

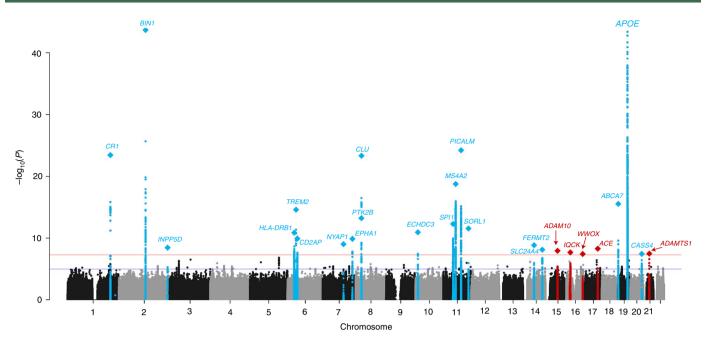
Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates $A\beta$, tau, immunity and lipid processing

Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (*IQCK*, *ACE*, *ADAM10*, *ADAMTS1*, and *WWOX*), two of which (*ADAM10*, *ACE*) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and A β processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants ($P = 1.32 \times 10^{-7}$), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.

ur previous work identified 19 genome-wide-significant common variant signals in addition to APOE that influence risk for LOAD (onset age > 65 years)¹. These signals, combined with 'subthreshold' common variant associations, account for $\sim 31\%$ of the genetic variance of LOAD², leaving the majority of genetic risk uncharacterized³. To search for additional signals, we conducted a GWAS meta-analysis of non-Hispanic Whites (NHW) by using a larger Stage 1 discovery sample (17 new, 46 total datasets; n=21,982 cases, 41,944 cognitively normal controls) from our group, the International Genomics of Alzheimer's Project (IGAP) (composed of four consortia: Alzheimer Disease Genetics Consortium (ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), The European Alzheimer's Disease Initiative (EADI), and Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/ PERADES) (Supplementary Tables 1 and 2, and Supplementary Note). To sample both common and rare variants (minor allele frequency (MAF) \geq 0.01 and MAF<0.01, respectively), we imputed the discovery datasets by using a 1,000 Genomes reference panel consisting of 36,648,992 single-nucleotide polymorphisms (SNPs), 1,380,736 insertions/deletions, and 13,805 structural variants. After quality control, 9,456,058 common variants and 2,024,574 rare variants were selected for analysis. Genotype dosages were analyzed within each dataset, and then combined with meta-analysis (Supplementary Fig. 1 and Supplementary Tables 1-3).

Results

Meta-analysis of Alzheimer's disease GWAS. The Stage 1 discovery meta-analysis produced 12 loci with genome-wide significance ($P \le 5 \times 10^{-8}$) (Table 1), all of which are previously described^{1,4–11}. Genomic inflation factors (λ) were slightly inflated (λ median = 1.05; λ regression = 1.09; see Supplementary Figure 2 for a quantile–quantile (QQ) plot); however, univariate linkage disequilibrium score (LDSC) regression^{12,13} estimates indicated that the majority of this inflation was due to a polygenic signal, with the intercept being close to 1 (1.026, s.e.m. = 0.006). The observed heritability (h^2) of LOAD was estimated at 0.071 (0.011) using LDSC.


A full list of authors and affiliations appears at the end of the paper.

Stage 1 meta-analysis was first followed by Stage 2, using the I-select chip we previously developed in Lambert et al.¹ (including 11,632 variants, n = 18,845; Supplementary Table 4) and finally Stage 3A (n = 11,666) or Stage 3B (n = 30,511) (for variants in regions not well captured in the I-select chip) (see Supplementary Figure 1 for the workflow). The final sample was 35,274 clinical and autopsydocumented Alzheimer's disease cases and 59,163 controls.

Meta-analysis of Stages 1 and 2 produced 21 genome-widesignificant associations ($P \le 5 \times 10^{-8}$) (Table 1 and Fig. 1), 18 of which were previously reported as genome-wide significant in Lambert et al.¹. Three other signals were not initially described in the initial IGAP GWAS: the rare R47H TREM2 coding variant previously reported by others^{7,8,14}; ECHDC3 (rs7920721; NC_000010.10: g.11720308A>G), which was recently identified as a potential genome-wide-significant Alzheimer's disease risk locus in several studies¹⁵⁻¹⁷, and ACE (rs138190086; NC_000017.10: g.61538148G>A) (Supplementary Figs. 3 and 4). In addition, seven signals showed suggestive association with $P < 5 \times 10^{-7}$ (closest genes: ADAM10, ADAMTS1, ADAMTS20, IQCK, MIR142/ TSPOAP1-AS1, NDUFAF6, and SPPL2A) (Supplementary Figs. 5–11). Stage 3A and meta-analysis of all three stages for these nine signals (excluding the TREM2 signal; see Supplementary Table 5 for the variant list) identified five genome-wide-significant loci. In addition to ECHDC3, this included four new genome-wide Alzheimer's disease risk signals at IQCK, ADAMTS1, ACE, and ADAM10 (Table 2). ACE and ADAM10 were previously reported as Alzheimer's disease candidate genes¹⁸⁻²² but were not replicated in some subsequent studies²³⁻²⁵. A recent GWAS using family history of Alzheimer's disease or dementia as a proxy²⁶ also identified these two risk loci, suggesting that while use of proxy Alzheimer's disease/dementia cases introduces less sensitivity and specificity for true Alzheimer's disease signals overall in comparison to clinically diagnosed Alzheimer's disease, proxy studies can identify diseaserelevant associations. Two of the four other signals approached genome-wide significance: miR142/TSPOAP1-AS1 ($P=5.3 \times 10^{-8}$) and NDUFAF6 ($P=9.2 \times 10^{-8}$) (Table 2). Stage 3A also extended the analysis of two loci (NME8 and MEF2C) that were previously genome-wide significant in our 2013 meta-analysis. These loci were

NATURE GENETICS

						Stage 1	Stage 1 discovery (<i>n</i> =63,926)	=63,926)	Stage	Stage 2 (<i>n</i> = 18,845)		Overal	Overall Stage $1 + $ Stage 2 ($n = 82, 771$)	se 2 (n=82,77	1
Variant ^ª	Chr.	Position ^b	Closest gene ^c	Major/ minor alleles	MAF⁴	OR	95% CI°	٩	Ŋ	95% CI [€]	٩	QR	95% CI*	Meta <i>P</i>	I ² (%), P ^f
Previous genor	ne-wide-s	Previous genome-wide-significant loci still reaching significance	till reaching si	gnificance											
s4844610		207802552	CR1	C/A	0.187	1.16	1.12-1.20	8.2×10^{-16}	1.20	1.13-1.27	3.8×10^{-10}	1.17	1.13-1.21	3.6×10^{-24}	0, 8 × 10 ⁻¹
rs6733839	2	127892810	BIN1	C/T	0.407	1.18	1.15-1.22	4.0×10^{-28}	1.23	1.18-1.29	2.0×10^{-18}	1.20	1.17-1.23	2.1×10^{-44}	15, 2 ×10 ⁻¹
s10933431	2	233981912	INPP5D	C/G	0.223	06.0	0.87-0.94	2.6×10^{-7}	0.92	0.87-0.97	3.2×10^{-3}	0.91	0.88-0.94	3.4×10^{-9}	0, 8 × 10 ⁻¹
s9271058	9	32575406	HLA-DRB1	T/A	0.270	1.10	1.06-1.14	5.1×10^{-8}	1.11	1.06-1.17	5.7×10^{-5}	1.10	1.07-1.13	1.4×10^{-11}	10, 3 ×10 ⁻¹
rs75932628	9	41129252	TREM2	C/T	0.008	2.01	1.65-2.44	2.9×10^{-12}	2.50	1.56-4.00	1.5×10^{-4}	2.08	1.73-2.49	2.7×10^{-15}	0, 6 × 10 ⁻¹
rs9473117	9	47431284	CD2AP	A/C	0.280	1.09	1.05-1.12	2.3×10^{-7}	1.11	1.05-1.16	1.0×10^{-4}	1.09	1.06-1.12	1.2×10^{-10}	0, 6 × 10 ⁻¹
rs12539172	7	100091795	NYAP19	C/T	0.303	0.93	0.91-0.96	2.1 ×10 ⁻⁵	0.89	0.84-0.93	2.1×10^{-6}	0.92	0.90-0.95	9.3×10^{-10}	0, 8 × 10 ⁻¹
s10808026	7	143099133	EPHA1	C/A	0.199	06.0	0.87-0.94	3.1×10^{-8}	0.91	0.86-0.96	1.1 × 10 ⁻³	06.0	0.88-0.93	1.3×10^{-10}	0, 5 × 10 ⁻¹
rs73223431	8	27219987	PTK2B	C/T	0.367	1.10	1.07-1.13	8.3×10^{-10}	1.11	1.06-1.16	1.5×10^{-5}	1.10	1.07-1.13	6.3×10^{-14}	0, 6 × 10 ⁻¹
rs9331896	8	27467686	CLU	T/C	0.387	0.88	0.85-0.91	3.6×10^{-16}	0.87	0.83-0.91	1.7×10^{-9}	0.88	0.85-0.90	4.6×10^{-24}	3, 4 ×10 ⁻¹
rs3740688	Ħ	47380340	SPIT ^h	1/G	0.448	0.91	0.89-0.94	9.7×10^{-11}	0.93	0.88-0.97	1.2×10^{-3}	0.92	0.89-0.94	5.4×10^{-13}	4, 4 × 10 ⁻¹
rs7933202	Ħ	59936926	MS4A2	A/C	0.391	0.89	0.86-0.92	2.2×10^{-15}	0.90	0.86-0.95	1.6 × 10 ⁻⁵	0.89	0.87-0.92	1.9×10^{-19}	$27, 5 \times 10^{-2}$
s3851179،	Ħ	85868640	PICALM	C/T	0.356	0.89	0.86-0.91	5.8×10^{-16}	0.85	0.81-0.89	6.1×10^{-11}	0.88	0.86-0.90	6.0×10^{-25}	0, 8 × 10 ⁻¹
rs11218343	Ħ	121435587	SORL1	T/C	0.040	0.81	0.76-0.88	2.7×10^{-8}	0.77	0.68-0.87	1.8×10^{-5}	0.80	0.75-0.85	2.9×10^{-12}	7, 3 ×10 ⁻¹
rs17125924	14	53391680	FERMT2	A/G	0.093	1.13	1.08-1.19	6.6×10^{-7}	1.15	1.06-1.25	5.0×10^{-4}	1.14	1.09-1.18	1.4 ×10 ⁻⁹	8, 3 × 10 ⁻¹
rs12881735	14	92932828	SLC24A4	T/C	0.221	0.92	0.88-0.95	4.9×10^{-7}	0.92	0.87-0.97	4.3×10^{-3}	0.92	0.89-0.94	7.4x 10 ⁻⁹	0, 6 × 10 ⁻¹
's3752246	19	1056492	ABCA7	C/G	0.182	1.13	1.09-1.18	6.6×10^{-10}	1.18	1.11-1.25	4.7×10^{-8}	1.15	1.11-1.18	3.1×10^{-16}	0, 5×10 ⁻¹
rs429358	19	45411941	APOE	T/C	0.216	3.32	3.20-3.45	1.2×10^{-881}	APOE	region not carr	APOE region not carried forward to replication stage	replication	n stage		
rs6024870	20	54997568	CASS4	G/A	0.088	0.88	0.84-0.93	1.1 ×10 ⁻⁶	0.90	0.82-0.97	9.0 ×10 ⁻³	0.88	0.85-0.92	3.5×10^{-8}	0, 9 × 10 ⁻¹
Vew genome-v	vide-signit	New genome-wide-significant loci reaching significance	uing significan	ce											
rs7920721	10	11720308	ECHDC3	A/G	0.389	1.08	1.05-1.11	1.9×10^{-7}	1.07	1.02-1.12	3.2×10^{-3}	1.08	1.05-1.11	2.3×10^{-9}	$0,8 \times 10^{-1}$
s138190086	17	61538148	ACE	G/A	0.020	1.29	1.15-1.44	7.5 ×10 ⁻⁶	1.41	1.18-1.69	1.8×10^{-4}	1.32	1.20-1.45	7.5×10^{-9}	0, 9 × 10 ⁻¹
Previous genor	ne-wide-s	Previous genome-wide-significant loci not reaching significance	ot reaching si	gnificance											
rs190982	Ŋ	88223420	MEF2C	A/G	0.390	0.95	0.92-0.97	2.8×10^{-4}	0.93	0.89-0.98	2.7×10^{-3}	0.94	0.92-0.97	2.8×10 ⁻⁶	0, 6 × 10 ⁻¹
rs4723711	7	37844263	NME8	A/T	0.356	0.95	0.92-0.98	2.7×10^{-4}	0.91	0.87-0.95	1.0×10^{-4}	0.94	0.91-0.96	2.8×10^{-7}	0, 5 × 10 ⁻¹

Fig. 1 | Manhattan plot of meta-analysis of Stage 1, 2, and 3 results for genome-wide association with Alzheimer's disease. The threshold for genome-wide significance ($P < 5 \times 10^{-8}$) is indicated by the red line, while the blue line represents the suggestive threshold ($P < 1 \times 10^{-5}$). Loci previously identified by the Lambert et al.¹ IGAP GWAS are shown in blue and newly associated loci are shown in red. Loci are named for the closest gene to the sentinel variant for each locus. Diamonds represent variants with the smallest *P* values for each genome-wide locus.

not genome-wide significant in our current study and will deserve further investigation (*NME8*: $P = 2.7 \times 10^{-7}$; *MEF2C*: $P = 9.1 \times 10^{-8}$; Supplementary Figs. 12 and 13). Of note, GCTA COJO²⁷ conditional analysis of the genome-wide loci indicates that *TREM2* and three other loci (*BIN1*, *ABCA7*, and *PTK2B/CLU*) have multiple independent LOAD association signals (Supplementary Table 6), suggesting that the genetic variance associated with some GWAS loci is probably underestimated.

