (30%; 63/210) (Fig. 2a).
When comparing the gene lists to the more rapid assessments

of genes in MedSeq or BabySeq,7,8 we observed that all definitive
or strong gene–disease pairs classified in both studies (603 genes
and 951 genes, respectively) were captured by both lists, except
for the strong RPS15 association with Diamond–Blackfan anemia
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Fig. 2 Comprehensive and restrictive gene lists compared to the GDA classifications assigned by six resources. Gene lists were compared
against GDA classifications provided by: (a) ClinGen, (b) MedSeq, (c) BabySeq, (d) consensus of Australian PanelApp (Incidentalome and
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curated in BabySeq that was not included in either gene list. The
GDA between RPS15 and Diamond–Blackfan anemia was reas-
sessed by the BabySeq team and downgraded to limited due to
lack of supporting evidence. The comprehensive and restrictive
gene lists also removed 51% (347/680) and 76.3% (519/680),
respectively, of genes with insufficient or other classifications in
MedSeq (Fig. 2b) and 6.2% (13/211) and 29.4% (76/211),
respectively, of genes with limited or other classifications in
BabySeq (Fig. 2c).
Additional analyses were performed using (1) a consensus

interpretation from the largest panels of PanelApp Australia and
Genomics England PanelApp and (2) a consensus GDA from
GenCC. For the PanelApp analysis, most green-rated genes (1,956
genes) were captured by both lists, except for 41 genes (2.1%)
removed from the restrictive list. The relatively high number of
green-rated genes excluded from PanelApp in our restrictive list is
expected as PanelApp is primarily focused on gene panels for in-
depth diagnostic analysis and have not necessarily undergone
extensive GDAs using rigorous criteria, such as is used in ClinGen.
The gene lists also removed 12.9% (9/70) and 68.6% (48/70) of red
genes from the comprehensive list and restrictive list, respectively
(Fig. 2d). In the GenCC comparison, all definitive/strong genes
were captured in both lists, except for SMOC2, associated with
dentin dysplasia type I, that was missing from the restrictive list
(Fig. 2e). This gene only had two DMs with the most recent
publication in 2013 and 3 P/LP variants in ClinVar with the most
recent evaluation date in 2017.

Genome sequencing results using different gene lists
To determine the performance of the gene lists in practice,
genomic data from 45 individuals were screened for reportable
variants using both the comprehensive and restrictive gene lists.
Following variant filtration for putative P/LP variants, a total of
1,287 variants were identified in the comprehensive list, while only
1,096 were present in the restrictive list, a removal of 191 variants
(15%; Fig. S1A). Per individual, this equated to an average of 29
(min = 14; max = 43) and 24 (min = 12; max = 35) variants in the
comprehensive and restrictive lists, respectively. While 58% (402/
696) of the genes in the comprehensive list met strong or
definitive disease association after manual review, this ratio
increased to 73% in the restrictive list (402/551). After variant
assessment, all reportable variants from the comprehensive list—
defined as P/LP associated to a strong or definitive GDA—were
also identified in the restrictive list (an average of 3 variants per
individual; min = 0; max = 7) (Fig. S1B).

DISCUSSION
Part of an effective and efficient strategy for exome and genome
analyses includes defining an appropriate list of genes to
interrogate for pathogenic variants. All genes with evidence for
a disease association are needed for expanded analyses. However,
in different contexts, the level of evidence required for the GDA
may vary. For instance, genes with less or emerging evidence of
disease association may be useful in settings where additional
familial studies can help determine the likelihood of the gene’s
responsibility for the individual’s disease. However, lists including
limited evidence genes will have less utility in the context of
genomic screening where the asymptomatic individual will not
contribute evidence to the GDA and there is no or very limited
utility of returning the result.
Here, we provide a framework that utilizes available databases

to efficiently generate both a comprehensive (6,145 genes) and a
restrictive list (3,929 genes) of disease-associated genes (Fig. 1;
Table S1). Compared to ClinGen expert panels, the restrictive gene
list excluded 30% of genes with lower levels of evidence, while
maintaining all strong or definitively associated genes, aside from

one gene with older and borderline evidence (Fig. 2). Addition-
ally, applying the restrictive gene list to 45 genomes captured all
reportable variants, while reducing the number of variants needed
to be reviewed by 15%.
Further refinements to this approach can help further reduce

the burden of genomic analyses, including utilizing more variant
level information in the approach, such as handling variants with
discordant classifications and variants whose population frequen-
cies suggest they are too common to be associated with
Mendelian disease. However, our current approach is easily
implemented and updatable, shows high performance when
compared to manually curated data sets, and can provide
increased efficiency as genomic applications become more
routine.

DATA AVAILABILITY
The gene lists and data used to develop the lists can be found at https://Broad.io/
genelist.
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