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Abstract
Background: Genomic testing is increasingly employed in 
clinical, research, educational, and commercial contexts. Ge-
nomic literacy is a prerequisite for the effective application 
of genomic testing, creating a corresponding need for vali-
dated tools to assess genomics knowledge. We sought to 
develop a reliable measure of genomics knowledge that in-
corporates modern genomic technologies and is informa-
tive for individuals with diverse backgrounds, including 
those with clinical/life sciences training. Methods: We devel-
oped the GKnowM Genomics Knowledge Scale to assess the 
knowledge needed to make an informed decision for ge-
nomic testing, appropriately apply genomic technologies 
and participate in civic decision-making. We administered 
the 30-item draft measure to a calibration cohort (n = 1,234) 
and subsequent participants to create a combined valida-

tion cohort (n = 2,405). We performed a multistage psycho-
metric calibration and validation using classical test theory 
and item response theory (IRT) and conducted a post-hoc 
simulation study to evaluate the suitability of a computer-
ized adaptive testing (CAT) implementation. Results: Based 
on exploratory factor analysis, we removed 4 of the 30 draft 
items. The resulting 26-item GKnowM measure has a single 
dominant factor. The scale internal consistency is α = 0.85, 
and the IRT 3-PL model demonstrated good overall and item 
fit. Validity is demonstrated with significant correlation (r = 
0.61) with an existing genomics knowledge measure and 
significantly higher scores for individuals with adequate 
health literacy and healthcare providers (HCPs), including 
HCPs who work with genomic testing. The item bank is well 
suited to CAT, achieving high accuracy (r = 0.97 with the full 
measure) while administering a mean of 13.5 items. Conclu-
sion: GKnowM is an updated, broadly relevant, rigorously 
validated 26-item measure for assessing genomics knowl-
edge that we anticipate will be useful for assessing popula-
tion genomic literacy and evaluating the effectiveness of ge-
nomics educational interventions. © 2021 S. Karger AG, Basel
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Introduction

Millions of individuals have had or will obtain per-
sonal genomic testing in educational, clinical, research, or 
commercial settings [1]. Achieving some degree of popu-
lation genomic literacy (including provider genomic lit-
eracy) is a prerequisite to the effective application of that 
genomic testing [2–8]. The critical role of genomic liter-
acy in genomic testing creates a corresponding need for 
validated tools to assess genomics knowledge [6].

We define genomic literacy as the knowledge needed 
to (1) make an informed decision for genomic testing, (2) 
appropriately apply genomic technologies and accurately 
interpret genomic data, and (3) participate in decisions 
about genetics and genomics policy questions as a mem-
ber of society. This definition extends those described 
previously [9] to include the application of modern ge-
nomic technologies, the interpretation of genomic data, 
and the nonclinical personal, familial, and societal impli-
cations of genomic testing. The expanded definition re-
flects the increasing opportunities for recipients of ge-
nomic testing to obtain and analyze their own genomic 
data [10, 11] and the concerns of all parties about the eth-
ical, legal, and social implications (ELSI) of genomic test-
ing [12].

A survey of existing genetic or genomics knowledge 
measures is summarized in online suppl. Table 1 (see 
www.karger.com/doi/10.1159/000515006 for all online 
suppl. material). As genomic technology evolves, new 
measures are needed to address the new capabilities, lim-
itations, and implications of those technologies. For ex-
ample, the Kaphingst et al. [13] measure and the recent-
ly developed UNC Genomics Knowledge Scale (UNC-
GKS) [14] and Knowledge of Genome Sequencing 
(KOGS) [15] measures were designed to assess genomics 
(vs. genetics) knowledge and to incorporate modern ge-
nomic technologies such as whole exome sequencing or 
whole genome sequencing (WES/WGS). Existing mea-
sures generally do not cover ELSI topics, such as the legal 
protections for genomic information, which are impor-
tant for informed decision-making but are poorly under-
stood [16] and/or exhibit ceiling effects in genomic study 
cohorts [17]. Personal genomic studies, for example, are 
often enriched for participants with high educational at-
tainment and life science/health professionals in particu-
lar [18, 19]. Evaluating the effectiveness of genomics ed-
ucational interventions, especially those targeting cur-
rent or future healthcare providers or life scientists, 
requires a measure that is informative for more knowl-
edgeable examinees.

Here we present the GKnowM Genomics Knowledge 
Scale, an updated and broadly relevant measure for as-
sessing population genomic literacy and evaluating the 
effectiveness of genomics educational interventions. We 
developed GKnowM to address the need for a genomics 
knowledge measure that incorporates modern genomic 
technologies such as WES and WGS that are now in wide-
spread use, addresses knowledge relevant to ELSI con-
cerns, and is informative for a broad range of examinees. 
We performed a rigorous psychometric validation of the 
proposed measure with members of the general public, 
students/trainees, and genetics/genomics professionals, 
including simulations to demonstrate the suitability of 
the item bank for efficient computerized adaptive testing 
(CAT) [20]. Our goal was to create a robust and useful 
tool for assessing an individual’s genomics knowledge 
across a wide range of experience, education, and exper-
tise.