We also selected 33 variants from Stage 1 (28 common and 5 rare variants in loci not well captured in the I-select chip; see Methods for full selection criteria) for genotyping in Stage 3B (including populations of Stage 2 and Stage 3A). We nominally replicated a rare variant (rs71618613; NC_000005.9: g.29005985A>C) within an intergenic region near SUCLG2P4 (MAF = 0.01; $P = 6.8 \times 10^{-3}$; combined $P = 3.3 \times 10^{-7}$) and replicated a low-frequency variant in the TREM2 region (rs114812713; NC_000006.11: g.41034000G>C, MAF=0.03, $P=7.2 \times 10^{-3}$; combined $P=2.1 \times 10^{-13}$) in the gene OARD1 that may represent an independent signal according to our conditional analysis (Table 2, Supplementary Figs. 14 and 15, Supplementary Tables 6 and 7). In addition, rs62039712 (NC_000016.9: g.79355857G>A) in the WWOX locus reached genome-wide significance $(P=3.7 \times 10^{-8})$, and rs35868327 (NC_000005.9: g.52665230T>A) in the FST locus reached suggestive significance ($P = 2.6 \times 10^{-7}$) (Table 2 and Supplementary Figs. 16 and 17). WWOX may play a role in Alzheimer's disease through its interaction with tau^{28,29}, and it is worth noting that the sentinel variant (defined as the variant with the lowest P value) is just 2.4 megabases from *PLCG2*, which contains a rare variant that we recently associated with Alzheimer's disease¹⁴. Since both rs62039712 and rs35868327 were only analyzed in a restricted number of samples, these loci deserve further attention.

Candidate gene prioritization at genome-wide loci. To evaluate the biological significance and attempt to identify the underlying risk genes for the newly identified genome-wide signals (*IQCK*, *ACE*, *ADAM10*, *ADAMTS1*, and *WWOX*) and those found previously, we pursued five strategies: (1) annotation and gene-based testing for

deleterious coding, loss-of-function (LOF) and splicing variants; (2) expression-quantitative trait loci (eQTL) analyses; (3) evaluation of transcriptomic expression in LOAD clinical traits (correlation with the BRAAK stage³⁰ and differential expression in Alzheimer's disease versus control brains³¹); (4) evaluation of transcriptomic expression in Alzheimer's disease-relevant tissues³²⁻³⁴; and (5) gene cluster/pathway analyses. For the 24 signals reported here, other evidence indicates that APOE^{35,36}, ABCA7 (refs. ³⁷⁻⁴⁰), BIN1 (ref. ⁴¹), TREM2 (refs. 7,8), SORL1 (refs. 42,43), ADAM10 (ref. 44), SPI1 (ref. 45), and CR1 (ref. 46) are the true Alzheimer's disease risk gene, although there is a possibility that multiple risk genes exist in these regions⁴⁷. Because many GWAS loci are intergenic, and the closest gene to the sentinel variant may not be the actual risk gene, in these analyses we considered all protein-coding genes within ±500 kilobases (kb) of the sentinel variant linkage disequilibrium (LD) regions ($r^2 \ge 0.5$) for each locus as a candidate Alzheimer's disease gene (n=400)genes) (Supplementary Table 8).

We first annotated all sentinel variants for each locus and variants in LD ($r^2 > 0.7$) with these variants in a search for deleterious coding, LOF or splicing variants. In line with findings that most causal variants for complex disease are non-coding⁴⁸, only 2% of 1,073 variants across the 24 loci (excluding APOE) were exonic variants, with a majority (58%) being intronic (Supplementary Fig. 18 and Supplementary Table 9). Potentially deleterious variants include the rare R47H missense variant in TREM2, common missense variants in CR1, SPI1, MS4A2, and IQCK, and a relatively common (MAF = 0.16) splicing variant in *IQCK*. Using results of a large whole-exome-sequencing study conducted in the ADGC and CHARGE sample⁴⁹ (n = 5,740 LOAD cases and 5,096 controls), we also identified ten genes located in our genome-wide loci as having rare deleterious coding, splicing or LOF burden associations with LOAD (false discovery rate (FDR) P < 0.01), including previously implicated rare-variant signals in ABCA7, TREM2, and SORL1 (refs. 14,49-55), and additional associations with TREML4 in the TREM2 locus, TAP2 and PSMB8 in the HLA-DRB1 locus, PIP in the EPHA1 locus, STYX in the FERMT2 locus, RIN3 in the SLC24A4 locus, and KCNH6 in the ACE locus (Supplementary Table 10).

Stage 3A							Stage 1	Stage 1+2 (<i>n</i> =82,771)	(1/	Stage	Stage 3A (<i>n</i> =11,666)	()	Overa	Overall (n=94,437)	
SNPa	Chr.	Chr. Position ^b	Closest gene ^c	2 5 76	Major/ minor allele	MAF	N	95% Cl ^ŕ	٩	Q	95% Cl ^f	ط	N	95% CI ^f	Meta <i>P</i>
rs4735340	∞	95976251	NDUFAF6	́Г	T/A	0.476	0.94	0.92-0.96	3.4×10^{-7}	0.92	0.83-1.02	9.7 × 10 ⁻² 0.94	2 0.94	0.92-0.96	9.2 ×10 ⁻⁸
rs7920721 ^g	10	11720308	ECHDC3	Ą	A/G	0.390	1.08	1.05-1.11	2.3×10^{-9}	1.11	1.04-1.18	1.5×10^{-3} 1.08	3 1.08	1.06-1.11	1.8×10^{-11}
rs7295246	12	43967677	ADAMTS20	Ļ	T/G	0.413	1.07	1.04-1.09	2.7×10^{-7}	1.02	0.96-1.09	4.5×10^{-1} 1.06	1.06	1.04-1.08	3.9 ×10 ⁻⁷
rs10467994	15	51008687	SPPL2A	Ļ	T/C	0.333	0.94	0.91-0.96	3.9 ×10 ⁻⁷	0.97	0.87-1.08	6.2×10^{-1}	-1 0.94	0.92-0.96	4.3×10 ⁻⁷
rs593742	15	59045774	ADAM10	Ą	A/G	0.295	0.93	0.91-0.96	1.3×10^{-7}	0.91	0.85-0.98	1.5×10^{-2}	2 0.93	0.91-0.95	6.8 ×10 ⁻⁹
rs7185636	16	19808163	IQCK	Ļ	T/C	0.180	0.92	0.89-0.95	8.4×10^{-8}	0.94	0.86-1.01	1.1×10^{-1}	0.92	0.89-0.95	2.4×10^{-8}
rs2632516	17	56409089	MIR142/TSPOAP1-AS1 ^d		G/C	0.440	0.94	0.92-0.96	2.3×10^{-7}	0.91	0.82-1.01	7.5×10^{-2}	² 0.94	0.91-0.96	5.3×10^{-8}
rs138190086	17	61538148	ACE	U	G/A	0.020	1.32	1.20-1.45	7.5 ×10 ⁻⁹	1.17	0.92-1.48	2.1×10 ⁻¹	1.30	1.19-1.42	5.3×10^{-9}
rs2830500	21	28156856	ADAMTS1	Ú	C/A	0.308	0.93	0.91-0.96	7.4×10^{-8}	0.95	0.89-1.02	1.3×10^{-1}	0.93	0.91-0.96	2.6×10^{-8}
Stage 3B						St	age 1 (n:	Stage 1 (<i>n</i> = 63,926)		Stage 3B	Stage 3B (<i>n</i> =30,511) ^h		Overal	Overall $(n = 94, 437)^{h}$	
SNPa	Chr.	Position ^b	Closest gene ^c	Major/minor allele	MAF	AF° OR		95% Cl ^t	٩	OR	95% CI ^f	ď	OR	95% CI ^f	Meta P
rs71618613	ß	29005985	SUCLG2P4	A/C	0.010		0.68 0	0.57-0.80	9.8 ×10 ⁻⁶	0.76	0.63-0.93	6.8×10^{-3}	0.71	0.63-0.81	3.3×10^{-7}
rs35868327	IJ	52665230	FST	T/A	0.013		0.69.0	0.59-0.80	7.8 ×10 ⁻⁷	0.58	0.29-1.17	1.2×10^{-1}	0.68	0.59-0.79	2.6 ×10 ⁻⁷
rs114812713	9	41034000	OARD1	G/C	0.0	0.030 1.3	1.35 1.	1.24-1.47	4.5×10^{-12}	1.23	1.06-1.42	7.2 ×10 ⁻³	1.32	1.22-1.42	2.1×10^{-13}
rs62039712	16	79355857	XOWW	G/A	0.116	1.17		1.10-1.23	1.2×10^{-7}	1.14	0.96-1.36	1.3 ×10 ⁻¹	1.16	1.10-1.23	3.7×10^{-8}

NATUR<u>E GENETICS</u>

For eQTL analyses, we searched existing eQTL databases and studies for cis-acting eQTLs in a prioritized set of variants (n=1,873) with suggestive significance or in LD with the sentinel variant in each locus. Of these variants, 71-99% have regulatory potential when considering all tissues according to RegulomeDB⁵⁶ and HaploReg⁵⁷, but restricting to Alzheimer's disease-relevant tissues (via Ensembl Regulatory Build⁵⁸ and GWAS4D⁵⁹) appears to aid in regulatory variant prioritization, with probabilities for functional variants increasing substantially when using GWAS4D celldependent analyses with brain or monocytes, for instance (these and other annotations are provided in Supplementary Table 11). Focusing specifically on eQTLs, we found overlapping cis-acting eQTLs for 153 of the 400 protein-coding genes, with 136 eQTLcontrolled genes in Alzheimer's disease-relevant tissues (that is, brain and blood/immune cell types; see Methods for details) (Supplementary Tables 12 and 13). For our newly identified loci, there were significant eQTLs in Alzheimer's disease-relevant tissue for ADAM10, FAM63B, and SLTM (in the ADAM10 locus); ADAMTS1 (ADAMTS1 locus); and ACSM1, ANKS4B, C16orf62, GDE1, GPRC5B, IQCK, and KNOP1 (IQCK locus). There were no eQTLs in Alzheimer's disease-relevant tissues in the WWOX or ACE locus, although several eQTLs for PSMC5 in coronary artery tissue were found for the ACE locus. eQTLs for genes in previously identified loci include BIN1 (BIN1 locus), INPP5D (INPP5D locus), CD2AP (CD2AP locus), and SLC24A4 (SLC24A4 locus). Co-localization analysis confirmed evidence of a shared causal variant affecting expression and disease risk in 66 genes over 20 loci, including 31 genes over 13 loci in LOAD-relevant tissue (see Supplementary Table 14 and 15 for complete lists). Genes implicated include CR1 (CR1 locus), ABCA7 (ABCA7 loci), BIN1 (BIN1 locus), SPI1 and MYBPC3 (SPI1 locus), MS4A2, MS4A6A, and MS4A4A (MS4A2 locus), KNOP1 (IQCK locus), and HLA-DRB1 (HLA-DRB1 locus) (Supplementary Table 12).

To study the differential expression of genes in brains of patients with Alzheimer's disease versus controls, we used 13 expression studies³¹. We found that 58% of the 400 protein-coding genes within the genome-wide loci had evidence of differential expression in at least one study (Supplementary Table 16). Additional comparisons to Alzheimer's disease related gene expression sets revealed that 62 genes were correlated with pathogenic stage (BRAAK) in at least one brain tissue³⁰ (44 genes in prefrontal cortex, the most relevant LOAD tissue; 36 in cerebellum and 1 in visual cortex). Finally, 38 genes were present in a set of 1,054 genes preferentially expressed in aged microglial cells, a gene set shown to be enriched for Alzheimer's disease genes $(P = 4.1 \times 10^{-5})^{34}$. We also annotated our list of genes with brain RNA-seq data, which showed that 80% were expressed in at least one type of brain cell, and the genes were most highly expressed in fetal astrocytes (26%), followed by microglia/ macrophages (15.8%), neurons (14.8%), astrocytes (11.5%), and oligodendrocytes (6.5%). When not considering fetal astrocytes, mature astrocytes (21%), and microglial cells (20.3%), the resident macrophage cells of the brain thought to play a key role in the pathologic immune response in LOAD^{8,14,60}, became the highest expressed cell types in the genome-wide set of genes, with 5.3% of the 400 genes showing high microglial expression (Supplementary Table 17; see Supplementary Table 18 for the highly expressed gene list by cell type).

We conducted pathway analyses (MAGMA⁶¹) separately for common (MAF>0.01) and rare variants (MAF<0.01). For common variants, we detected four function clusters including (1) APP metabolism/A β formation (regulation of A β formation: $P=4.56 \times 10^{-7}$ and regulation of APP catabolic process: $P=3.54 \times$ 10^{-6}); (2) tau protein binding ($P=3.19 \times 10^{-5}$); (3) lipid metabolism (four pathways including protein–lipid complex assembly: $P=1.45 \times 10^{-7}$); and (4) immune response ($P=6.32 \times 10^{-5}$) (Table 3 and Supplementary Table 19). Enrichment of the four clusters remained after removal of genes in the APOE region. When APOEregion genes and genes near genome-wide-significant genes were removed, tau showed moderate association (P=0.027), and lipid metabolism and immune-related pathways showed strong associations (P < 0.001) (Supplementary Table 20). Genes driving these enrichments (that is, having a gene-wide P < 0.05) included SCNA, a Parkinson's risk gene that encodes alpha-synuclein, the main component of Lewy bodies, whch may play a role in tauopathies^{62,63}, for the tau pathway; apolipoprotein genes (APOM, APOA5) and ABCA1, a major regulator of cellular cholesterol, for the lipid metabolism pathways; and 52 immune pathway genes (Supplementary Table 21). While no pathways were significantly enriched for rare variants, lipid and $A\beta$ pathways did reach nominal significance in rare-variant-only analyses. Importantly, we also observed a highly significant correlation between common and rare pathway gene results ($P = 1.32 \times 10^{-7}$), suggesting that risk Alzheimer's disease genes and pathways are enriched for rare variants. In fact, 50 different genes within tau, lipid, immunity and Aß pathways showed nominal rare-variant driven associations (P < 0.05) with LOAD.

To further explore the APP/A β pathway enrichment, we analyzed a comprehensive set of 335 APP metabolism genes⁶⁴ curated from the literature. We observed significant enrichment of this gene set in common variants ($P = 2.27 \times 10^{-4}$; $P = 3.19 \times 10^{-4}$ excluding *APOE*), with both *ADAM10* and *ACE* nominally significant drivers of this result (Table 4 and Supplementary Tables 22 and 23). Several 'sub-pathways' were also significantly enriched in the common variants, including 'clearance and degradation of A β ', and 'aggregation of A β ', along with its subcategory 'microglia', the latter supporting microglial cells suspected role in response to A β in LOAD⁶⁵. Nominal enrichment for risk from rare variants was found for the pathway 'aggregation of A β : chaperone' and 23 of the 335 genes.

To identify candidate genes for our novel loci, we combined results from our five prioritization strategies in a priority ranking method similar to that of Fritsche et al.⁶⁶ (Fig. 2 and Supplementary Table 24). ADAM10 was the top ranked gene of the 11 genes within the ADAM10 locus. ADAM10, the most important α -secretase in the brain, is a component of the non-amyloidogenic pathway of APP metabolism67 and sheds TREM2 (ref. 68), an innate immunity receptor expressed selectively in microglia. Overexpression of ADAM10 in mouse models can halt Aß production and subsequent aggregation⁶⁹. In addition, two rare ADAM10 alterations segregating with disease in LOAD families increased Aß plaque load in 'Alzheimerlike' mice, with diminished α -secretase activity from the alterations probably the causal mechanism^{19,44}. For the IQCK signal, which is also an obesity locus^{70,71}, IQCK, a relatively uncharacterized gene, was ranked top, although four of the other 11 genes in the locus have a priority rank \geq 4, including *KNOP1* and *GPRC5B*, the latter being a regulator of neurogenesis^{72,73} and inflammatory signaling in obesity⁷⁴. Of the 22 genes in the ACE locus, PSMC5, a key regulator of major histocompatibility complex (MHC)75,76, has a top score of 4, while DDX42, MAP3K3, an important regulator of macrophages and innate immunity77,78, and CD79B, a B lymphocyte antigen receptor subunit, each have a score of 3. Candidate gene studies have associated ACE variants with Alzheimer's disease risk^{20,22,79}, including a strong association in the Wadi Ara, an Israeli Arab community with high risk of Alzheimer's disease²¹. However, these studies yielded inconsistent results²³, and our work reports a clear genomewide association in NHW at this locus. While ACE was not prioritized, it should not be rejected as a candidate gene, as its expression in Alzheimer's disease brain tissue is associated with AB load and Alzheimer's disease severity⁸⁰. Furthermore, cerebrospinal fluid (CSF) levels of the angiotensin-converting enzyme (ACE) are associated with A^β levels⁸¹ and LOAD risk⁸², and studies show ACE can inhibit Aβ toxicity and aggregation⁸³. Finally, angiotensin II, a product of ACE function, mediates a number of neuropathological processes in Alzheimer's disease⁸⁴ and is now a target for intervention

Pathway	No. of genes in the pathway in the dataset	Common variant <i>P</i> ª	Common variant q value	Rare variant <i>P</i> ª	Rare variant q value	Pathway description
GO:65005	20	1.4 × 10 ⁻⁷ ª	9.5×10 ⁻⁴	6.7×10 ⁻²	8.4 × 10 ⁻¹	Protein-lipid complex assembly
GO:1902003	10	4.5 × 10 ^{-7a}	1.4 × 10 ⁻³	4.9 ×10 ⁻²	8.4 × 10 ⁻¹	Regulation of $A\beta$ formation
GO:32994	39	1.1 × 10 ^{-6a}	2.5 × 10 ⁻³	1.7 × 10 ⁻²	8.1 × 10 ⁻¹	Protein—lipid complex
GO:1902991	12	3.5 × 10 ^{-6a}	5.8 × 10 ⁻³	5.6×10 ⁻²	8.4 × 10 ⁻¹	Regulation of amyloid precursor protein catabolic process
GO:43691	17	5.5×10 ^{-6a}	6.7 ×10 ⁻³	3.0 × 10 ⁻²	8.1×10 ⁻¹	Reverse cholesterol transport
GO:71825	35	6.1×10 ^{-6a}	6.7 × 10 ⁻³	1.2 × 10 ⁻¹	8.4×10^{-1}	Protein—lipid complex subunit organization
GO:34377	18	1.6 × 10 ^{-5a}	1.5×10^{-2}	1.8 × 10 ⁻¹	8.4 × 10 ⁻¹	Plasma lipoprotein particle assembly
GO:48156	10	3.1×10 ^{-5a}	2.6 × 10 ⁻²	7.7 ×10 ⁻¹	8.5 ×10 ⁻¹	Tau protein binding
GO:2253	382	6.3 × 10 ^{-5a}	4.6×10^{-2}	2.0×10 ⁻¹	8.4 × 10 ⁻¹	Activation of immune response

Table 3 | Significant pathways (*q* value ≤ 0.05) from MAGMA pathway analysis for common and rare variant subsets

^aSignificant after FDR correction (q value ≤ 0.05).

Table 4 | Top results of pathway analysis of the A β -centered biological network from Campion et al.⁶⁴ (see Supplementary Table 12 for full results)

Category	Subcategory	No. of genes	Common variant P 0 kb	Common variant P 35-10 kb	Rare variant P 0 kb	Rare variant P 35-10 kb
Aβ-centered biological network (all genes)	-	331	2.2 × 10 ^{-4a}	1.5 × 10 ^{-4a}	8.2 × 10 ⁻¹	5.1 × 10 ⁻¹
Clearance and degradation of $A\beta$	-	74	2.1 × 10 ^{-4a}	3.2 × 10 ⁻³	3.1 × 10 ⁻¹	5.1 × 10 ⁻¹
Clearance and degradation of $A\beta$	Microglia	47	2.2×10^{-4a}	1.8 × 10 ⁻²	2.4 × 10 ⁻¹	6.8 × 10 ⁻¹
Aggregation of $A\beta$	-	35	7.0×10^{-4a}	9.9 × 10 ⁻³	9.0 × 10 ⁻²	1.6×10 ⁻¹
Aggregation of $A\beta$	Miscellaneous	21	1.0 × 10 ^{-3a}	3.3 × 10 ⁻²	9.5×10 ⁻²	1.9 × 10 ⁻¹
APP processing and trafficking	Clathrin/caveolin-dependent endocytosis	10	1.1×10 ⁻³	1.1 × 10 ⁻²	3.6 × 10 ⁻¹	1.8 × 10 ⁻¹
Mediator of Aβ toxicity	-	51	3.8 × 10 ⁻²	4.6 × 10 ⁻²	5.8 × 10 ⁻¹	5.7 × 10 ⁻¹
Mediator of Aβ toxicity	Calcium homeostasis	6	6.9 × 10 ⁻²	1.2 × 10 ⁻¹	3.9 × 10 ⁻¹	2.5 ×10 ⁻¹
Mediator of Aβ toxicity	Miscellaneous	3	7.6 × 10 ⁻²	2.3 × 10 ⁻²	9.7 ×10 ⁻¹	7.6 × 10 ⁻¹
Clearance and degradation of $A\beta$	Enzymatic degradation of $A\beta$	15	7.7 × 10 ⁻²	2.6 × 10 ⁻²	6.1×10 ⁻¹	2.9 ×10 ⁻¹
Mediator of Aβ toxicity	Tau toxicity	20	9.0 × 10 ⁻²	3.4 × 10 ⁻¹	7.1 × 10 ⁻¹	6.8×10 ⁻¹
Aggregation of $A\beta$	Chaperone	9	1.5 × 10 ⁻¹	3.0 × 10 ⁻¹	1.9 × 10 ⁻¹	1.1 × 10 ⁻²

in phase II clinical trials of Alzheimer's disease⁸⁵. Another novel

genome-wide locus reported here, *ADAMTS1*, is within 665 kb of *APP* on chromosome 21. Of three genes at this locus, our analyses nominate *ADAMTS1* as the likely risk gene, although we cannot rule out that this signal is a regulatory element for *APP*. ADAMTS1 is elevated in Down's syndrome with neurodegeneration and Alzheimer's disease⁸⁶, and it is a potential neuroprotective gene^{87–89} or a neuroinflammatory gene important to microglial response⁹⁰. Finally, *WWOX* and *MAF*, which surround an intergenic signal in an obesity associated locus⁹¹, were both prioritized for the *WWOX*

locus, with *MAF*, another important regulator of macrophages^{92,93}, being highly expressed in microglia in the Brain RNA-seq database, and *WWOX*, a high-density-lipoprotein cholesterol and triglyceride–associated gene^{94,95}, being expressed most highly in astrocytes and neurons. WWOX has been implicated in several neurological phenotypes⁹⁶; in addition, it binds tau and may play a critical role in regulating tau hyper-phosphorylation, neurofibrillary formation and Aβ aggregation^{28,29}. Intriguingly, treatment of mice with its binding partner restores memory deficits⁹⁷, hinting at its potential in neurotherapy.

NATURE GENETICS

	Evidence type			expres	ssion		eQTL		Pathway	expre	ical ssion
Locus Number of genes in locus Prioritized gene(s)	Prionty score	Coding or splicing change	Rare variant burden	LOAD tissue expression	Microglia-enriched gene	AD-relevant tissue eQTL	eQTL in any tissue type	Evidence of colocalization	Enriched pathway	BRAAK stage association	DEG evidence
		No	vel ge	nome-wi	de loci						
	5										
	6										
	4										
ΜΛΑΓ	4 2	-									
	2										
	-	Kno	wn ge	enome-w	ide loci						
	7										
	6										
	5	_									
	6	-									
HLA-DRB1	7	_									
C4A GPSM3 HLA-DRB1 ^a 46HLA-DPA1 HLA-DQA1 HLA-DRA HLA-DRB5	7 6 6 6 6 6 6 6		`								
	6										
	5	-									
NYAP1 53 C70rf43 GAL3ST4	6 6 5 5 5 5 5										
	5										
	5										
	6										
SPI1 23 NUP160 SPI1 29 SPI1 29 SPI1 PS3 SPI1	4 5 5 5 5 5 5 5 5 5										
MS4A2 24 MS4A7 MS4A4A	8 6 5										
	5										
PICALM	5										
	5	_									
	5 7	-									
ABCA7 ABCA7 50 <i>ABCA7</i> HMHA1 CNN2 WDR18	7 6 5 5										
^a Genes with rank 6 or above are shown on	5										

Fig. 2 | Top prioritized genes of 400 genes located in genome-wide-significant loci. The criteria include: (1) deleterious coding, LOF or splicing variant in the gene; (2) significant gene-based tests; (3) expression in a tissue relevant to Alzheimer's disease (astrocytes, neurons, microglia/macrophages, oligodendrocytes); (4) a HuMi microglial-enriched gene; (5) having an eQTL effect on the gene in any tissue, in Alzheimer's disease-relevant tissue, and/ or a co-localized eQTL; (6) being involved in a biological pathway enriched in Alzheimer's disease (from the current study); (7) expression correlated with the BRAAK stage; and (8) differential expression in a 1+Alzheimer's disease (AD) study. Novel genome-wide loci from the current study are listed first, followed by known genome-wide loci. Each category is assigned an equal weight of 1, with the priority score equaling the sum of all categories. Colored fields indicate that the gene meets the criteria. Genes with a priority score \geq 4 are listed for each locus. If no gene reached a score of \geq 5 in a locus, then the top ranked gene(s) is listed.

For previously reported loci, applying the same prioritization approach highlights several genes, as described in Fig. 2, some of which are involved in APP metabolism (FERMT2, PICALM) or tau toxicity (BIN1, CD2AP, FERMT2, CASS4, PTK2B)98-101. Pathway, tissue and disease trait enrichment analyses support the utility of our prioritization method, as the 53 prioritized genes with a score \geq 5 are (1) enriched in substantially more Alzheimer's disease-relevant pathways, processes and dementia-related traits; (2) enriched in candidate Alzheimer's disease cell types such as monocytes (adjusted $P = 9.0 \times 10^{-6}$) and macrophages (adjusted $P = 5.6 \times 10^{-3}$); and (3) more strongly associated with dementia-related traits and Alzheimer's disease-relevant pathways (Supplementary Table 25 and 26; see Supplementary Fig. 19 for the interaction network of these prioritized genes). To further investigate the cell types and tissues the prioritized genes are expressed in, we performed differentially expressed gene (DEG) set enrichment analysis of the prioritized genes by using GTEx¹⁰² tissues, and we identified significant differential expression in several potentially relevant Alzheimer's disease tissues including immune-related tissues (upregulation in blood and spleen), obesity-related tissue (upregulation in adipose), heart tissues (upregulation in left ventricle and atrial appendage), and brain tissues (dowregulation in cortex, cerebellum, hippocampus, basal ganglia, and amygdala). Furthermore, the 53 genes are overexpressed in 'adolescence' and 'young adult' brain tissues in BrainSpan¹⁰³, a transcriptomic atlas of the developing human brain, which is consistent with accumulating evidence suggesting Alzheimer's disease may start decades before the onset of disease^{104,105} (Supplementary Fig. 20; see Supplementary Fig. 21 for a tissue expression heat map for the 53 genes).

Fine-mapping of the HLA region. The above approach prioritized HLA-DRB1 as the top candidate gene in the MHC locus, known for its complex genetic organization and highly polymorphic nature (see Supplementary Fig. 22 for a plot of the region of the Stage 1 results). Previous analyses in the ADGC (5,728 Alzheimer's disease cases and 5,653 controls) have linked both HLA class I and II haplotypes with Alzheimer's disease risk¹⁰⁶. In order to further investigate this locus in a much larger sample, we used a robust imputation method and fine-mapping association analysis of alleles and haplotypes of HLA class I and II genes in 14,776 cases and 23,047 controls from our datasets (Supplementary Table 27). We found risk effects of HLA-DQA1*01:02 (FDR P=0.014), HLA-DRB1*15:01 (FDR P=0.083), and HLA-DQB1*06:02 (FDR P=0.010) (Supplementary Table 28). After conditioning on the sentinel meta-analysis variant in this region (rs78738018), association signals were lost for the three alleles, suggesting that the signal observed at the variant level is due to the association of these three alleles. These alleles form the HLA-DQA1*01:02~HLA-DQB1*06:02~HLA-DRB1*15:01 (DR15) haplotype, which is also associated with Alzheimer's disease in our sample (FDR P=0.013) (Supplementary Table 29). Taken together, these results suggest a central role of the DR15 haplotype in Alzheimer's disease risk, a finding originally discovered in a small study in the Tunisian population¹⁰⁷ and more recently in a large ADGC analysis¹⁰⁶. Intriguingly, the DR15 haplotype and its component alleles also associate with protection against diabetes¹⁰⁸, a high risk for multiple sclerosis^{109,110}, and risk or protective effects with many other immune-mediated diseases (Supplementary Table 30). Moreover, the associated diseases include a large number of traits queried from an HLA-specific Phewas¹¹¹, including neurological diseases (for example, Parkinson's disease112,113) and diseases with risk factors for Alzheimer's disease (for example, hyperthyroidism¹¹⁴), pointing to potential shared and/or interacting mechanisms and co-morbidities, a common paradigm in the MHC locus¹¹⁵. Two additional alleles, HLA-DQA1*03:01 and HLA-DQB1*03:02, belonging to another haplotype, show a protective effect on Alzheimer's disease, but their signal was lost after conditioning on HLA-DQA1*01:02, and the HLA-DQA1*03:01-HLA-DQB1*03:02 haplotype is not associated with Alzheimer's disease (FDR P=0.651).

Genetic correlations with Alzheimer's disease. As described above, several of our genome-wide loci have potentially interesting co-morbid or pleiotropic associations with traits that may be relevant to the pathology of Alzheimer's disease. To investigate the extent of LOAD's shared genetic architecture with other traits, we performed LD-score regression to estimate the genetic correlation between LOAD and 792 human diseases, traits and behaviors^{12,116} (Supplementary Table 31). The common variant genetic architecture of LOAD was positively correlated with a maternal family history of Alzheimer's disease/dementia (r_{g} for the genetic correlation of two traits = 0.81; FDR $P = 2.79 \times 10^{-7}$), similar to the Marioni et al. family proxy analyses²⁶, which found maternal genetic correlation with Alzheimer's disease to be higher than that for paternal Alzheimer's disease ($r_g = 0.91$ and 0.66, respectively). There is substantial overlap between these estimates, as the Marioni et al. analyses include the 2013 IGAP summary statistics and employed the same UK Biobank variable that we used for r_{g} estimates with maternal history of dementia. We also find significant negative correlation between Alzheimer's disease and multiple measures of educational attainment (for example, college completion, $r_g = -0.24$; years of schooling, r_g range = -0.19 to -0.24; cognitive scores, r_g = -0.24 and -0.25) (FDR P < 0.05), supporting the theory that a greater cognitive reserve could help protect against development of LOAD¹¹⁷. The extent to which socioeconomic, environmental, or cultural factors contribute to the correlation between educational attainment and risk for Alzheimer's disease is unknown, but research shows dementia risk to be associated with lower socioeconomic status, independently of education status^{118,119}. We also found negative correlations at P < 0.05 with multiple measures of cardiovascular health (that is, family history of high blood pressure and heart disease and vascular/heart problems) and diabetes (that is, fasting proinsulin, basal metabolic rate and fasting insulin), supporting previous research suggesting that use of blood pressure and diabetic medications may reduce the risk of Alzheimer's disease¹²⁰. In fact, use of blood pressure medication does show a negative genetic correlation with Alzheimer's disease in our study $(r_g = -0.12; P = 0.035)$, although this result does not survive FDR correction. These and other top results from this analysis (for example, body mass index, height; see Supplementary Table 31 for a full list of other nominally significant correlations) have been linked to Alzheimer's disease previously^{116,120-127}, either through suggestive or significant genetic or epidemiological associations (see Kuzma et al.¹²⁸ for a recent review), but the multiple measures here support and emphasize their genetic correlation with LOAD and highlight the possible genetic pleiotropy or co-morbidity of these traits with pathology of LOAD.

Discussion

In conclusion, our work identifies five new genome-wide associations for LOAD and shows that GWAS data combined with highquality imputation panels can reveal rare disease risk variants (for example, *TREM2*). The enrichment of rare variants in pathways associated with Alzheimer's disease indicates that additional rare variants remain to be identified, and larger samples and better imputation panels will facilitate identifying them. While these rare variants may not contribute substantially to the predictive value of genetic findings, they will enhance the understanding of disease mechanisms and potential drug targets. Discovery of the risk genes at genome-wide loci remains challenging, but we demonstrate that converging evidence from existing and new analyses can prioritize risk genes. We also show that APP metabolism is associated with not only early-onset Alzheimer's disease but also LOAD, suggesting that therapies developed by studying early-onset families could also be applicable to the more common late-onset form of the disease. Pathway analysis showing that tau is involved in LOAD supports recent evidence that tau may play an early pathological role in Alzheimer's disease¹²⁹⁻¹³¹ and confirms that therapies targeting tangle formation/degradation could potentially affect LOAD. Finally, our fine-mapping analyses of HLA and genetic correlation results point to LOAD's shared genetic architecture with many immunemediated and cognitive traits, suggesting that research and interventions that elucidate mechanisms behind these relationships could also yield fruitful therapeutic strategies for LOAD.

URLs. ADGC Reference Dataset: https://kauwelab.byu.edu/ Portals/22/adgc_combined_1000G_09192014.pdf; AlzBase: http:// alz.big.ac.cn/alzBase/; Brain RNA-seq Database: http://www. brainrnaseq.org/; Enrichr: http://amp.pharm.mssm.edu/Enrichr/; exSNP: http://www.exsnp.org/; NESDA eQTL catalog: https://eqtl. onderzoek.io/index.php?page=info; FUMA: http://fuma.ctglab.nl/; HLA-PheWas catalog: https://phewascatalog.org/hla; INFERNO: http://inferno.lisanwanglab.org/index.php; LD Hub: http://ldsc. broadinstitute.org/ldhub/; STRING: https://string-db.org/.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/ s41588-019-0358-2.

Received: 12 March 2018; Accepted: 22 January 2019; Published online: 28 February 2019

References

- Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. *Nat. Genet.* 45, 1452–1458 (2013).
- Adams, P. M. et al. Assessment of the genetic variance of late-onset Alzheimer's disease. *Neurobiol. Aging.* 41, 1–8 (2016).
- Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–174 (2006).
- Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. *Nat. Genet.* 43, 436–441 (2011).
- 5. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. *JAMA* **303**, 1832–1840 (2010).
- Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. *Nat. Genet.* 43, 429–435 (2011).
- 7. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. *N. Engl. J. Med.* **368**, 107–116 (2013).
- Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).
- Jun, G. et al. Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. *Arch. Neurol.* 67, 1473–1484 (2010).
- Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat. Genet.* 41, 1088–1093 (2009).
- Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. *Nat. Genet.* 41, 1094–1099 (2009).
- Zheng, J. et al. LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. *Bioinformatics* 33, 051094 (2017).
- Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* 47, 291–295 (2015).
- Sims, R. C. et al. Novel rare coding variants in PLCG2, ABI3 and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. *Nat. Genet.* 49, 1373–1387 (2017).
- 15. Liu, J. Z. et al. Case-control association mapping by proxy using family history of disease. *Nat. Genet.* **49**, 325–331 (2017).

- 16. Desikan, R. S. et al. Polygenic overlap between c-reactive protein, plasma lipids, and Alzheimer's disease. *Circulation* **131**, 2061-2069 (2015).
- 17. Jun, G. R. et al. Transethnic genome-wide scan identifies novel Alzheimer's disease loci. *Alzheimers Dement*. **13**, 727-738 (2017).
- Vassar, R. ADAM10 prodomain mutations cause late-onset Alzheimer's disease: not just the latest FAD. *Neuron* 80, 250–253 (2013).
- Kim, M. et al. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate alpha-secretase activity. *Hum. Mol. Genet.* 18, 3987–3996 (2009).
- Kehoe, P. G. et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. *Nat. Genet.* 21, 71–72 (1999).
- Meng, Y. et al. Association of polymorphisms in the Angiotensin-converting enzyme gene with Alzheimer disease in an Israeli Arab community. *Am. J. Hum. Genet.* 78, 871–877 (2006).
- Lehmann, D. J. et al. Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. *Am. J. Epidemiol.* 162, 305–317 (2005).
- Wang, X.-B. et al. Angiotensin-converting enzyme insertion/deletion polymorphism is not a major determining factor in the development of sporadic Alzheimer disease: evidence from an updated meta-analysis. *PLoS ONE* 9, e111406 (2014).
- Cai, G. et al. Evidence against a role for rare ADAM10 mutations in sporadic Alzheimer disease. *Neurobiol. Aging.* 33, 416–417.e3 (2012).
- 25. Belbin, O. et al. A multi-center study of ACE and the risk of late-onset Alzheimer's disease. J. Alzheimers. Dis. 24, 587–597 (2011).
- 26. Marioni, R. E. et al. GWAS on family history of Alzheimeras disease. *Transl. Psychiatry* **8**, 99 (2018).
- Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. *Nat. Genet.* 44, 369–375 (2012).
- Chang, J.-Y. & Chang, N.-S. WWOX dysfunction induces sequential aggregation of TRAPPC6AΔ, TIAF1, tau and amyloid β, and causes apoptosis. *Cell Death Discov.* 1, 15003 (2015).
- Sze, C. I. et al. Down-regulation of WW domain-containing oxidoreductase induces tau phosphorylation in vitro: a potential role in Alzheimer's disease. *J. Biol. Chem.* 279, 30498–30506 (2004).
- Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. *Cell* 153, 707–720 (2013).
- 31. Bai, Z. et al. AlzBase: an integrative database for gene dysregulation in Alzheimer's disease. *Mol. Neurobiol.* **53**, 310–319 (2016).
- Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. *J. Neurosci.* 34, 11929–11947 (2014).
- Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. *Neuron* 89, 37–53 (2016).
- Olah, M. et al. A transcriptomic atlas of aged human microglia. *Nat. Commun.* 9, 539 (2018).
- Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. *Nat. Genet.* 7, 180–184 (1994).
- Kim, J., Basak, J. M. & Holtzman, D. M. The role of apolipoprotein E in Alzheimer's disease. *Neuron* 63, 287–303 (2009).
- Steinberg, S. et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. *Nat. Genet.* 47, 445–447 (2015).
- Vasquez, J. B., Fardo, D. W. & Estus, S. ABCA7 expression is associated with Alzheimer's disease polymorphism and disease status. *Neurosci. Lett.* 556, 58–62 (2013).
- De Roeck, A. et al. An intronic VNTR affects splicing of ABCA7 and increases risk of Alzheimer's disease. *Acta Neuropathol.* 135, 827–837 (2018).
- De Roeck, A. et al. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. *Acta Neuropathol.* 134, 475–487 (2017).
- Chapuis, J. et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. *Mol. Psychiatry* 18, 1225–1234 (2013).
- Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. *Nat. Genet.* 39, 168–177 (2007).
- 43. Vardarajan, B. N. et al. Coding mutations in SORL 1 and Alzheimer disease. Ann. Neurol. 77, 215–227 (2015).
- Suh, J. et al. ADAM10 missense mutations potentiate beta-amyloid accumulation by impairing prodomain chaperone function. *Neuron* 80, 385–401 (2013).
- Huang, K. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. *Nat. Neurosci.* 20, 1052–1061 (2017).
- Brouwers, N. et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. *Mol. Psychiatry* 17, 223–233 (2012).

NATURE GENETICS

- 47. Flister, M. J. et al. Identifying multiple causative genes at a single GWAS locus. *Genome Res.* 23, 1996–2002 (2013).
- 48. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. *Nature* **518**, 337–343 (2014).
- Bis, J. C. et al. Whole exome sequencing study identifies novel rare and common Alzheimer's-associated variants involved in immune response and transcriptional regulation. *Mol. Psychiatry* https://doi.org/10.1038/ s41380-018-0112-7 (2018).
- Vardarajan, B. N. et al. Coding mutations in SORL1 and Alzheimer disease. Ann. Neurol. 77, 215–227 (2015).
- Verheijen, J. et al. A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. *Acta Neuropathol.* 132, 213–224 (2016).
- Bellenguez, C. et al. Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. *Neurobiol. Aging.* 59, 220.e1–220.e9 (2017).
- Kunkle, B. W. et al. Targeted sequencing of ABCA7 identifies splicing, stop-gain and intronic risk variants for Alzheimer disease. *Neurosci. Lett.* 649, 124–129 (2017).
- 54. May, P. et al. Rare ABCA7 variants in 2 German families with Alzheimer disease. *Neurol. Genet.* **4**, e224 (2018).
- Guennec, K. Le et al. ABCA7 rare variants and Alzheimer disease risk. *Neurology* 86, 1–4 (2016).
- Boyle, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. *Genome Res.* 22, 1790–1797 (2012).
- Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Res.* 40, D930–D934 (2012).
- Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The Ensembl Regulatory Build. *Genome. Biol.* 16, 56 (2015).
- Huang, D. et al. GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits. *Nucleic Acids Res.* 46, W114–W120 (2018).
- 60. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. *Nature* **518**, 365–369 (2015).
- de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. *PLoS Comput. Biol.* 11, 1–19 (2015).
- Stefanis, L. alpha-Synuclein in Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, 1–23 (2012).
- Takeda, A. et al. C-terminal alpha-synuclein immunoreactivity in structures other than Lewy bodies in neurodegenerative disorders. *Acta Neuropathol.* 99, 296–304 (2000).
- Campion, D., Pottier, C., Nicolas, G., Le Guennec, K. & Rovelet-Lecrux, A. Alzheimer disease: modeling an Aβ-centered biological network. *Mol. Psychiatry* 7, 861–871 (2016).
- Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C. & Sheng, M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. *Neuron* 91, 328–340 (2016).
- Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. *Nat. Genet.* 48, 134–143 (2015).
- Haass, C., Kaether, C., Thinakaran, G. & Sisodia, S. Trafficking and proteolytic processing of APP. *Cold Spring Harb. Perspect. Med.* 2, a006270 (2012).
- Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. *Sci. Transl. Med.* 6, 243ra86 (2014).
- Postina, R. et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. *J. Clin. Invest.* 113, 1456–1464 (2004).
- Hinney, A. et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer's disease and obesity. Am. J. Med. Genet. B. 165B, 283–293 (2014).
- Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nat. Genet.* 42, 937–948 (2010).
- Kurabayashi, N., Nguyen, M. D. & Sanada, K. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex. *Development* 140, 4335–4346 (2013).
- 73. Cool, B. H. et al. A flanking gene problem leads to the discovery of a Gprc5b splice variant predominantly expressed in C57BL/6J mouse brain and in maturing neurons. *PLoS ONE* **5**, e10351 (2010).
- Kim, Y.-J., Sano, T., Nabetani, T., Asano, Y. & Hirabayashi, Y. GPRC5B activates obesity-associated inflammatory signaling in adipocytes. *Sci. Signal.* 5, ra85-ra85 (2012).
- Bhat, K. et al. The 19S proteasome ATPase Sug1 plays a critical role in regulating MHC class II transcription. *Mol. Immunol.* 45, 2214–2224 (2008).

- Inostroza-Nieves, Y., Venkatraman, P. & Zavala-Ruiz, Z. Role of Sug1, a 19S proteasome ATPase, in the transcription of MHC I and the atypical MHC II molecules, HLA-DM and HLA-DO. *Immunol. Lett.* 147, 67–74 (2012).
- Kim, K., Duramad, O., Qin, X. F. & Su, B. MEKK3 is essential for lipopolysaccharide-induced interleukin-6 and granulocyte-macrophage colony-stimulating factor production in macrophages. *Immunology* 120, 242–250 (2007).
- 78. Yamazaki, K. et al. Two mechanistically and temporally distinct NF- κ B activation pathways in IL-1 signaling. *Sci. Signal.* **2**, 1–12 (2009).
- 79. Farrer, L. A. et al. Association between angiotensin-converting enzyme and Alzheimer disease. *New Engl. J. Med.* 57, 210–214 (2000).
- Miners, J. S. et al. Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes. *Am. J. Transl. Res.* 1, 163–177 (2009).
- Jochemsen, H. M. et al. The association of angiotensin-converting enzyme with biomarkers for Alzheimer's disease. *Alzheimers Res. Ther.* 6, 1–10 (2014).
- Kauwe, J. S. K. et al. Genome-wide association study of CSFI Levels of 59 Alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation. *PLoS Genet.* 10, e1004758 (2014).
- Baranello, R. J. et al. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. *Curr. Alzheimers Res* 12, 32–46 (2015).
- Kehoe, P. G. The coming of age of the angiotensin hypothesis in Alzheimer's disease: progress toward disease prevention and treatment? J. Alzheimers. Dis. 62, 1443–1466 (2018).
- Kehoe, P. G. et al. The rationale and design of the reducing pathology in Alzheimer's disease through Angiotensin TaRgeting (RADAR) Trial. J. Alzheimers. Dis. 61, 803–814 (2017).
- Miguel, R. F., Pollak, A. & Lubec, G. Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer's and Pick's disease. *Brain. Res. Mol. Brain. Res.* 133, 1–5 (2005).
- Suttkus, A. et al. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against ironinduced oxidative stress. *Cell Death Dis.* 5, e1119 (2014).
- Végh, M. J. et al. Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease. *Acta Neuropathol. Commun.* 2, 76 (2014).
- 89. Morawski, M., Filippov, M., Tzinia, A., Tsilibary, E. & Vargova, L. ECM in brain aging and dementia. *Prog. Brain. Res.* **214**, 207–227 (2014).
- Wilcock, D. M. Neuroinflammation in the aging down syndrome brain; lessons from Alzheimer's disease. *Curr. Gerontol. Geriatr. Res.* 2012, 170276 (2012).
- 91. Wang, K. et al. A genome-wide association study on obesity and obesity-related traits. *PLoS ONE* **6**, 3–8 (2011).
- Kang, K. et al. Interferon-γ represses M2 gene expression in human macrophages by disassembling enhancers bound by the transcription factor MAF. *Immunity* 47, 235–250.e4 (2017).
- Cao, S., Liu, J., Song, L. & Ma, X. The protooncogene c-Maf Is an essential transcription factor for IL-10 gene expression in macrophages. *J. Immunol.* 174, 3484–3492 (2005).
- Lee, J. C. et al. WW-domain-containing oxidoreductase is associated with low plasma HDL-C levels. Am. J. Hum. Genet. 83, 180–192 (2008).
- 95. Saez, M. E. et al. WWOX gene is associated with HDL cholesterol and triglyceride levels. *BMC. Med. Genet.* **11**, 148 (2010).
- Chang, H. T. et al. WW domain-containing oxidoreductase in neuronal injury and neurological diseases. *Oncotarget* 5, 11792–11799 (2014).
- Lee, M. H. et al. Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. *Alzheimers Dement. Transl. Res. Clin. Interv* 3, 189–204 (2017).
- Dourlen, P. et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. *Mol. Psychiatry* 22, 874–883 (2017).
- Chapuis, J. et al. Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 133, 955–966 (2017).
- 100. Shulman, J. M. et al. Functional screening in *Drosophila* identifies Alzheimer's disease susceptibility genes and implicates tau-mediated mechanisms. *Hum. Mol. Genet.* 23, 870–877 (2014).
- Zhao, Z. et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. *Nat. Neurosci.* 18, 978–987 (2015).
- Aguet, F. et al. Genetic effects on gene expression across human tissues. *Nature* 550, 204–213 (2017).
- Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

- 104. Knickmeyer, R. C. & Ross, M. E. Imaging and rare APOE alleles. *Neurology* 87, 558–559 (2016).
- Douaud, G. et al. A common brain network links development, aging, and vulnerability to disease. *Proc. Natl Acad. Sci. USA* 111, 17648–17653 (2014).
- Steele, N. Z. et al. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: a case-control study. *PLoS Med.* 14, 1–25 (2017).
- Fekih Mrissa, N. et al. Association of HLA-DR-DQ polymorphisms with diabetes in Tunisian patients. *Transfus. Apher. Sci.* 49, 200–204 (2013).
- Pugliese, A. et al. HLA-DRB1 15:01-DQA1 01:02-DQB1 06:02 haplotype protects autoantibody-positive relatives from type 1 diabetes throughout the stages of disease progression. *Diabetes* 65, 1109–1119 (2016).
- 109. Patsopoulos, Na et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. *PLoS Genet.* 9, e1003926 (2013).
- Schmidt, H., Williamson, D. & Ashley-Koch, A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am. J. Epidemiol. 165, 1097–1109 (2007).
- Karnes, J. H. et al. Phenome-wide scanning identifies multiple diseases and disease severity phenotypes associated with HLA variants. *Sci. Transl. Med.* 9, 1–14 (2017).
- 112. Wissemann, W. T. et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. *Am. J. Hum. Genet.* **93**, 984–993 (2013).
- 113. Misra, M. K., Damotte, V. & Hollenbach, J. A. The immunogenetics of neurological disease. *Immunology* **153**, 399–414 (2018).
- 114. Tan, Z. S. Thyroid function and the risk of Alzheimer disease: the Framingham study. Arch. Intern. Med. 168, 1514 (2008).
- Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).
- 116. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. *Nat. Genet.* 47, 1236–1241 (2015).
- Stern, Y. Cognitive reserve in ageing and Alzheimer's disease. Lancet. Neurol. 11, 1006–1012 (2012).
- Cadar, D. et al. Individual and area-based socioeconomic factors associated with dementia incidence in England: evidencefrom a 12-year follow-up in the English longitudinal study of ageing. *JAMA Psychiatry* 75, 723–732 (2018).
- 119. Marden, J. R., Tchetgen Tchetgen, E. J., Kawachi, I. & Glymour, M. M. Contribution of socioeconomic status at 3 life-course periods to late-life memory function and decline: early and late predictors of dementia risk. *Am. J. Epidemiol.* **186**, 805–814 (2017).
- Østergaard, S. D. S. D. et al. Associations between potentially modifiable risk factors and Alzheimer disease: a Mendelian randomization study. *PLoS Med.* 12, e1001841 (2015).
- 121. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. *Nat. Commun.* 9, 224 (2018).
- Baumgart, M. et al. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. *Alzheimers Dement.* 11, 1–9 (2015).
- Larsson, S. C., Traylor, M., Burgess, S. & Markus, H. S. Geneticallypredicted adult height and Alzheimer's disease. J. Alzheimers. Dis. 60, 691–698 (2017).
- Helzner, E. P. et al. Contribution of vascular risk factors to the progression in Alzheimer disease. Arch. Neurol. 66, 343–348 (2009).
- 125. Reitz, C. et al. Association of higher levels of high-density lipoprotein cholesterol in elderly individuals and lower risk of late-onset Alzheimer disease. *Arch. Neurol.* **67**, 1491–1497 (2010).
- Mukherjee, S. et al. Genetically predicted body mass index and Alzheimer's disease-related phenotypes in three large samples: Mendelian randomization analyses. *Alzheimers Dement.* 11, (2015).
- Arvanitakis, Z. et al. Late-life blood pressure association with cerebrovascular and Alzheimer disease pathology. *Neurology* **91**, e517–e525 (2018).
- Kuźma, E. et al. Which risk factors causally influence dementia? A systematic review of mendelian randomization studies. J. Alzheimers. Dis. 36, 215–221 (2018).
- Murray, M. E. et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. *Brain* 138, 1370–1381 (2015).
- 130. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. *Nature* **549**, 523–527 (2017).
- 131. Brier, M. R. M. R. et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Sci. Transl. Med. 8, 338ra66 (2016).

Acknowledgements

We thank all the participants of this study for their contributions. Additional acknowledgements and detailed acknowledgments of funding sources for the study are provided in the Supplementary Note.

ADGC. Study design or conception: A.C.N., A.A.-W., E.R.M., K.H.-N., A.B.K., B.N.V., G.W.B., O.V., M.Butkiewicz, W.B., Y.Song, G.D.S., M.A.P.-V. Sample contribution: S.Mukherjee, P.K.C., R.B., P.M.A., M.S.A., D. Beekly, D. Blacker, R.S. Doody, T.J.F., M.P.F., B.Ghetti, R.M.H., M.I.K., M.J.K., C.K., W.K., E.B.L., R.B.L., T.J.M., R.C.P., E.M.R., LS.R., D.R.R., M. Sano, P.S.G.-H., D.W.T., C.K.W., R.L.A., L.G.A., S.F.A., S.A., C.S.A., C.T.B., L.L.B., S. Barral, T.G.B., J.T.B., E.H.B., T.D.B., B.F.B., J.D.B., A.Boxer, J.R.B., J.M.B., J.D.Buxbaum, N.J.C., C. Cao, C.S.C., C.M.C., R.M.C., H.C.C., D.H.C., E.A.C., C.DeCarli, M.Dick, R.D., N.R.G.-R., D.A.E., K.M.F., K.B.F., D.W.F., M.R.E. S.E., T.M.F., D.R.G., M.Gearing, D.H.G., J.R.G., R.C.G., J.H.G., R.L.H., L.E.H., L.S.H., M.J.H., C.M.H., B.T.H., G.P.J., E.A., L.W.J., G.R.J., A. Karydas, J.A.K., R.K., N.W.K., J.H.K., F.M.L., J.J.L., J.B.L., A.I.L., A.P.L., K.L.L., C.G.L., D.C.M., F.M., D.C.Mash, E.M., W.C.M., S.M.M., A.N.M., A.C.M., M.M., B.L.M., C.A.M., J.W.M., J.C.M., A.J.M., S.O., J.M.O., J.E.P., H.L.P., E.P., A.P., W.W.P., H.P., J.F.Q., A.Raj, M.R., B.R., C.R., J.M.R., E.D.R., E.R., H.J.R., R.N.R., M.A.S., A.J.S., M.L.C., J. Vance, J.A.S., L.S.S., W.W.S., A.G.S., J.A.Sonnen, S. Spina, R.A.S., R.H.S., R.E.T., J.Q.T., J.C.T., V.M.V.D., L.J.V.E., H.V.V., J.P.V., S.W., K.A.W.-B., K.C.W., J.Williamson, T.S.W., R.L.W., C.B.W., C.-E.Y., L.Y., D.B., P.L.D.J., C.Cruchaga, A.M.G., N.E.-T., S.G.Y., D.W.D., H.H., L.A.F., J.Haines, R.Mayeux, L.-S.W., G.D.S., M.A.P.-V. Data generation: B.W.K., K.H.-N., A.B.K., O.V., L.Q., Y.Z., W.P., S.Slifer, J.Malamon, B.A.D., P.W., L.B.C., M.A., M.Tang, J.R.G., L.-S.W. Analysis: B.W.K., A.C.N., A.A.-W., E.R.M., K.H.-N., A.B.K., M.Tang, M.M.C., B.N.V., G.W.B., O.V., M.Butkiewicz, W.B., Y.S., G.D.S., M.A.P.-V. Manuscript preparation: B.W.K., G.D.S., M.A.P.-V. Study supervision/ management: B.W.K., L.A.F., J.Haines, R.Mayeux, L.-S.W., G.D.S., M.A.P.-V. EADI. Study design or conception: P.A., J.-C.L. Sample contribution: K.S., M.Hiltunen, J.E., M.D.Z., I.M., F.S.-G., M.C.D.N., D.Wallon, S.E., R.V., P.D.D., A.Squassina, E.R.-R., C.M.-F., Y.A.B., H.T., V.Giedraitis, L.Kilander, R.Brundin, L.C., S.Helisalmi, A.M.K., A.Haapasalo, V.S., V.Frisardi, V.Deramecourt, N.F., O.H., C.Dufouil, A.Brice, K.R., B.D., H.Soininen, L.Fratiglioni, L.K., F.Panza, D.H., P.C., F.S., P.B., L.Lannfelt, F.P., M.Ingelsson, C.G., P.S.-L. A.L., I.Clarimon, C.Berr, S.D., I.-E.D., A.Pilotto, M.I.B., P.Bosco, E.C., G.N., D.C., C.V.B., P.A., J.-C.L. Data generation: R.O., J.-G.G., M.-L.M., D.Bacq, F.G., B.F., S.Meslage Analysis: B.G.-B., V.D., C.Bellenguez Manuscript preparation: B.G.-B., P.A. J.-C.L. Study supervision/management: J.-F.Deleuze, A.Boland, P.A., J.-C.L. GERAD/ PERADES. Study design or conception: R.Sims, M.C.O., M.J.O., A.R., P.A.H., J.W. Sample contribution: R.Raybould, T.Morgan, P.Hoffmann, D.Harold, O.P., N.D., N.C.F., J.T.H., Y.P., M.Daniilidou, J.U., D.Galimberti, E.Scarpini, J.Kornhuber, S.Sordon., M.Mayhaus, W.G., A.M.H., S.Lovestone, R.Sussams, C.Holmes, W.M., A.Kawalia, S.Moebus, J.Turton, J.Lord, I.K., A.L., B.L., M.Gill, M.D.-F., I.A., A.Ciaramella, C.Cupidi, R.G.M., R.Cecchetti, M.T., D.Craig, D.A., A.G., M.K., O.G., H.Hampel, D.C.R., L.F., B.M., I.A.I., P.Passmore, I.M.S., I.D.W., M.K.L., P.Proitsi, I.Powell, I.S.K.K., M.Mancuso, U.B., A.M., G.Livingston, N.J.B., J.Hardy, J.B., R.Guerreiro, E.F., C.Masullo, G.B., L.M., A.H., M.Scherer, M.Riemenschneider, R.Heun, H.K., M.Leber, I.H., I.G., M.Hull, J.M., K.Mavo, T.F., D.Drichel, T.D.C., P.Hollingworth, R.Marshall, A.Meggy, G.M., G.L., D.G., G.R., F.J., B.V., E.V., K.-H.J., M.Dichgans, D.Mann, S.P.-B., N.K., H.W., K.M., K.Brown, C.Medway, M.M.N., N.M.H., A.Daniele, A.Bayer, J.G., H.V.D.B., C.Brayne, S.R.-H., A.A.-C., C.E.S., J.Wiltfang, V.A., A.B.S., J.C., S.M., M.Rossor, N.S.R., B.N., S.Sorbi, E.S., G.S., C.Caltagirone, M.D.O., R.C., A.D.S., D.W., G.W., A.C.B., M.G., Y.B.-S., P.M., P.P., V.B., N.W., P.D., R.G., P.G.K., S.L., C.C., J.T., R.Munger, A.R., J.W. Data generation: R.Sims, R.Raybould, T.Morgan, P.Hoffmann, D.Harold, A.Gerrish, N.D., P.Hollingworth, R.Marshall, A.Meggy, A.R., J.W. Analysis: R.Sims, M.V., A.F., N.Badarinarayan, D.Harold, G.M., G.L., D.G., V.E.-P., A.R., J.W., P.A.H. Manuscript preparation: R.Sims, T.D.C., P.A.H., J.W. Study supervision/management: R.Sims, L.J., V.E.-P., A.R., P.A.H., J.W. CHARGE. Study design or conception: A.L.D., C.M.V.D., S.S. Sample contribution: J.C.B., A.Ruiz, I.D.R., L.M.R., I.Q., A.C., A.L.F., G.E., J.J.H., A.O., M.E.G., H.L., H.Comic, G.Roshchupkin, S.Li, I.Hernández, Q.Y., A.S.B., L.T., T.H.M., WT.L., F.R., E.Boerwinkle, J.I.R., A.G.U., S.M.-G., O.L.L., M.B., M.F., N.A., L.J.L., M.A.I., H.S., R.S., V.G., B.M.P. Data generation: J.C.B., J.Jakobsdottir, A.Ruiz, A.V.S., X.J., S.-H.C., H.H.A., J.A.B., T.A., E.H., C.Sarnowski, D.V., L.A.C. Analysis: J.C.B., S.J.v.d.L., V.C., J.Jakobsdottir, Y.C., Y.Saba, S.Ahmad, A.Ruiz, A.V.S., C.C.W., C.M.V.D., S.S. Manuscript preparation: S.J.v.d.L., A.Ruiz, B.M.P., C.M.V.D., S.S. Study supervision/management: C.M.V.D., S.S.

Competing interests

D. Blacker is a consultant for Biogen, Inc. R.C.P. is a consultant for Roche, Inc.; Merck, Inc.; Genentech, Inc.; Biogen, Inc.; GE Healthcare; and Eisai, Inc. A.R.W. is a former employee and stockholder of Pfizer, Inc., and a current employee of the Perelman School of Medicine at the University of Pennsylvania Orphan Disease Center in partnership with the Loulou. A.M.G. is a member of the scientific advisory board for Denali Therapeutics. N.E.-T. is a consultant for Cytox. J.Hardy holds a collaborative grant with Cytox cofunded by the Department of Business (Biz). F.J. acts as a consultant for Novartis, Eli Lilly, Nutricia, MSD, Roche and Piramal. Neither J.M. nor his family owns stock or has equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company. J.M. is currently participating in clinical trials of antidementia drugs from Eli Lilly and Company, Biogen and Janssen. J.M. serves as a consultant for Lilly USA. He receives research support from Eli Lilly/Avid Radiopharmaceuticals and is funded by NIH grant nos. P50AG005681, P01AG003991, P01AG026276 and UF01AG032438. C.Cruchaga receives research support from Biogen, EISAI, Alector and Parabon. The funders of the study had no role in the collection, analysis or interpretation of data; in the writing of the report; or in the decision to submit the paper for publication. C.Cruchaga is a member of the advisory board of ADx Healthcare. M.R.F. receives grant/research support from AbbVie, Accera,

ADCS Posiphen, Biogen, Eisai, Eli Lilly, Genentech, Novartis and Suven Life Sciences, Ltd. He is a consultant/advisory board/DSMB board member for Accera, Avanir, AZTherapies, Cognition Therapeutics, Cortexyme, Eli Lilly & Company, Longeveron, Medavante, Merck and Co. Inc., Otsuka Pharmaceutical, Proclara (formerly Neurophage Pharmaceuticals), Neurotrope Biosciences, Takeda, vTv Therapeutics and Zhejian Hisun Pharmaceuticals. He has a transgenic mouse model patent that is licensed to Elan. R.A.S. receives consulting fees as a member of the Alzheimer's Disease Advisory Board, Biogen; and as member of the Executive Committee for AZD3293 Alzheimer's Disease Studies, Eli Lilly. R.B.L. receives consulting fees from Merch, Inc. E.M.R. receives grant funding from several NIH grant and research contracts with Genentech/Roche, Novartis/ Amgen and Avid/Lilly. He is a compensated scientific advisor to Alkahest, Alzheon, Aural Analytics, Denali, Takeda and Zinfandel. He is an advisor to Roche and Roche Diagnostics, which reimburse his expenses only. T.G.B. has research support/contracts from the National Institutes of Health, State of Arizona, Michael J Fox Foundation, Avid Radiopharmaceuticals, Navida Biopharmaceuticals and Aprinoia Therapeutics. He is an advisory board member with Vivid Genomics and has consultancy work with Roche Diagnostics. A.G.S. conducts multiple industry-funded clinical trials, but all funds go to her academic institution. They have current (within last 12 months) research contracts with Eli Lilly, Novartis, Roche, Janssen, AbbVie, Biogen, NeuroEM, Suven and Merck. She does not receive personal compensations from these organizations. G.D.S. is a consultant for Biogen, Inc. J.M.B. is participating in clinical trials of antidementia drugs for Eli Lilly, Toyama Chemical Company, Merck, Biogen, AbbVie, vTv Therapeutics, Janssen and Roche. He has received research grants from Eli Lilly, Avid Radiopharmaceuticals and Astra Zeneca. He is a consultant for Stage 2 Innovations. L.F. is a consultant for Allergan, Eli Lilly, Avraham Pharmaceuticals, Axon Neuroscience, Axovant, Biogen, Boehringer Ingelheim, Eisai, Functional Neuromodulation, Lundbeck, MerckSharpe & Dohme, Novartis, Pfizer, Pharnext, Roche and Schwabe Pharma. M.B has consulted as an advisory board member for Araclon, Grifols, Lilly, Nutricia, Roche and Servier. She received fees for lectures and funds for research from Araclon, Grifols, Nutricia, Roche and Servier. She has not received personal compensations from these organizations. A.Ruiz has consulted for Grifols and Landsteiner Genmed. He received fees for lectures or funds for research and/or reimbursement of expenses for congresses

attendance from Araclon and Grifols. He has not received personal compensations from these organizations. O.P. acts as a consultant for Roche and Biogen, Inc. He is currently participating in clinical trials of antidementia drugs from Novartis, Genentech, Roche and Pharmatrophix. B.T.H. is a consultant for Aztherapy, Biogen, Calico, Ceregene, Genentech, Lilly, Neurophage, Novartis and Takeda, and receives research support from Abbvie, Amgen, Deanli, Fidelity Biosciences, General Electric, Lilly, Merck, Sangamo and Spark therapeutics. BTH owns Novartis stock. H.Hampel serves as Senior Associate Editor for the Journal Alzheimer's & Dementia: he received lecture fees from Biogen and Roche, research grants from Pfizer, Avid and MSD AVENIR (paid to the institution), travel funding from Functional Neuromodulation, Axovant, Eli Lilly and company, Takeda and Zinfandel, GE Healthcare and Oryzon Genomics, consultancy fees from Jung Diagnostics, Cytox Ltd., Axovant, Anavex, Takeda and Zinfandel, GE Healthcare, Oryzon Genomics and Functional Neuromodulation, and participated in scientific advisory boards of Functional Neuromodulation, Axovant, Eli Lilly and company, Cytox Ltd., GE Healthcare, Takeda and Zinfandel, Oryzon Genomics and Roche Diagnostica. Harald Hampel is a co-inventor on numerous patents relating to biomarker measurement but has received no royalties from these patents. A.A.-C. has consultancies for GSK, Cytokinetics, Biogen Idec, Treeway Inc, Chronos Therapeutics, OrionPharma and Mitsubishi-Tanabe Pharma, and was Chief Investigator for commercial clinical trials run by OrionPharma and Cytokinetics.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/ s41588-019-0358-2.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to B.W.K., J.-C.L. or M.A.P.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Brian W. Kunkle^{1,310*}, Benjamin Grenier-Boley^{2,3,4,310}, Rebecca Sims^{5,6}, Joshua C. Bis⁷, Vincent Damotte^{2,3,4}, Adam C. Naj⁸, Anne Boland⁹, Maria Vronskaya⁵, Sven J. van der Lee¹⁰, Alexandre Amlie-Wolf¹¹, Céline Bellenguez^{2,3,4}, Aura Frizatti⁵, Vincent Chouraki^{2,3,4,12,13}, Eden R. Martin¹, Kristel Sleegers ^{14,15}, Nandini Badarinarayan⁵, Johanna Jakobsdottir¹⁶, Kara L. Hamilton-Nelson¹, Sonia Moreno-Grau^{17,18}, Robert Olaso⁹, Rachel Raybould^{5,6}, Yuning Chen^{10,19}, Amanda B. Kuzma¹¹, Mikko Hiltunen^{20,21}, Taniesha Morgan⁵, Shahzad Ahmad¹⁰, Badri N. Vardarajan^{22,23,24}, Jacques Epelbaum²⁵, Per Hoffmann^{26,27,28}, Merce Boada^{17,18}, Gary W. Beecham¹, Jean-Guillaume Garnier⁹, Denise Harold²⁹, Annette L. Fitzpatrick^{30,31}, Otto Valladares¹¹, Marie-Laure Moutet⁹, Amy Gerrish³², Albert V. Smith^{33,34}, Liming Qu¹¹, Delphine Bacq⁹, Nicola Denning^{5,6}, Xueqiu Jian³⁵, Yi Zhao¹¹, Maria Del Zompo³⁶, Nick C. Fox^{32,37}, Seung-Hoan Choi¹⁷, Ignacio Mateo³⁸, Joseph T. Hughes³⁹, Hieab H. Adams¹⁰, John Malamon¹¹, Florentino Sanchez-Garcia⁴⁰, Yogen Patel³⁹, Jennifer A. Brody¹⁰, Beth A. Dombroski¹¹, Maria Candida Deniz Naranjo⁴⁰, Makrina Daniilidou⁴¹, Gudny Eiriksdottir¹⁶, Shubhabrata Mukherjee⁴², David Wallon⁴³, James Uphill⁴⁴, Thor Aspelund^{16,45}, Laura B. Cantwell¹¹, Fabienne Garzia⁹, Daniela Galimberti^{46,47}, Edith Hofer^{48,49}, Mariusz Butkiewicz⁵⁰, Bertrand Fin⁹, Elio Scarpini^{46,47}, Chloe Sarnowski¹⁹, Will S. Bush¹⁰⁵⁰, Stéphane Meslage⁹, Johannes Kornhuber⁵¹, Charles C. White⁵², Yuenjoo Song⁵⁰, Robert C. Barber⁵³, Sebastiaan Engelborghs^{54,55}, Sabrina Sordon⁵⁶, Dina Voijnovic¹⁰, Perrie M. Adams⁵⁷, Rik Vandenberghe⁵⁸, Manuel Mayhaus⁵⁶, L. Adrienne Cupples^{12,19}, Marilyn S. Albert⁵⁹, Peter P. De Deyn^{10,54,55}, Wei Gu⁵⁶, Jayanadra J. Himali^{10,12,13,19}, Duane Beekly⁶⁰, Alessio Squassina ³⁶, Annette M. Hartmann⁶¹, Adelina Orellana¹⁷, Deborah Blacker^{62,63}, Eloy Rodriguez-Rodriguez³⁸, Simon Lovestone⁶⁴, Melissa E. Garcia⁶⁵, Rachelle S. Doody⁶⁶, Carmen Munoz-Fernadez⁴⁰, Rebecca Sussams⁶⁷, Honghuang Lin⁶⁸, Thomas J. Fairchild⁶⁹, Yolanda A. Benito⁴⁰, Clive Holmes⁶⁷, Hata Karamujić-Čomić¹⁰, Matthew P. Frosch⁷⁰, Hakan Thonberg^{71,72}, Wolfgang Maier^{73,74}, Gennady Roshchupkin¹⁰, Bernardino Ghetti⁷⁵, Vilmantas Giedraitis⁷⁶,

Amit Kawalia⁷⁷, Shuo Li¹⁹, Ryan M. Huebinger⁷⁸, Lena Kilander⁷⁶, Susanne Moebus⁷⁹, Isabel Hernández^{17,18}, M. Ilyas Kamboh^{80,81,82}, RoseMarie Brundin⁷⁶, James Turton⁸³, Qiong Yang¹⁹, Mindy J. Katz⁸⁴, Letizia Concari^{85,86}, Jenny Lord⁸³, Alexa S. Beiser^{12,13,19}, C. Dirk Keene⁸⁷, Seppo Helisalmi^{20,21}, Iwona Kloszewska⁸⁸, Walter A. Kukull³¹, Anne Maria Koivisto^{20,21}, Aoibhinn Lynch^{89,90}, Lluís Tarraga^{17,18}, Eric B. Larson⁹¹, Annakaisa Haapasalo⁹², Brian Lawlor^{89,90}, Thomas H. Mosley⁹³, Richard B. Lipton⁸⁴, Vincenzo Solfrizzi⁹⁴, Michael Gill^{® 89,90}, W. T. Longstreth Jr^{31,95}, Thomas J. Montine⁸⁷, Vincenza Frisardi⁹⁶, Monica Diez-Fairen^{97,98}, Fernando Rivadeneira ^{10,99,100}, Ronald C. Petersen¹⁰¹, Vincent Deramecourt¹⁰², Ignacio Alvarez^{97,98}, Francesca Salani¹⁰³, Antonio Ciaramella¹⁰³, Eric Boerwinkle^{104,105}, Eric M. Reiman^{106,107,108,109}, Nathalie Fievet^{2,3,4}, Jerome I. Rotter¹¹⁰, Joan S. Reisch¹¹¹, Olivier Hanon¹¹², Chiara Cupidi¹¹³, A. G. Andre Uitterlinden^{10,99,100}, Donald R. Royall¹¹⁴, Carole Dufouil^{115,116}, Raffaele Giovanni Maletta¹¹³, Itziar de Rojas^{17,18}, Mary Sano¹¹⁷, Alexis Brice^{118,119}, Roberta Cecchetti¹²⁰, Peter St George-Hyslop^{121,122}, Karen Ritchie^{123,124,125}, Magda Tsolaki¹⁰⁴¹, Debby W. Tsuang^{126,127}, Bruno Dubois^{128,129,130,131}, David Craig¹³², Chuang-Kuo Wu¹³³, Hilkka Soininen^{20,21}, Despoina Avramidou⁴¹, Roger L. Albin^{134,135,136}, Laura Fratiglioni¹³⁷, Antonia Germanou⁴¹, Liana G. Apostolova^{138,139,140,141}, Lina Keller¹³⁷, Maria Koutroumani⁴¹, Steven E. Arnold¹⁴², Francesco Panza⁹⁶, Olymbia Gkatzima⁴¹, Sanjay Asthana^{143,144,145}, Didier Hannequin³⁹, Patrice Whitehead¹, Craig S. Atwood^[]^{139,140,141}, Paolo Caffarra^{82,83}, Harald Hampel^{146,147,148,149}, Inés Quintela¹⁵⁰, Ángel Carracedo¹⁵⁰, Lars Lannfelt⁷⁶, David C. Rubinsztein^{121,151}, Lisa L. Barnes^{152,153,154}, Florence Pasquier¹⁰¹⁰², Lutz Frölich¹⁵⁵, Sandra Barral^{22,23,24}, Bernadette McGuinness¹³², Thomas G. Beach¹⁵⁶, Janet A. Johnston¹³², James T. Becker^{1080,157,158}, Peter Passmore¹³², Eileen H. Bigio^{159,160}, Jonathan M. Schott¹, Thomas D. Bird^{95,126}, Jason D. Warren³², Bradley F. Boeve¹⁰¹, Michelle K. Lupton^{1039,161}, James D. Bowen¹⁰¹⁶², Petra Proitsi³⁹, Adam Boxer¹⁶³, John F. Powell³⁹, James R. Burke¹⁶⁴, John S. K. Kauwe¹⁶⁵, Jeffrey M. Burns¹⁶⁶, Michelangelo Mancuso¹⁶⁷, Joseph D. Buxbaum^{117,168,169}, Ubaldo Bonuccelli¹⁶⁷, Nigel J. Cairns¹⁷⁰, Andrew McQuillin¹⁰⁷¹, Chuanhai Cao¹⁷², Gill Livingston¹⁷¹, Chris S. Carlson^{144,145}, Nicholas J. Bass¹⁷¹, Cynthia M. Carlsson¹⁷³, John Hardy¹⁷⁴, Regina M. Carney¹⁷⁵, Jose Bras^{37,176}, Minerva M. Carrasquillo¹⁷⁷, Rita Guerreiro^{37,176}, Mariet Allen¹⁷⁷, Helena C. Chui¹⁷⁸, Elizabeth Fisher ¹⁷⁶, Carlo Masullo¹⁷⁹, Elizabeth A. Crocco¹⁸⁰, Charles DeCarli¹⁸¹, Gina Bisceglio¹⁷⁷, Malcolm Dick¹⁸², Li Ma¹⁷⁷, Ranjan Duara¹⁸³, Neill R. Graff-Radford¹⁷⁷, Denis A. Evans¹⁸⁴, Angela Hodges¹⁸⁵, Kelley M. Faber¹³⁸, Martin Scherer¹⁸⁶, Kenneth B. Fallon¹⁸⁷, Matthias Riemenschneider⁵⁶, David W. Fardo¹⁸⁸, Reinhard Heun⁷⁴, Martin R. Farlow¹⁴⁰, Heike Kölsch⁷⁴, Steven Ferris¹⁸⁹, Markus Leber¹⁹⁰, Tatiana M. Foroud¹³⁸, Isabella Heuser¹⁹¹, Douglas R. Galasko¹⁹², Ina Giegling⁶¹, Marla Gearing^{193,194}, Michael Hüll¹⁹⁵, Daniel H. Geschwind¹⁹⁶, John R. Gilbert¹, John Morris^{197,198}, Robert C. Green¹⁹⁹, Kevin Mayo^{197,200,201}, John H. Growdon²⁰², Thomas Feulner⁵⁶, Ronald L. Hamilton²⁰³, Lindy E. Harrell²⁰⁴, Dmitriy Drichel²⁰⁵, Lawrence S. Honig²², Thomas D. Cushion^{5,6}, Matthew J. Huentelman¹⁰⁶, Paul Hollingworth⁵, Christine M. Hulette²⁰⁶, Bradley T. Hyman²⁰², Rachel Marshall⁵, Gail P. Jarvik^{207,208}, Alun Meggy⁵, Erin Abner²⁰⁹, Georgina E. Menzies ^{[0,5,6}, Lee-Way Jin²¹⁰, Ganna Leonenko⁵, Luis M. Real²¹⁰, Gyungah R. Jun²¹¹, Clinton T. Baldwin²¹¹, Detelina Grozeva⁵, Anna Karydas¹⁶², Giancarlo Russo²¹², Jeffrey A. Kaye^{213,214}, Ronald Kim²¹⁵, Frank Jessen^{73,74,190}, Neil W. Kowall^{13,216}, Bruno Vellas²¹⁷, Joel H. Kramer²¹⁸, Emma Vardy²¹⁹, Frank M. LaFerla²²⁰, Karl-Heinz Jöckel⁷⁹, James J. Lah²²¹, Martin Dichgans^{222,223}, James B. Leverenz²²⁴, David Mann²²⁵, Allan I. Levey²²¹, Stuart Pickering-Brown²²⁵, Andrew P. Lieberman²²⁶, Norman Klopp²²⁷, Kathryn L. Lunetta ¹⁹, H-Erich Wichmann^{228,229,230}, Constantine G. Lyketsos²³¹, Kevin Morgan ²²³, Daniel C. Marson²⁰⁴, Kristelle Brown⁸³, Frank Martiniuk²³³, Christopher Medway⁸³, Deborah C. Mash²³⁴,

Markus M. Nöthen^{26,27}, Eliezer Masliah^{192,235}, Nigel M. Hooper^{10,225}, Wayne C. McCormick⁴², Antonio Daniele²³⁶, Susan M. McCurry²³⁷, Anthony Bayer²³⁸, Andrew N. McDavid¹⁰¹⁷², John Gallacher⁶⁶⁴, Ann C. McKee^{13,216}, Hendrik van den Bussche¹⁸⁶, Marsel Mesulam^{160,239}, Carol Brayne²⁴⁰, Bruce L. Miller²⁴¹, Steffi Riedel-Heller²⁴², Carol A. Miller²⁴³, Joshua W. Miller²⁴⁴, Ammar Al-Chalabi⁰²⁴⁵, John C. Morris^{170,200}, Christopher E. Shaw^{245,246}, Amanda J. Myers¹⁸⁰, Jens Wiltfang^{247,248,249}, Sid O'Bryant⁵³, John M. Olichney¹⁸¹, Victoria Alvarez²⁵⁰, Joseph E. Parisi²⁵¹, Andrew B. Singleton²⁵², Henry L. Paulson^{134,136}, John Collinge⁴⁴, William R. Perry¹, Simon Mead⁴⁴, Elaine Peskind¹²⁷, David H. Cribbs²⁵³, Martin Rossor³², Aimee Pierce²⁵³, Natalie S. Ryan⁴⁴, Wayne W. Poon¹⁸², Benedetta Nacmias^{254,255}, Huntington Potter²⁵⁶, Sandro Sorbi^{254,257}, Joseph F. Quinn^{186,187}, Eleonora Sacchinelli¹⁰, Ashok Rai¹⁷², Gianfranco Spalletta^{258,259}, Murrav Raskind¹²⁷, Carlo Caltagirone²⁵⁸, Paola Bossù¹⁰³, Maria Donata Orfei²⁵⁸, Barry Reisberg^{189,260}, Robert Clarke²⁶¹, Christiane Reitz^{22,23,262}, A David Smith²⁶³, John M. Ringman²⁶⁴, Donald Warden²⁶³, Erik D. Roberson^{10,204}, Gordon Wilcock²⁶³, Ekaterina Rogaeva¹²², Amalia Cecilia Bruni¹¹³, Howard J. Rosen¹⁶³, Maura Gallo¹¹³, Roger N. Rosenberg²⁶⁵, Yoav Ben-Shlomo²⁶⁶, Mark A. Sager¹⁴⁴, Patrizia Mecocci¹²⁰, Andrew J. Savkin¹⁰, ^{138,140}. Pau Pastor ^{97,98}, Michael L. Cuccaro¹, Jeffery M. Vance¹, Julie A. Schneider^{152,154,267}, Lori S. Schneider^{178,268}, Susan Slifer¹, William W. Seeley¹⁶³, Amanda G. Smith¹⁷², Joshua A. Sonnen⁸⁷, Salvatore Spina⁷⁵, Robert A. Stern¹³, Russell H. Swerdlow¹⁶⁶, Mitchell Tang¹¹, Rudolph E. Tanzi¹⁰²⁰², John Q. Trojanowski²⁶⁹, Juan C. Troncoso²⁷⁰, Vivianna M. Van Deerlin²⁶⁹, Linda J. Van Eldik²⁷¹, Harry V. Vinters^{272,273}, Jean Paul Vonsattel²⁷⁴, Sandra Weintraub^{160,275}, Kathleen A. Welsh-Bohmer^{164,276}, Kirk C. Wilhelmsen²⁷⁷, Jennifer Williamson²², Thomas S. Wingo^{221,278}, Randall L. Woltjer²⁷⁹, Clinton B. Wright²⁸⁰, Chang-En Yu⁴², Lei Yu^{152,154}, Yasaman Saba²⁸¹, Alzheimer Disease Genetics Consortium (ADGC)²⁸², The European Alzheimer's Disease Initiative (EADI)²⁸², Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE)²⁸², Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's Disease Consortium (GERAD/PERADES)²⁸², Alberto Pilotto^{283,284}, Maria J. Bullido^{18,285,286}, Oliver Peters^{191,287}, Paul K. Crane⁴², David Bennett^{152,154}, Paola Bosco²⁸⁸, Eliecer Coto²⁵⁰, Virginia Boccardi¹²⁰, Phil L. De Jager ²⁸⁹, Alberto Lleo^{18,290}, Nick Warner²⁹¹, Oscar L. Lopez^{80,82,157}, Martin Ingelsson⁷⁶, Panagiotis Deloukas ¹²⁹², Carlos Cruchaga ^{197,198}, Caroline Graff^{71,72}, Rhian Gwilliam²⁹², Myriam Fornage³⁵, Alison M. Goate^{168,293}, Pascual Sanchez-Juan³⁸, Patrick G. Kehoe²⁹⁴, Najaf Amin¹⁰, Nilifur Ertekin-Taner^{177,295}, Claudine Berr^{123,124}, Stéphanie Debette^{118,119}, Seth Love²⁹⁴, Lenore J. Launer⁶⁵, Steven G. Younkin^{177,295}, Jean-Francois Dartigues²⁹⁶, Chris Corcoran²⁹⁷, M. Arfan Ikram^{10,298,299}, Dennis W. Dickson¹⁷⁷, Gael Nicolas⁴³, Dominique Campion^{43,300}, JoAnn Tschanz²⁹⁷, Helena Schmidt^{281,301}, Hakon Hakonarson^{302,303}, Jordi Clarimon^{18,290}, Ron Munger²⁹⁷, Reinhold Schmidt⁴⁸, Lindsay A. Farrer^{13,19,211,304,305}, Christine Van Broeckhoven^{14,15}, Michael C. O'Donovan⁵, Anita L. DeStefano^{13,19}, Lesley Jones^{5,6}, Jonathan L. Haines⁵⁰, Jean-Francois Deleuze⁹, Michael J. Owen ⁵, Vilmundur Gudnason^{16,34}, Richard Mayeux^{22,23,24}, Valentina Escott-Price^{5,6}, Bruce M. Psaty^{7,31,306,307}, Alfredo Ramirez¹⁰^{77,190}, Li-San Wang¹¹, Agustin Ruiz^{17,18,311}, Cornelia M. van Duijn^{10,311}, Peter A. Holmans^{5,311}, Sudha Seshadri^{12,13,308,311}, Julie Williams^{5,6,311}, Phillippe Amouvel⁽¹⁾^{2,3,4,309,311}, Gerard D. Schellenberg^{11,310}, Jean-Charles Lambert⁽¹⁾^{2,3,4,310,311}* and Margaret A. Pericak-Vance 1,310,311*

¹John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA. ²Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France. ³Institut Pasteur de Lille, Lille, France. ⁴Univ. Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France. ⁵Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK. ⁶UK Dementia Research Institute at Cardiff, Cardiff, Cardiff University, Cardiff, UK. ⁷Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA. ⁸Department of Biostatistics and Epidemiology/Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. 9Centre National de Recherche en Génomique Humaine, Institut de Biologie Francois Jacob, CEA, Université Paris-Saclay, and LabEx GENMED, Evry, France. ¹⁰Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands. ¹¹Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. ¹²Framingham Heart Study, Framingham, MA, USA. ¹³Department of Neurology, Boston University School of Medicine, Boston, MA, USA. ¹⁴Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium. ¹⁵Laboratory for Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium. ¹⁶Icelandic Heart Association, Kopavogur, Iceland. ¹⁷Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya, Barcelona, Spain. 18 Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain. ¹⁹Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. ²⁰Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland. ²¹Department of Neurology, Kuopio University Hospital, Kuopio, Finland.²²Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA. ²³Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA. ²⁴Department of Neurology, Columbia University, New York, NY, USA. ²⁵UMR 894, Center for Psychiatry and Neuroscience, Inserm, Université Paris Descartes, Paris, France. ²⁶Institute of Human Genetics, University of Bonn, Bonn, Germany. 27 Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany. 28 Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland. ²⁹School of Biotechnology, Dublin City University, Dublin, Ireland. ³⁰Department of Family Medicine, University of Washington, Seattle, WA, USA. ³¹Department of Epidemiology, University of Washington, Seattle, WA, USA. ³²Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. ³³Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, ³⁴Faculty of Medicine, University of Iceland, Revkiavik, Iceland, ³⁵Brown Foundation Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA. ³⁶Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy. ³⁷UK Dementia Research Institute at UCL, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. ³⁸Neurology Service and CIBERNED, 'Marqués de Valdecilla' University Hospital (University of Cantabria and IDIVAL), