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Abstract

Introduction: Variability exists in the disease trajectories of Alzheimer’s disease (AD)

patients. We performed a genome-wide association study to examine rate of cognitive

decline (ROD) in patients with AD.

Methods:We tested for interactions between genetic variants and time since diagnosis

to predict the ROD of a composite cognitive score in 3946 AD cases and performed

pathway analysis on the top genes.

Results: Suggestive associations (P < 1.0 × 10−6) were observed on chromosome 15

in DNA polymerase-𝛾 (rs3176205, P = 1.11 × 10−7), chromosome 7 (rs60465337,

P = 4.06 × 10−7) in contactin-associated protein-2, in RP11-384F7.1 on chromosome

3 (rs28853947, P = 5.93 × 10−7), family with sequence similarity 214 member-A on

chromosome 15 (rs2899492, P= 5.94 × 10−7), and intergenic regions on chromosomes

16 (rs4949142, P = 4.02 × 10−7) and 4 (rs1304013, P = 7.73 × 10−7). Significant path-

ways involving neuronal development and function, apoptosis, memory, and inflamma-

tion were identified.

Discussion: Pathways related to AD, intelligence, and neurological function determine

AD progression, while previously identified AD risk variants, including the apolipopro-

tein (APOE) 𝜀4 and 𝜀2 variants, do not have amajor impact.

K EYWORD S

cognitive decline, disease progression, genetic association, pathway analysis

1 INTRODUCTION

Alzheimer’s disease (AD) is characterized by progressive cognitive

deterioration, and substantial variability exists in the cognitive tra-

jectories of affected individuals. Several studies have examined fac-

tors associated with cognitive decline in non-demented adults,1-9

conversion from mild cognitive impairment (MCI) to AD,10-18 and

rate of cognitive decline (ROD) after AD diagnosis.19-26 Several non-

genetic determinants of decline, including lifestyle factors, biomark-

ers and biometric variables, and co-morbid diagnoses have also been

reported.26-38

Several genetic and epigenetic factors that may contribute to ROD

in AD cases have also been identified. Expression levels of leucine

rich repeat and fibronectin type III domain containing 2 (LRFN2),39

beta-nerve growth factor and its receptors,40 myocyte-enhancer fac-

tor 2C,41 and inositol polyphosphate-5-phosphatase42 havebeenasso-

ciated with ROD in the brains of people with AD. Epigenetic protein

dysregulationhas alsobeen implicated inADprogression.43,44 A recent

study identified 519 proteins, the abundance of which was associated

with cognitive trajectory in adults without dementia at baseline. These

proteins were enriched in pathways related to the neuronal mitochon-

drial activities synaptic abundance, inflammation, and apoptosis.45

Two studies have examined the role of AD risk genes in cogni-

tive decline and found that specific single-nucleotide polymorphisms

(SNPs) and polygenic risk scores predict ROD in older, non-demented

individuals.46,47 A different study also found that the AD risk variants

or polygenic risk scores do not affect ROD in AD individuals.26 Genetic

association studies identified two SNPs in astrocytic water channel

aquaporin-4 that predict ROD,48 and a genome-wide association study

(GWAS) identified variants in six genes that interactedwithADdiagno-

sis (vs MCI) to predict longitudinal cognitive change.49 We previously

conducted a GWAS for ROD using AD cases from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI, N = 303) and cases from the Reli-

gious Orders Study and Rush Memory and Aging Project (ROS/MAP,
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N = 323) as replication, and identified significant associations with

variants in several genes, including F-spondin (SPON1), whose product

binds the central domain of the amyloid precursor protein (APP).50 We

presenthere the results fromaGWASofROD inanexpanded sampleof

3946 AD cases of European ancestry and discuss methodological chal-

lenges related to analysis of cognitive data and interaction tests (SNP

genotype x timewith AD) using longitudinal data.