Methods

Definition of Content Domain
We developed the initial content domain based on a detailed 

literature review of competencies published by relevant profes-
sional societies (including the Accreditation Council for Genetic 
Counseling, American Board of Medical Genetics and Genomics, 
American College of Medical Genetics, American Nurses Associa-
tion, and Association of Professors of Human and Medical Genet-
ics), textbooks, content domains developed for existing genetics 
knowledge, and the investigators’ professional expertise. Nine 
published competencies or content domains [21–28] were inde-
pendently reviewed and coded for genomics concepts by 2 inves-
tigators (M.D.L. and S.A.S.); any differences were then resolved 
through consultation to produce the draft content domain. We 
revised the draft content domain based on the feedback from ge-
nomics professionals, including clinicians, researchers, and educa-
tors.

This process produced a final content domain with 3 top-level 
concepts: (1) “General Genetics and Genomics Knowledge,” (2) 
“Applications of Genomics Technology,”and (3) “Genomics and 
Society,” each with multiple sub-concepts. Table 1 summarizes the 
content domain. For conciseness, in the remainder of the study, we 
will use the term “genomics” to encompass genetics and genomics.

Item Development
We undertook a multistage item development process incor-

porating item identification, classification, adaptation and/or cre-
ation, and revision [29]. We began the item development process 
by reviewing 235 items from existing genetics and genomics 
knowledge measures, classroom exercises, and other sources (pub-
lished measures are noted in online suppl. Table 1). Two investiga-
tors (M.D.L. and S.A.S.) coded the existing items with the content 
domain. Approximately 80% of the existing items were coded as 
“General Genetics and Genomics Knowledge,” with fewer items 
coded “Applications of Genomics Technologies,” and “Genomics 
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and Society.” As a result, we focused our novel item development 
effort in the latter 2 areas. In prior work, we observed ceiling effects 
with existing genomics knowledge measures [30]. To ensure that 
items would be informative for a broad range of examinees, includ-
ing those with prior genomics education, we also focused on draft-
ing more difficult items that would complement existing mea-
sures. The proposed measure is intended to be used in a wide va-
riety of settings, not just in the context of a specific genomic test, 
such as diagnostic WES. Thus, we aimed to develop an item bank 
that would be relevant to multiple genomic testing technologies 
and contexts.

We developed an initial item bank of 74 multiple-choice items 
(with 3 or 4 response options) consisting of novel items and items 
adapted from published measures [9, 31–33]. We iteratively re-
fined the item bank with a focus on ensuring item relevance, re-
moving ambiguity, and clarifying the item language through feed-
back from genomics professionals and others. We administered 
the draft items to the general public recruited via Amazon Me-
chanical Turk and flyers, undergraduate students, healthcare pro-
fessionals, and genomics professionals. Based on preliminary test-
ing, we selected 30 high-performing items with a range of difficul-
ties and broad coverage of the content domain. The complete text 
of the 30 items and the key are included in the online suppl. mate-
rial.

Survey
We developed an online survey comprising demographic ques-

tions, the 30 test items, the UNC Genomics Knowledge Scale 
(UNC-GKS) [14], a 1-item health literacy measure [34], and a sin-
gle-item self-assessment of genomics knowledge (“How would you 
rate your knowledge of genomics” with 5 answer options: not 
knowledgeable – extremely knowledgeable). We administered the 

survey via the Qualtrics platform to cohorts recruited via commer-
cial panel providers (targeting a US census panel), flyers on an un-
dergraduate campus and at an academic medical center, an under-
graduate psychology department student pool, advertisements in 
the National Society of Genetic Counselors e-mail bulletin, and 
e-mail advertisements. We recruited participants in 2 phases, an 
initial calibration cohort and a subsequent validation cohort. The 
30 test items were also administered as part of a different study to 
20 students in an intensive undergraduate human genome analysis 
course before and after the course (the survey was an optional ele-
ment of the course). This project was reviewed and approved by 
the Institutional Review Boards at the Icahn School of Medicine 
and Middlebury College.

Respondents who completed the survey faster than a minimum 
time threshold (“speeders”), spent longer than 1 h, “straightlined” 
gridded answers, answered 85% or more of the multiple-choice 
items identically, or answered educational attainment demo-
graphic questions inconsistently (e.g., reported being a practicing 
physician without the corresponding educational attainment), 
were excluded from further analysis. We separately determined 
the minimum completion times for the calibration phase (110 s to 
complete the GKnowM items) and the validation phase (330 s to 
complete the entire survey) based on the fastest entirely correct 
response to either the GKnowM or the UNC GKS measures. We 
treated missing responses to GKnowM items as incorrect.

Psychometric Analysis
Psychometric analysis was performed with a combination of R 

3.5 and Xcalibre 4.2 [35]. Dimensionality and item response theo-
ry (IRT) analyses were performed on the calibration cohort, mod-
eled on the approaches employed by Langer et al. [14] and Sand-
erson et al. [15].

Table 1. Summary of content domain

General genetics and genomics knowledge
Genome composition, organization, translation, and reproduction
Genetic variation, including types, extent, constitutionality, and nomenclature
Genotype-phenotype
Inheritance
Categories, and where relevant, clinical validity, of genomic information, including health and nonhealth related
Current utility of genetic information

Application of genomic technologies
Reference genome composition and organization
Methodology, analytical capabilities, and analytical limitations of molecular testing technologies
Resources available for interpretation of genomic test results, including literature, online databases, and in silico tools
Monogenic disease variant interpretation and classification
Risk measures
Capabilities and limitations of different strategies for genomic testing, for example, trio or testing-affected individual first
Risk assessment

Genomics and society
Genomic screening
Legal protections for genetic information
Distinction between research, DTC, and clinical genomic testing
Implications and inferences for self and others of genetic information
Roles of different genomics professionals including physicians, genetic counselors, and laboratory geneticists



Linderman/Suckiel/Thompson/Weiss/
Roberts/Green

Public Health Genomics4
DOI: 10.1159/000515006

We performed the Kaiser-Meyer-Olkin (KMO) analysis to as-
sess suitability for factor analysis. We considered items with mea-
sure of sampling adequacy (MSA) values less than the “meritori-
ous” threshold of 0.8 [36] for removal prior to factor analysis. We 
performed exploratory factor analysis (EFA) to assess the dimen-
sionality of the items using tetrachoric correlations, a minimum 
residual approach, and oblimin rotation. We employed parallel 
analysis (PA) to identify the number of factors to be retained, gen-
erating multiple replicates (n = 100) of randomly simulated and 
randomly resampled data matrices of the same size as the respon-
dent data. Factors from the real data whose actual eigenvalues ex-
ceeded the average simulated and resampled eigenvalues were re-
tained [37]. KMO, EFA, and PA were performed with the R psych 
package [38]. We performed confirmatory factor analysis (CFA) 
with the R lavaan package [39] using the diagonally weighted least 
squares estimator, robust standard errors, and mean- and vari-
ance-adjusted test statistics. We evaluated CFA model fit with root 
mean square error (RMSEA) (acceptable <0.05), the standardized 
root mean square residual (SRMR) (acceptable <0.05), the Tucker-
Lewis index (TLI) (acceptable >0.95), and the comparative fit in-
dex (CFI) (acceptable >0.95) [40] and modification indices.

We performed classical test theory analyses and IRT calibration 
with Xcalibre. We calculated difficulty (p) and point-biserial cor-
relation (rpb) for each item and evaluated internal consistency with 
Cronbach’s α [41]. We fit a 3-parameter (3-PL) IRT model with 
discrimination (a), difficulty (b), and guessing (c) parameters us-
ing a scaling constant D = 1.7. IRT scores (θ) were estimated with 
a weighted maximum likelihood approach [42] to handle all cor-
rect or all incorrect responses without assuming a prior distribu-
tion; individuals with extreme IRT scores (<−4 or >4) were ex-
cluded. We evaluated overall model fit, item fit, local dependence, 
and reliability with the R mirt package [43]. Overall model fit was 
evaluated with the M2 statistic and RMSEA, SRMR, TLI, and CFI 
as described above in the context of CFA. We evaluated item fit 
with the S-Χ2 goodness of fit indices [44]. To control the false dis-
covery rate in the presence of multiple comparisons, we performed 
Benjamini-Hochberg (BH) correction [45, 46] when determining 
significance. We evaluated local dependence with the Q3 statistic 
of residual correlations [64].

We evaluated differential item functioning (DIF) across sex, 
ethnicity (white vs. non-white), and age (<45 vs. 45+ years) to 
identify items that performed differently across these subgroups 
while holding genomics knowledge constant. For each item, we 
performed logistic regression with 3 models: (1) IRT score as the 
sole predictor, (2) IRT score and the DIF variable as predictors, 
and (3) IRT score, the DIF variable, and an interaction term as 
predictors [47]. To evaluate uniform DIF (effect is similar across 
the entire construct range), we performed a likelihood ratio test 
between models 1 and 2; to evaluate nonuniform DIF (effect differs 
across the construct range), we performed a likelihood ratio test 
between models 2 and 3. Similar to the item fit analyses, we em-
ployed the BH correction procedure when evaluating significance.

Statistical Analysis
Statistical analyses of the GKnowM measure were performed 

with R 3.5 on the combined validation cohort. We evaluated con-
current validity with UNC-GKS T score [14], a previously vali-
dated genomics knowledge measure, and convergent validity with 
the Chew et al. [34] single question measure of health literacy. Re-
spondents missing >20% of the UNC-GKS items were excluded; 

for the remaining respondents, missing items were scored as in-
correct. We computed the Pearson correlation between the 
GKnowM IRT score and UNC-GKS T score and performed an 
independent samples unequal variances t-test to compare 
GKnowM IRT scores between individuals with adequate and in-
adequate health literacy. We predicted that the GKnowM IRT 
score should be positively correlated with the UNC-GKS and that 
individuals with adequate health literacy will have increased ge-
nomics knowledge due to their increased ability to understand 
health information [14].

We similarly performed an independent samples unequal vari-
ances t-test to compare GKnowM IRT scores between individuals 
who did and did not self-report working as or studying to be a 
healthcare practitioner, clinical researcher, or life scientist (abbre-
viated HCP) and between HCPs who did and did not report work-
ing with genomic testing/data. Since genomics is directly relevant 
to a HCP’s professional activities, we predicted that those indi-
viduals should have increased genomics knowledge. We per-
formed a paired t-test to evaluate the GKnowM IRT scores of stu-
dents before and after they completed an intensive 1-month un-
dergraduate course in human genome analysis (based on a similar 
graduate course [48]). The course material is aligned with the 
GKnowM construct and so we predicted that students would have 
significantly higher IRT scores after completing the course. We 
evaluated the correlation between the GKnowM IRT score and 
self-assessed knowledge with Kendall’s Tau.

CAT Simulation
To evaluate the utility and specification of a CAT implementa-

tion of the proposed GKnowM measure, we performed a post-hoc 
simulation study of the item bank [49] with the R catR package 
[50]. Using the existing responses of calibration cohort examinees 
to the fixed-form test, we “readministered” the items in simulation 
to identify the minimum subset of items for each examinee that 
resulted in IRT score estimates that were highly correlated with the 
IRT score from the fixed-form test.

Since the GKnowM measure is intended for measuring popula-
tion genomic literacy (and not high stakes testing or other applica-
tions), we employed a static initial θ and selected items by maxi-
mum information. The goal was to measure genomics knowledge 
with the minimum number of items, so we used a target standard 
error of measurement (SEM) as the termination criterion with a 
maximum number of items even if the target SEM was not reached. 
We simulated target SEM values of 0.30, 0.35, and 0.40, with and 
without a 20-item maximum limit for the calibration cohort. Giv-
en the difficulty of the items, this maximum is most likely to apply 
to examinees with lower knowledge levels. For this group, it is suf-
ficient to estimate that the IRT score is much <0. We evaluated the 
CAT simulation with the correlation between full item bank score 
and CAT score estimate, the number of items, and the percentage 
of respondents reaching the maximum number of items.

Results

Sample
Of the 1,499 respondents who completed the survey 

during the calibration phase, 265 respondents were ex-
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cluded by the quality filters. A combined total of 3,287 
respondents completed the survey in the calibration and 
validation phases, of which 882 were excluded by the 
quality filters. An unknown number of respondents were 
excluded by the commercial cohort providers for failing 
to complete the survey or failing the vendor’s quality fil-
ters. Table 2 lists the participant characteristics. The me-
dian time to complete the 30 draft items was 10.8 min in 
the calibration cohort and 10.4 min in the validation co-
hort after applying quality filters.

Psychometric Analysis
Psychometric analysis and calibration were performed 

on the n = 1,234 respondents in the calibration cohort. 
The overall KMO MSA was 0.92. Two items, Q22 and 
Q28, had KMO MSA values below the threshold of 0.80 
and were removed; Q29 had a borderline MSA value 
(0.756) and so was retained for further analysis. The KMO 
results for the remaining items indicate that the data were 
suitable for factor analysis. In preliminary EFA with a sin-
gle factor, Q26 had the smallest loading of any of the items 
retained after KMO analysis. Performing EFA on the sub-
set of respondents who self-identified as HCPs, Q26 had 
a loading of 0.28, while all other items had loadings >0.40. 
Based on the factor analysis and feedback from respon-
dents that item Q26 was confusing, we removed that item 
from the final measure.

PA of the remaining items indicated that 11 factors 
had eigenvalues greater than the eigenvalues of the ran-
dom data. Online suppl. Figure 1 shows the scree plot. 
However, the eigenvalue of the first factor is 7.8-fold 
greater than the second factor indicating the presence of 
a single dominant factor. The actual eigenvalues for fac-
tors 3–11 are very similar to the eigenvalues for the ran-
dom data; thus, we focused on a two-factor analysis. A 
single factor solution accounted for 30% of the variance, 
while the two-factor solution accounted for 34%. The 
second factor appeared to be associated with a single 
item, Q29, which had a much larger loading (>0.7) than 
all other items. Based on the borderline KMO MSA, fac-
toring, and fit issues in preliminary IRT analysis, we re-
moved that item and proceeded with a single factor ap-
proach.

A CFA model with a single factor showed good fit (χ2 =  
523.0 [299], p < 0.001; RMSEA = 0.025, SRMR = 0.048, 
CFI = 0.976, TLI = 0.974). The RMSEA and SRMR met 
the acceptable thresholds for good fit (<0.05) as did CFI 
and TLI (>0.95) [40]. Three pairs of items had modifica-
tion indices >10 suggesting local dependence (between 
items Q10 and Q13, Q2 and Q13, and Q17 and Q27), but 

Table 2. Participant characteristics

Calibration, 
N (%)1

Validation, 
N (%)1

Sex/gender
Female 707 (57.3) 1,388 (57.7)
Male 508 (41.2) 990 (41.2)
Nonbinary 10 (0.8) 10 (0.4)

Age group
18–24 years 251 (20.3) 361 (15.0)
25–34 years 211 (17.1) 391 (16.3)
35–44 years 193 (15.6) 413 (17.2)
45–54 years 202 (16.4) 430 (17.9)
55–64 years 175 (14.2) 396 (16.5)
65–74 years 165 (13.4) 337 (14.0)
75 or older 29 (2.1) 69 (2.9)

Race/ethnicity2

White 869 (70.4) 1,762 (73.3)
Hispanic or Latino 182 (14.7) 290 (12.1)
Black or African American 128 (10.4) 254 (10.6)
East Asian 48 (3.9) 80 (3.3)
South Asian 23 (1.9) 53 (2.2)
Native Hawaiian or Pacific Islander 4 (0.3) 14 (0.6)
American Indian or Alaska native 15 (1.2) 45 (1.9)
Other 25 (2.0) 26 (1.1)

Highest education level completed
Less than high school 25 (2.0) 63 (2.6)
High school graduate 287 (23.3) 549 (22.8)
Some college 322 (25.5) 624 (25.9)
Two-year college degree 123 (10.0) 260 (10.8)
Four-year college degree 204 (16.5) 438 (18.2)
Graduate work or degree 264 (21.4) 454 (18.9)

Household income
Less than USD 40,000 452 (36.6) 911 (37.9)
USD 40,000–69,999 284 (23.0) 579 (24.1)
USD 70,000–99,999 185 (15.0) 394 (16.4)
USD 100,000–199,999 195 (15.8) 359 (14.9)
USD 200,000 or greater 102 (8.3) 134 (5.6)

Working as or studying to be a HCP
Yes 255 (20.7) 358 (14.9)
No 974 (78.9) 2,031 (84.4)

General health literacy
Inadequate 395 (32.0) 696 (28.9)
Adequate 814 (66.0) 1,674 (69.6)

UNC-GKS T score mean (SD) 45.5 (9.4) 45.3 (8.9)

HCP, healthcare provider; UNC-GKS, UNC Genomics 
Knowledge Scale. Participant characteristics for the calibration 
cohort (n = 1,234) and combined validation cohort (n = 2,405). 
1  Percentages may not add to 100% due to missing data. 
2 Percentages may sum to more than 100% because respondents 
may have selected more than 1 option.
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all 3 were close to the threshold (<13.3). Fitting a CFA 
model in which the errors for these item pairs could cor-
relate produced a good fit (χ2 = 480.3 [296], p < 0.001; 
RMSEA = 0.022, SRMR = 0.046, CFI = 0.980, TLI = 0.978) 
that was statistically significantly better than the initial 
model (χ2 = 45.7 [3], p < 0.001). However, the residual 
correlations were <0.16, and the items had different con-
tent areas, so we retained all items.

Table 3 lists the classical test theory difficulty (p) and 
discrimination (rpb) results, the IRT 3-PL model param-
eters, and S-Χ2 statistic for the 26-item GKnowM mea-
sure. The overall IRT 3-PL model fit met the acceptable 
thresholds for good fit (M2 = 414.4 [351], p = 0.011;  
RMSEA = 0.012, SRMR = 0.029, TLI = 0.996, CFI =  
0.996). We observed significant item misfit at the α = 0.05 
level with BH correction for multiple items. Visual in-
spection of those items (Q1, Q14, Q16–Q18, Q21, Q25) 
indicated adequate fit, suggesting that the statistical mis-
fit was due to sample size. Based on content relevance we 

retained all items. All residual correlations were below 
0.2, indicating local independence.

Online suppl. Tables 2–4 list the regression coeffi-
cients and p values for DIF analysis of all items. We did 
not observe uniform DIF for gender and ethnicity that 
was significant at the α = 0.05 level with BH correction 
but did observe significant nonuniform DIF for multiple 
items for gender and ethnicity. These results indicate that 
more knowledgeable white or female respondents gener-
ally performed better on these items than other individu-
als at the same knowledge level. However, the nonuni-
form DIF results may reflect demographic biases among 
individuals with health care, life sciences, or social sci-
ences training. As shown in online suppl. Figure 2, many 
of the highest scoring respondents are, or are studying to 
be, genetic counselors. Genetic counselors are over-
whelmingly white and female [51], and the gender and 
ethnicity of the high-scoring respondents in this sample 
reflect those demographics (with fewer nonwhite or male 

Table 3. Item model parameters

Item CTT IRT 3-PL model parameters IRT 3-PL item fit

p value rpb a b c S-Χ2 (df) p value

Q1 0.535 0.496 1.084 0.002 0.105 35.6 (16) 0.003
Q2 0.682 0.443 0.981 −0.604 0.103 11.4 (17) 0.833
Q3 0.763 0.397 1.042 −0.722 0.257 12.6 (16) 0.703
Q4 0.561 0.481 1.490 0.172 0.242 16.6 (17) 0.483
Q5 0.688 0.443 1.107 −0.362 0.247 17.9 (17) 0.395
Q6 0.628 0.426 1.041 −0.138 0.233 12.7 (17) 0.754
Q7 0.684 0.448 1.361 −0.203 0.318 11.3 (16) 0.790
Q8 0.756 0.463 1.525 −0.618 0.248 23.7 (14) 0.049
Q9 0.469 0.397 1.750 0.655 0.271 21.5 (17) 0.204
Q10 0.455 0.507 1.839 0.466 0.213 18.2 (17) 0.376
Q11 0.823 0.395 1.151 −0.942 0.325 18.1 (14) 0.202
Q12 0.443 0.429 1.168 0.630 0.217 17.3 (20) 0.635
Q13 0.402 0.292 1.637 1.047 0.274 27.7 (20) 0.118
Q14 0.525 0.415 0.979 0.320 0.230 36.6 (20) 0.013
Q15 0.592 0.414 1.002 0.065 0.243 16.2 (18) 0.575
Q16 0.334 0.228 0.998 1.569 0.244 44.3 (20) 0.001
Q17 0.594 0.322 0.721 0.136 0.257 38.5 (20) 0.008
Q18 0.444 0.425 1.660 0.662 0.245 39.4 (19) 0.004
Q19 0.386 0.399 1.294 0.898 0.220 23.7 (20) 0.258
Q20 0.371 0.197 1.088 1.537 0.280 18.1 (20) 0.581
Q21 0.414 0.372 0.881 0.860 0.212 38.2 (20) 0.008
Q23 0.468 0.292 1.751 0.963 0.350 20.2 (19) 0.382
Q24 0.459 0.461 1.726 0.532 0.234 12.6 (17) 0.762
Q25 0.316 0.316 1.657 1.294 0.227 46.2 (20) 0.001
Q27 0.413 0.298 1.271 1.080 0.274 28.7 (20) 0.093
Q30 0.422 0.388 1.089 0.775 0.222 21.4 (20) 0.372

IRT 3-PL a parameter does not include D = 1.7 scaling constant. IRT, item response theory.
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individuals with higher IRT scores). When we excluded 
genetic counselors, we did not observe significant non-
uniform DIF for gender or ethnicity. We observed uni-
form DIF in both directions for age for multiple items 
that were significant at the α = 0.05 level with BH correc-
tion. However, this analysis may similarly reflect the de-
mographics of genetic counselors who are more likely to 
be younger than 45 years, younger undergraduate stu-
dents who may be more likely to have learned about new-
er genomic technologies in school, and/or older individu-
als who may be more likely to have encountered genomic 
testing professionally or personally.

We performed the same DIF analysis with the com-
bined validation cohort. We observed 1 item, Q1, to have 
significant uniform DIF for gender with BH correction in 
the larger cohort (α < 0.001). A review of the item content 

did not indicate a potential explanation for gender bias 
and so the item was retained.

Figure 1a shows the test information function (TIF), 
and Figure 1b shows the conditional standard error of 
measurement function. The maximum TIF was 14.1 and 
the minimum conditional standard error of measure-
ment was 0.267 at an IRT score of 0.78. Reliability [52] 
was >0.70 for IRT scores of −1.1 to 2.3. Figure 1c shows 
the full test IRT score distributions for participants in the 
calibration and validation cohorts. The peak at higher 
knowledge levels reflects the HCPs, and in particular, the 
genomic professionals in the sample. The internal consis-
tency of the 26-item measure was α = 0.850. To facilitate 
applications with summed scoring, Table  4 provides a 
conversion between the summed score and the IRT scaled 
T-score [53].
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Validity
The GKnowM IRT score and the previously validated 

UNC-GKS T score, both of which measure genomics 
knowledge, were significantly correlated r = 0.61 (0.58–
0.63), p < 0.001. Online suppl. Figure 3 shows respon-
dents UNC-GKS T scores versus their GKnowM IRT 
scores. We observed a ceiling effect in which a range of 
higher-scoring participants answered all UNC-GKS 
items correctly.

Consistent with our predictions, respondents report-
ing adequate health literacy had higher GKnowM IRT 
scores (M = 0.10) than did those reporting inadequate 
healthy literacy (M = −0.19), t (1,439.7) = 8.02 and p < 
0.001. Similarly self-reported HCPs had higher GKnowM 
IRT scores (M = 0.53) than non-HCPs (M = −0.08), t 
(392.6) = 8.28 and p < 0.001. Among self-reported HCPs, 
those individuals who reported ordering, interpreting or 
implementing genetic/genomic tests or using genomic 

technologies in their research or employment had higher 
GKnowM IRT scores (M = 0.87) than those who did not 
(M = 0.05), t (331.7) = 6.38 and p < 0.001.

Of the 20 students enrolled in an intensive undergrad-
uate human genome analysis course, 14 completed the 
draft items before and after the course. There was a sig-
nificant increase in students’ GKnowM IRT scores from 
before (M = 0.93) to after (M = 1.27) the course, t (13) = 
5.28 and p < 0.001. To facilitate cohort comparisons when 
using summed scores, online suppl. Table 5 provides 
mean scores for the above groups using T-scores com-
puted with the mapping in Table 4.

Self-Assessed Knowledge
Figure 2 shows the percentage of individuals at each 

knowledge level endorsing different answers to “How 
would you rate your knowledge of genomics.” Individu-
als with higher IRT scores accurately rated themselves as 
“very” or “extremely” knowledgeable, while the self-as-
sessments of individuals with lower IRT scores were less 
or even negatively correlated with their objectively as-
sessed knowledge. We observed a correlation of τ = 0.04 
and p = 0.016 between IRT score and self-assessed 
knowledge for all individuals, and a significant positive 
correlation τ = 0.29 and p < 0.001 for individuals with an 
IRT score ≥0 and significant negative correlation τ = 
−0.16 and p < 0.001 for individuals with an IRT score <0. 
The sharp increase in self-assessed knowledge at IRT 
scores >1.5 is consistent with the knowledge level above 
which the majority of participants are genomics profes-
sionals.

CAT Simulation
Table 5 lists the CAT post-hoc simulation results for 

the calibration cohort for different target SEM values, 
with and without a maximum number of items. A CAT 
implementation with a target SEM = 0.40 and a 20-item 
maximum is accurate (r = 0.965 compared to the full item 
bank) while administering approximately half the num-
ber of items on average. Incorporating a maximum num-
ber of items did not impact accuracy but reduced the test 
length by >2 items. Given the overall difficulty of the item 
bank, the maximum number of items is most likely to 
impact examinees at lower knowledge levels. For such a 
cohort, there is minimal value for administering addi-
tional items as doing so is not going to improve score ac-
curacy.

Table 4. Conversion for summed score to IRT scaled T-score

Summed score T-score SE

0 31.3 5.4
1 32.0 5.4
2 32.8 5.5
3 33.7 5.6
4 34.7 5.7
5 35.8 5.7
6 37.1 5.8
7 38.5 5.7
8 40.1 5.7
9 41.8 5.5

10 43.6 5.2
11 45.4 4.8
12 47.1 4.5
13 48.7 4.1
14 50.3 3.8
15 51.7 3.5
16 53.2 3.3
17 54.6 3.1
18 55.9 3.0
19 57.3 2.9
20 58.7 2.9
21 60.2 2.9
22 61.8 3.0
23 63.6 3.2
24 65.7 3.6
25 68.4 4.1
26 72.2 5.0

Conversion computed using the calibration cohort assuming a 
population mean of 50 and a SD of 10. IRT, item response theory.
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Discussion

The NHGRI’s 2011 vision for the future of genomic 
medicine specifically cites the need for both providers 
and patients/consumers to achieve genomic literacy [8]. 

Doing so will require effective tools for assessing popula-
tion genomic literacy and rigorously evaluating the effec-
tiveness of genomics educational interventions. Existing 
genomics knowledge measures can be too narrowly tar-
geted in both content and intended examinee knowledge 
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Table 5. CAT post-hoc simulation results for different target SEM values and maximum number of items

Configuration Correlation (MSD) Mean (SD) items Range of items Max. items (%)

SEM max.

0.30 None 0.996 (−0.050) 23.2 (4.5) 14–26 69.2
0.30 20 0.995 (−0.050) 18.9 (2.0) 14–20 74.9
0.35 None 0.984 (−0.027) 19.2 (7.4) 8–26 51.0
0.35 20 0.983 (−0.027) 16.2 (4.7) 8–20 53.9
0.40 None 0.966 (−0.011) 15.8 (8.4) 6–26 38.2
0.40 20 0.965 (−0.011) 13.5 (5.7) 6–20 38.7

CAT, computerized adaptive testing; SEM, standard error of measurement; MSD, mean signed difference.
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level. Here we present the GKnowM Genomics Knowl-
edge Scale, a rigorously validated 26-item measure of ge-
nomic literacy. GKnowM is designed to meet the need for 
a genomics knowledge measure that incorporates mod-
ern genomic technologies (such as WES/WGS), is infor-
mative across a wide range of examinees (including cur-
rent or future genomics professionals), and addresses the 
breadth of knowledge relevant to informed decision-
making as both a patient and a member of society.

We anticipate the GKnowM scale will be useful in a 
variety of research, clinical, and educational contexts. 
Translational genomic studies use genomic literacy mea-
sures for multiple purposes, including to evaluate patient-
focused educational interventions, such as those used in 
the genetic counseling protocol and as a cross-sectional 
measure to be tested against participant outcomes. These 
applications are critical and timely. The rapid advance of 
genomic technologies has created a corresponding need 
to develop new guidelines and best practices for patients/
participants and providers alike. Those best practices will 
be informed by the data collected during the coming years 
on the impact of genomic literacy on the application of 
genomic testing and how best to promote the develop-
ment of genomic literacy [6]. Similarly, genomics knowl-
edge measures are needed to rigorously evaluate the edu-
cational interventions being developed for all stages of the 
educational pipeline to close the gap between the demand 
for and supply of genomics professionals [54–58].

These are overlapping needs. There is not always a 
clear distinction between the knowledge required of pa-
tients/participants versus that required of providers. For 
example, many consumer-facing genomic testing cus-
tomers and research study participants can obtain their 
genomic data for further self-directed analysis and inter-
pretation [10, 11]. Thus, in GKnowM, we sought to define 
a content domain that reflects the different and overlap-
ping roles for an individual, that is, patient/participant, 
provider, and citizen, and an item bank that could effec-
tively measure genomic literacy across a broad range of 
knowledge levels. Deploying a common measure that can 
be used across different settings and participant/student 
populations will reduce duplicated effort and facilitate 
comparison and meta-analysis of population genomic lit-
eracy and the educational efforts to enhance that literacy.

We performed a rigorous psychometric evaluation of 
GKnowM with a large, educationally, and ethnically di-
verse cohort drawn from the general public, students, and 
genomics professionals. Model fit, item fit, and dimen-
sionality analyses indicate that GKnowM successfully 
measures an essentially unidimensional construct. 

GKnowM items performed similarly across male/female 
and white/nonwhite examinees (uniform DIF), although 
we did observe significant nonuniform DIF for several 
items. The latter reflects the limited diversity in this sam-
ple at higher knowledge levels. Many of the higher-scor-
ing participants are genetic counselors, a profession that 
is overwhelmingly white and female [51]. Excluding ge-
netic counselors eliminated significant nonuniform DIF 
between male/female and white/nonwhite examinees. 
Validity analyses showed that GKnowM is significantly 
positively correlated with a previously validated genom-
ics knowledge measure and a related measure of health 
literacy; and that groups, such as healthcare providers, 
whom we could expect to have increased levels of genom-
ics knowledge, do indeed have higher scores. Thus, the 
GKnowM score successfully measures an individual’s ge-
nomics knowledge.

GKnowM is informative for a wide range of examinees 
(from approximately 1 standard deviation below the mean 
to 2 standard deviations above the mean) and is most in-
formative for examinees with above-average genomics 
knowledge. As such, it may be most useful with cohorts 
where participants have a range of educational back-
grounds, including individuals with higher educational at-
tainment or health or life science training [59, 60], and in 
evaluating educational interventions where individuals are 
actively learning about genomics and genome analysis. For 
example, we showed an application of GKnowM evaluat-
ing the knowledge gained in an undergraduate human ge-
nome analysis course (in which baseline knowledge scores 
were already above average). GKnowM complements ex-
isting measures, such as UNC-GKS and KOGS, which are 
most informative for less knowledgeable individuals (i.e., 
peak TIF is at IRT scores below zero). GKnowM is less in-
formative for differentiating individuals with none versus 
minimal knowledge but can differentiate individuals that 
might otherwise “max out” other measures.

A potential limitation of the GKnowM scale is its 
length (26 items); the median time spent completing the 
original 30 online items was 10.4 min (after removing the 
fastest respondents). We performed simulations that 
showed that a CAT implementation of the measure could 
achieve high accuracy while administering only 13.5 
items on average. A CAT approach would enjoy the ben-
efits of the larger item bank while reducing examinee bur-
den levels to be similar to other measures (KOGS has 9 
true-false items, UNC-GKS has 19 or 25 true-false items, 
and Kaphingst et al. [13] have 11 items). A CAT imple-
mentation has been deployed as part of a Qualtrics survey 
using its survey customization tools [61] (contact the au-
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thors for the customization code) and could be deployed 
on other online testing platforms with CAT support. De-
veloping more time-efficient versions of GKnowM is a 
focus of future work. Another potential limitation is US-
centric items. For example, a GKnowM item references 
the Genetic Information Nondiscrimination Act, a U.S. 
Federal Law. Users outside the USA could drop those 
items (noted in the online suppl. materials). As genomics 
technology and policy evolve some items may no longer 
be valid and could be dropped.

The observed relationship between self-assessed and 
objectively measured knowledge is consistent with previ-
ous observations that less knowledgeable individuals are 
less aware of that lack of knowledge [62] (what Dunning 
et al. [63] describe as the “double burden” of individuals’ 
incomplete/misguided knowledge of both the domain it-
self and when they are mistaken). This item was present-
ed after the knowledge items in the survey (but before 
respondents could learn their score) and so would reflect 
their perceived performance on those items. These results 
may be confounded, however, by low-quality responses.

Further study is needed to evaluate the dimensionality 
of item subsets, multidimensional models of genomics 
knowledge, the stability of GKnowM scores over time, 
group differences at higher knowledge levels, finer grain 
group differences (e.g., among different racial/ethnic 
groups), and whether GKnowM scores are associated 
with differences in attitudes toward genomic testing, de-
cision-making for genomic testing, and/or post-test psy-
chosocial outcomes. Compared to many existing mea-
sures, the GKnowM content domain incorporates more 
topics focused on ELSI concerns for genomic testing. Lit-
tle is known about individuals’ understanding of the sci-
entific, legal, and other principles that underlie those con-
cerns. Future studies of the association between genomics 
knowledge and ELSI concerns could inform future edu-
cational materials and counseling best practices.

Conclusion

We present GKnowM, a rigorously validated 26-item 
measure for assessing genomics knowledge that is ame-
nable to an efficient CAT implementation. The GKnowM 
content domain incorporates the application of modern 
genomic technologies, the interpretation of genomic 
data, and the nonclinical implications of genomic testing. 
This expanded definition of genomic literacy captures the 
knowledge needed to (1) make an informed decision for 
genomic testing, (2) appropriately apply genomic tech-

nologies and accurately interpret genomic data, and (3) 
participate in decisions about genetics and genomics pol-
icy questions as a member of society. GKnowM is an up-
to-date and broadly relevant measure for assessing popu-
lation genomic literacy and evaluating the pedagogical 
effectiveness of genomics educational interventions.
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