2 METHODS

2.1 Composition of the data

Eleven cohorts with longitudinal cognitive data and genome-wide

SNP data were available for study: ADNI51 (PMID: 23932184),

ROS/MAP52,53 the Three City Study (3C),54 AddNeuroMed,55-57 Myr-

iad Flurizan phase III clinical trial,58 National Alzheimer’s Coordinat-

ing Centers,59 Pfizer,60 Lilly Semagacestat phase III clinical trial,61

Washington University in St. Louis,26 the Adult Changes in Thought

study (ACT),62 and the Washington Heights Inwood Community

Aging Project (WHICAP).63 Details about the design, recruitment, and

genotyping methods for each cohort are provided in supplemental

materials.

2.2 Imputation and quality control

Following genotype chip quality control (removal of low call rate

SNPs and individuals, individuals with excess heterozygosity, or

ambiguous sex), each data set was phased and imputed to the 1000

Genomes Project (phase 1 integrated release 3, March 2012)64

using SHAPEIT/IMPUTE265,66 or MaCH/Minimac67,68 software. All

reference population haplotypes were used for the imputation. Rare

variantswithminor allele frequency (MAF) less than2%and thosewith

an r2 <0.70were excluded from further analyses. In themega-analysis,

variantswere excluded if theyweremissing or poorly imputed in>30%

of all samples. KingRobust69 was used to generate a kinship coefficient

for each pair of individuals using a set of genotyped SNPs common to

each cohort (N = 41,625 after linkage disequilibrium pruning) using

a merged data set from all 11 cohorts. The member of each related

or duplicate pair (kinship coefficient ≥0.1) with the shortest amount

of follow-up time was removed. Individuals were assigned ancestry

using K-means clustering implemented in R, where K = 3 based on

the three reference populations (Eur, Afr, Asn) in the 1000 Genomes

populations. Individuals were assigned to the cluster. The member of

each related pair (kinship coefficient ≥0.1) with the shortest amount

of follow-up time was removed. Individuals were assigned ancestry

using K-means (K = 3) clustering with the 1000 Genomes populations

(Eur, Afr, Asn) whose centroid was nearest across the first 10 principal

components. Those samples that did not cluster with Eur reference

population were removed from downstream analysis. Subsequent PC

analysis was conducted within the cohort and also in the combined

sample.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using PubMed sources. Although the genetics of cogni-

tive decline has not been widely studied (except by our

group), non-genetic factors influencing AD progression

have been identified. The relevant citations are appropri-

ately cited.

2. Interpretation: Our findings point to novel variants and

pathways affecting cognitive decline, and show a limited

role for knownAD risk variants. These resultsmay inform

thedesignandanalysis of future clinical trials ofADdrugs.

3. Future directions: This article outlines a framework for

the generation and analysis of longitudinal cognitive

scores that will be applied to larger samples and specific

domains of cognitive function in order to confirm and

expand these findings. Functional studies are necessary

to determine whether the genes/pathways identified are

suitable for drug targets.

2.3 Composite cognitive score

Methods for combining cognitive tests in each cohort and harmoniz-

ing them across cohorts to produce a composite indicator of general

cognitive performance (GCP) are published elsewhere.70 Each study

administered at least 2 and as many as 21 cognitive tests.Briefly, we

used item response theory (IRT) methods to derive a measure of GCP.

We first identified common tests across studies (ie, anchor tests) and

tests that were not common. Anchor tests serve to anchor the cog-

nitive metric across studies so that a unit difference in the underly-

ing factor score has the same meaning across the study.71 Next, we

estimated a confirmatory factor analysis, consistent with a graded-

response IRT model,72,73 of all tests across all studies and time. This

approach allows items to be weighted differently, by accommodating

different factor loadings. Items also provide measurement at different

locations or points along the general cognitive trait depending on how

well respondents do on the tests.

2.4 Association tests

Association tests were performed using two regression-based

repeated measures methods. In one approach, linear regression

models were solved with generalized estimating equations (GEEs)

assuming an autoregressive correlation structure with GCP as the

outcome. To assess rate of decline rather than levels of cognitive

performance, models included a term for the interaction between

SNP allele dosage and time since AD diagnosis as the predictor of

interest. This construct tests whether SNP genotype modifies the

effect of duration of illness on cognitive performance. All models
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TABLE 1 Demographic information by study cohort

Cohort

Age at first visit,

𝝁 (SD)

Nmales/N

females

Follow-up years,

𝝁 (SD)

Change in

GCP
a
, 𝝁 (SD)

Change in

MMSE
a
𝝁 (SD) 𝝀

b
GEE

c
𝝀 LME

d

3C 77.9 (5.6) 139/216 6.5 (2.5) 2.8 (4.5) 2.1 (3.6) 1.06 1.36

ACT 78.2 (6.1) 68/106 7.7 (2.8) 4.1 (5.4) 1.40 (.9) 1.45 1.16

AddNeuroMed

77.3 (6.8) 110/179 1.2 (1.0) 1.5 (4.9) 1.9 (3.9) 1.15 3.25

ADNI 75.7 (6.4) 157/115 2.7 (1.4) 4.8 (5.1) 2.4 (4.6) 1.11 3.18

Flurizan 74.6 (8.2) 548/533 1.2 (0.6) 2.2 (7.1) 3.6 (5.0) 1.05 2.26

NACC 78.3 (7.9) 271/268 2.2 (1.7) 6.2 (6.2) 1.8 (3.8) 1.10 2.14

Pfizer 75.7 (5.0) 69/92 1.5 (2.5) 2.5 (4.3) 2.0 (3.6) 1.06 2.31

ROS/MAP1 82.4 (6.5) 120/262 7.9 (4.5) 4.5 (7.0) 1.1 (3.5) 1.08 3.23

ROS/MAP2 82.6 (7.7) 24/55 1.4 (.5) 3.5 (5.8) 0.9 (3.3) 1.28 2.94

Semagacestat 74.1 (7.7) 152/155 1.3 (.5) 1.5 (4.9) 2.6 (4.4) 1.08 10.37

WashU 74.2 (7.5) 110/129 5.7 (4.9) 2.9 (4.9) 1.5 (3.3) 1.14 5.37

WHICAP 82.3 (7.9) 20/48 5.0 (3.5) 1.1 (6.1) 1.7 (3.8) 3.42 1.63

aDuring the first two years of follow up post Alzheimer’s Disease diagnosis.
bGenomic inflation factor.
cGeneralized Estimating Equations.
dLinearMixed Effects.

were adjusted for age, sex, ancestry principal components (computed

within cohorts for cohort specific analyses and in the total sample

for the mega-analyses), the main effects of SNP and time since

diagnosis, and squared and cubic terms for time since AD diagnosis,

which account for any non-linear effects of time since diagnosis on

GCP. Analyses were conducted within cohort and in the total sample

through fixed-effects inverse variance meta-analysis. In another

approach, we analyzed the total sample using linear mixed-effects

models including the same interaction term and covariates with

random intercepts for individual and cohort. All association tests

were performed using Universal Genome Analyst (Koesterer, Ryan.

Universal Genome Analyst (uga). https://github.com/rmkoesterer/uga.

https://doi.org/10.5281/zenodo.578712.), which parallelizes tests

within the R packages GEEpack (https://CRAN.R-project.org/package

= geepack) and LME4 (https://github.com/lme4/lme4/). We limited

analyses to cognitive tests performed during the first 2 years of

post-diagnosis follow-up. The top variants were further tested for

association with GCP after adjusting for years of education.

2.5 Functional annotation of variants

We assessed regulatory potential for genic and intergenic

SNPs using the online databases Genotype-Tissue Expression

project (GTEx, http://www.gtexportal.org/home/) and BRAINEAC

(www.braineac.org) to identify any expression quantitative trait loci

(eQTLs) among the top SNPs. All SNPs were annotated using SNPeff,

which uses data from ENCODE and other sources to assign SNPs to

promoter regions, CpG islands, and DNAase hypersensitivity sites,

and quantifies cross-species conservation and the impact of coding

mutations.74

2.6 Pathway analysis

Genes containing variants with P-values < 1 × 10−4 (N = 334) in

at least two models tested were included in an Ingenuity path-

way analysis (QIAGEN Inc., https://www.qiagenbioinformatics.com/

products/ingenuitypathway-analysis). Only SNPs within introns,

exons, and 3′ and 5′ UTRs (according to SNPeff annotation) were

considered.

3 RESULTS

After quality control, 3946ADcaseswere available for analysis. Table1

shows characteristics of each cohort, including the mean age at base-

line, length of follow-up, and change in GCP during the study period,

whichwe limited to the first 2 years of follow-up. The interaction terms

between time with AD and age (P = 0.0001), sex (P = 0.02), and educa-

tion status (P= 3.5 × 10−5) were significantly associated with GCP.

3.1 Inflation

Significant inflation (𝜆) of the genome-wide interaction term test statis-

tics was observed in several cohorts using both LME and GEE. The 𝜆

was moderately correlated with sample size. We attempted several

approaches to reduce 𝜆, including computing P-values using F and t

distributions, setting the degrees of freedom (df) equal to the sam-

ple size minus the number of variables in the model, using the Boss R

package,75 including terms for time with AD squared and cubed, and

limiting the follow-up time to 2 years post diagnosis. Ultimately, none

of these steps eliminated inflation, and in three cohorts 𝜆 remained

https://github.com/rmkoesterer/uga
https://doi.org/10.5281/zenodo.578712.\051
https://CRAN.R-project.org/package
https://github.com/lme4/lme4/
http://www.gtexportal.org/home/
http://www.braineac.org
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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above 1.2 (ACT, ROS/MAP2,WHICAP), although inflationwas reduced

in models including non-linear time with AD terms and limiting to

2 years of follow-up. Consequently, we corrected all test statistics

for the cohort-specific 𝜆 and conducted the meta-analyses with and

without cohorts with 𝜆 > 1.2. Figures S1-3 show the 𝜆-corrected

quintile-quintile plots for both the GEE (meta-analysis with (Figure S1)

and without (Figure S2) ACT, ROS/MAP2, WHICAP, and LME (mega-

analysis including all cohorts; Figure S3).

3.2 Association results

Althoughmultiple SNPs and structural variants in several independent

regions were significantly associated with ROD in the GEE or LME

models including all cohorts, none of these showed evidence in both

GEE and LME models and they were not robust to the exclusion

of the three cohorts with 𝜆 >1.2. Using these stringent criteria, no

SNPs showed genome-wide significance for associations with ROD.

Table 2 shows variants (trimmed for LD) with P-values < 1 × 10−4

in all three models, as well as any gene(s) whose expression was

predicted to be significantly altered by the SNP according to the GTEx

database (https://gtexportal.org/home/).76 Suggestive associations

(P < 1.0 × 10−6) were observed in a large region on chromosome

15 spanning several genes including DNA polymerase-𝛾 (POLG)

(rs3176205, pLME = 1.11 × 10−7, Figure 1), on chromosome 7

(rs60465337, pGEE = 4.06 × 10−7, Figure 2) in an intron of contactin-

associated protein 2 (CNTNAP2), in the lincRNA RP11-384F7.1 gene

region on chromosome 3 (rs28853947, pGEE = 5.93× 10−7), and family

with sequence similarity 214 member A (FAM214A) on chromosome

15 (rs2899492, pGEE = 5.94 × 10−7); and in intergenic regions on

chromosomes 16 (rs4949142, pGEE = 4.02 × 10−7) and 4 (rs1304013,

pGEE = 7.73 × 10−7). A variant in SPON1 was associated with ROD at

rs200230690 (pGEE = 2.36 × 10−5). Fourteen of the SNPs in Table 2

are significant eQTLs, including several predicted to affect POLG

expression.

Wealso examined the top SNPs in 32 knownADrisk genes,77-79 and

also the SNPs tagging the APOE 𝜀2 and 𝜀4 alleles, for association with

ROD. After correcting for the number of SNPs tested, only rs1476679

in zinc finger CW-type and PWWP domain containing 1 (ZCWPW1,

pLME = 3.07 × 10−6, pGEE = 3.9 × 10−4), was significantly associated

with ROD. Notably, the minor allele (C) is protective for AD and asso-

ciated with slower ROD.77 Although the associations were observed

with different variants, CNTNAP279 and phospholipase C gamma 2

(PLCG2)80 have also recently been implicated as AD risk genes.

3.3 Pathway analysis

Among the genes that met criteria for inclusion in pathway analysis

(Table S1), several have direct links to AD pathology, including amyloid

beta (A𝛽) precursor protein binding family A member 1 (APBA1), beta-

secretase 1 (BACE1), and paired immunoglobin like type 2 receptor

alpha (PILRA). Others are in the same gene families as established AD

risk genes suchasATP-binding cassette subfamilyAmember1 (ABCA1)

and EPH receptor B1 (EPHB1). Three genes are related to other neu-

rodegenerative diseases. Synuclein alpha (SNCA), and parkin RBR E3

ubiquitin protein ligase (PRKN) are associated with Parkinson disease

risk, and HECT, C2, and WW domain containing E3 ubiquitin protein

ligase 1 (HECW1) is associated with familial amyotrophic lateral scle-

rosis. Table S2 shows the individual SNP results for these genes. Sub-

sets of these genes were significantly overrepresented in 56 canonical

pathways (many ofwhich are closely related and contain a largely over-

lapping set of genes) at Benjamini-Hochberg81P-value < 0.05 (Table

S3). Many of these pathways are related to neuronal development and

function (G𝛼q signaling, ephrin signaling, synaptic long-term depres-

sion, axonal guidance signaling), neuronal apoptosis (Gbeta gamma sig-

naling, Huntington disease signaling, phospholipase C signaling), mem-

ory (CREB signaling in neurons, protein kinase A signaling), and inflam-

mation and immunity (CXCR4 signaling, thrombin signaling). Similarly,

a portion of these genes were significantly (false discovery rate cor-

rected P-value ≤ 0.05) overrepresented in 53 physiological systems

(Table S4) related to nervous system function, including development

of neurons (P = 7.03 × 10−9), neuritogenesis (P = 9.02 × 10−8), mor-

phologyof the nervous system (P=9.08×10−8), neurite branching (P=
1.64 × 10−7), neurotransmission (P = 3.03 × 10−7), and synaptic trans-

mission (P= 3.61 × 10−7).

4 DISCUSSION

We report results from a GWAS for ROD in the largest cohort of AD

caseswith longitudinal cognitive data assembled to date.We identified

several suggestive associations in genes with no previous links to AD

risk, as well as one study-wide significant association with ZCWPW1 in

tests focused on previously established AD risk genes, and identified

novel variants in CNTNAP2 and PLCG2. These newly implicated genes

have roles in adiverse set of physiological pathways that have functions

related to known AD processes and more generalized neural biology

and development. Several of these pathways showed statistically sig-

nificant enrichment of the top-ranked genes in the GWAS.

POLG is involved in proofreading during mitochondrial DNA

(mtDNA) replication.82 Mutations in the gene have been associated

with multiple mitochondrial disorders including Alpers type mtDNA

depletion syndrome83 and progressive external ophthalmoplegia.84

Several animal studies have induced accelerated aging phenotypes by

altering the function of POLG.85,86 and the effects appear to be driven

by increased neuronal apoptosis.85 Given the well-established role

of mitochondrial dysfunction in AD (reviewed in87-89) and the links

between variants in this gene and aging phenotypes, this gene is a bio-

logically compelling candidate for a ROD mediator. The top variant in

the gene is a significant eQTL for POLG, suggesting that its effects on

RODmight be through increased expression.

CNTNAP2 encodes a neuronal member of the neurexin super-

family and is involved in neural-glia interactions and clustering of

potassium channels in axons. It is expressed at high levels in the

prefrontal and anterior temporal cortex, and the dorsal thalamus,

https://gtexportal.org/home/
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TABLE 2 Results with P< 1 × 10−4 in all models tested

Chr SNP A1
a

A2
b

Freq
c

Gene eQTLs
d

Beta
e

PGEE PGEE𝝀
f

PLME Direction
g

1 rs61776523 A G 0.86 Y_RNA - −0.51 5.99E-05 5.97E-05 6.28E-05 +–--x–--++

2 rs62146087 A G 0.62 CD8B CD8B, PLGLB1 0.40 1.96E-05 2.47E-05 7.49E-05 +++++++-+x-+

2 rs10930401 T C 0.88 intergenic METTL5 −0.49 7.00E-05 6.85E-05 7.81E-05 –-–--+–x-

2 rs11683533 G A 0.63 intergenic - −0.45 2.09E-06 6.50E-06 9.10E-05 –-–-–-+–

3 rs1447793 G A 0.95 ROBO2 - 0.89 5.73E-05 1.19E-05 2.22E-05 +x+++++x-+xx

3 rs79279449 T C 0.84 LSAMP - −0.48 2.54E-05 8.21E-05 1.77E-05 -+–+–-–-x

3 rs28853947 C T 0.70 RP11-384F7.1 - −0.45 2.29E-06 5.93E-07 8.59E-05 –-–-–+++x

3 rs4857800 T A 0.65 intergenic - −0.40 7.90E-06 1.03E-06 8.39E-05 –-–+–--++

4 rs12501599 G C 0.78 CLNK ZNF518B 0.46 1.34E-05 7.35E-05 2.42E-05 ++++-+++++++

4 rs2168075 A G 0.45 CCSER1 CCSER1 −0.37 4.62E-05 8.89E-05 9.38E-05 –-–-–+-+-

4 rs1304013 C T 0.73 intergenic - 0.50 4.73E-07 8.82E-06 2.48E-05 -++++++x-+++

6 rs9393409 A G 0.36 intergenic - −0.39 2.70E-05 1.81E-05 9.17E-05 –-–x++–-+

6 rs9380681 T C 0.70 intergenic - 0.46 1.40E-06 1.80E-06 3.09E-05 ++++-++x-+-+

6 rs45604140 C G 0.90 PTK7 DNPH1,

KLHDC3

−0.54 6.07E-05 1.98E-05 7.15E-06 -+–--+–-++

6 rs4897203 T C 0.09 TRDN - 0.74 1.34E-06 2.14E-06 9.56E-07 +++++++-+-++

7 rs7806833 T G 0.22 SCIN - −0.46 4.99E-05 5.64E-05 4.44E-05 –-–-–--+-

7 rs39437 G C 0.16 OSBPL3-CYCS - 0.51 4.68E-06 2.15E-06 9.70E-05 ++++++++-++-

7 rs17150563 T C 0.72 intergenic HIBADH,

TAX1BP1

0.40 6.08E-05 2.13E-05 3.61E-05 ++-++++x-+-+

7 rs7792776 G A 0.87 intergenic - −0.55 1.08E-05 1.68E-05 2.07E-05 –-–-–--+-

7 rs6959165 A G 0.45 HECW1 - 0.36 2.96E-05 1.82E-05 1.64E-05 +++++++x–++

7 rs60465337 C T 0.97 CNTNAP2 - 1.03 8.59E-07 4.06E-07 2.86E-05 ++++++++++x-

8 rs16877878 A G 0.96 RP11-566H8.3 - 1.18 1.13E-05 9.35E-05 1.33E-05 x+++++x++++x

10 rs182768834 G A 0.95 intergenic - −0.87 1.60E-06 9.96E-06 6.31E-05 –-–-–--x-

11 rs61897000 G A 0.66 CHRDL2 XRRA1 −0.36 7.25E-05 1.69E-05 6.44E-05 –+–-–+-++

12 rs7301894 A G 0.44 ANO2 - −0.34 8.59E-05 6.21E-05 7.54E-05 –-–--x+–+

12 rs10785192 T A 0.07 RP11-585P4.5 RP11-585P4.5,

GLIPR1L2

−0.69 2.23E-05 5.99E-05 1.69E-06 –+–-–-–x

12 rs660322 G A 0.24 TMEM132D - 0.53 1.07E-05 9.44E-06 1.14E-05 x+-+++++-xx+

15 rs2899492 C T 0.16 FAM214A ARPP19 0.62 5.94E-07 9.70E-07 1.37E-05 ++-++++x+xx+

15 rs8041705 T C 0.56 HMGB1P8 - −0.41 1.76E-05 2.66E-05 2.22E-05 –-–x–-x+-

15 rs12324317 T C 0.61 RLBP1 RLBP1, POLG −0.40 1.80E-05 2.11E-05 1.91E-05 –--+-+x+-+-

15 rs9788714 G A 0.62 RLBP1-FANCI POLG −0.42 2.50E-06 1.70E-06 1.70E-06 –-–++-+-+x

15 rs2238301 A G 0.61 FANCI POLG −0.46 3.30E-07 1.59E-07 3.15E-07 –-–-+-+-+x

15 rs3176205 T C 0.61 POLG POLG −0.46 2.75E-07 1.49E-07 1.11E-07 –-–++-+-+x

16 rs4949142 A G 0.85 intergenic - −0.60 5.83E-07 4.02E-07 7.82E-06 –-–--x–x+

16 rs12448088 G C 0.40 PLCG2 - −0.41 2.91E-05 2.36E-05 1.10E-05 +–-x–--x-+

17 rs2071194 C A 0.36 EVPL TEN1 0.41 1.44E-05 3.84E-05 6.67E-05 +++++++x-+++

aEffect allele.
bOther allele.
cFrequency of effect allele.
dExpressionQuantitative Trait Locus: genes differentially expressed by SNP genotype according to GTEx database.
eBeta fromGEEmodel including all cohorts.
fP-value fromGEEmodel excluding cohorts with 𝜆 > 1.2.
gEffect direction in individual cohorts from the GEE model including all cohorts. The order of the symbols is Pfizer, 3C, ADNI, Flurizan, NACC, ROS/MAP1,

Semagacestat, ADNeuroMed, ACT,WashU,WHICAP, ROS/MAP2.
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F IGURE 1 Association results for the region containing DNA polymerase-𝛾 on chromosome 15. RegionalManhattan plot (A) and forest plot (B)
showing the full generalized estimating equationmodel results for the region containing DNA polymerase-𝛾 on chromosome 15. Single-nucleotide
polymorphisms (SNPs) are color coded according to their linkage disequilibriumwith the lead SNP in the region. The forest plot shows the 𝛽 and
associated 95% confidence interval in each cohort.

caudate, putamen, and amygdala, with enriched expression in circuits

involved in higher cortical functions including language.90 Variants

have been associated with neurodevelopmental disorders including

autism,91-93 Attention-Deficit/Hyperactivity Disorder (ADHD),94

and intellectual disabilities95 through multiple protein function and

regulatory mechanisms. It is downregulated in the hippocampus of AD

patients, possibly through increased expression of the transcription

factor Storkhead box 1A.96 The variant we identified is intronic with

no known regulatory effects.

There is evidence that several of the top-ranked genes have roles in

the immune systemandneuroinflammation, including (cytokinedepen-

dent hematopoietic cell linker) (CLNK),97 CD8bmolecule (CD8B),98 and

PLCG2.99 Hect, c2, andww domain-containing e3 ubiquitin-protein lig-

ase 1 (HECW1) binds to mutated superoxide dismutase 1 to produce

Lewy body–like hyaline inclusions in ventral horn motor neurons in

familial amyotrophic lateral sclerosis patients.100

The pathway analysis results highlight additional mechanisms

affecting ROD, broadly implicating neuronal development, apoptosis,
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F IGURE 2 Association results for contactin-associated protein 2 on chromosome 7. RegionalManhattan plot (A) and forest plot (B) showing
the full generalized estimating equationmodel results for the region containing contactin-associated protein 2 on chromosome 7. Single-
nucleotide polymorphisms (SNPs) are color coded according to their linkage disequilibriumwith the lead SNP in the region. The forest plot shows
the 𝛽 and associated 95% confidence interval in each cohort.

and synapse formation. The vast majority of the significant canonical

pathways are linked by the involvement of genes encoding G protein–

coupled receptor (GPCR) subunits. GPCRs regulate many neurotrans-

mitters in the brain and also directly influence the amyloid cascade by

modulating 𝛼-, 𝛽-, and 𝛾-secretase, proteolysis of the APP, and regula-

tion of A𝛽 degradation.101 The top pathway, G𝛼q signaling, is involved

in axon growth and has been a drug target for multiple disorders,

including a negative phase 2 clinical trial for AD.102 The second ranked

pathway, G beta gamma signaling, has also been studied in the con-

text of AD and affects apoptosis.103 The significant diseases and bio-

logical functions largely involve a set of genes different from those

overrepresented in the canonical pathways and suggest roles for neu-

ral development and neurotransmission in ROD. CNTNAP2, APBA1,

and BACE1 are all involved in the top functions, although it is unclear

from these data whether these findings represent pre- or post-disease

alterations.

Our findings also highlight genetic links between intelligence and

AD-related pathways. A recent study identified 187 independent loci
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associated with intelligence from a meta-analysis of 248,482 non-

demented subjects.104 Of these loci, 10 (APBA1 pmin = 1.63 × 10−6,

BANK1 pmin = 4.30 × 10−5, KCNH5 pmin = 5.42 × 10−5, NEGR1 pmin

= 3.09 × 10−7, PDE4D pmin = 1.01 × 10−6, PTPRN2 pmin = 1.59 ×
10−5, RBFOX1 pmin = 2.23 × 10−5, SGCZ pmin = 3.91 × 10−6, SLC17A3

pmin = 4.27 × 10−5, and ZCCHC4 pmin = 2.34 × 10−5) were among our

top-ranked genes for ROD measured in individuals after onset of AD

symptoms. Each of these associations remained or increased in sig-

nificance after adjusting for years of education, suggesting that the

effects of these genes are not limited to general, pre-disease cognitive

ability and may actively alter disease pathology. Of these genes, only

APBA1 is known to be involved in AD pathology.105,106 None of the top

SNPs in these 10 genes that were associated with ROD were tagged

by the lead SNP associated with intelligence in,104 making it impossi-

ble to determine whether the effect directions matched, but also sug-

gesting the possibility that different causal variants within those genes

may affect ROD and general intelligence. These results, combinedwith

the significant ROD pathways we identified and the observation that

ROD is associated with rs1476679 in ZCWPW1 only among knownAD

risk variants (although different variants in CNTNAP2 and PLCG2were

associated with ROD), suggest that post-diagnosis cognitive function-

ing may be determined more by genetic variation influencing general

neural function and connectivity than by genes involved in the cascade

of events leading to AD-related pathology.

In aggregate, these results suggest that like AD itself, cognitive

decline is highly polygenic and controlled by a diverse set of path-

ways. The individual variant results suggest roles for mitochondrial

dysfunction, neuron function, and immunity, whereas the pathway

results implicate, GPRC-mediated A𝛽 and/or neurotransmitter pro-

cessing neuronal development, pruning, and survival.

4.1 Strengths and limitations

Several limitations to this work should be noted. The data com-

prise multiple, relatively small cohorts with different ascertainment

schemes. This, combined with the inherently heterogeneous nature of

AD presentation, symptom profile, and pathology, suggests that par-

ticipants in this study may be at different stages of the disease and/or

may representmultiple biologically distinct AD subtypes. The different

sets of cognitive tests performed across cohorts may have limited our

ability to detect true genetic associations with ROD, although our pre-

vious work demonstrated that the metric of the GCP composite factor

is consistent across studies.70 Finally, the longitudinal interaction tests

we used were associated with inflation in the test statistics for both

LME andGEEmodels and, consequently, our resultsmay be less robust

after a heavy correction for genomic control. However, we minimized

this concern by excluding data sets showing high levels of inflation.

Despite these issues, several indicators suggest that our findings are

robust. First, the significance of the top results are commensuratewith

the sample size, and the effect sizes anddirections are generally consis-

tent across cohorts, with no single sample exerting an excessive effect

on the overall association. The variants reported are also associated

with ROD using two distinct regression-based approaches to model-

ing correlated data, and are robust evenwhen the cohorts showing the

greatest inflation are excluded. The top-ranked findingswere observed

generally with relatively common variants that were well imputed

(r2 ≥ 0.8). In addition, evidence suggesting that we identified genes in

AD-relevant pathways, significant pathways related to neuronal func-

tion, and genes that are also significantly associatedwith cognitive per-

formance more broadly suggest our analysis uncovered true determi-

nants of ROD. Future directions include further expanding of the sam-

ple and repeating the analyses using pre-diagnosis cognitive scores.

Finally, our phenotype is a measure of global cognitive function and it

is possible that additional genes contribute to specific domains of cog-

nition (ie, memory or executive function).
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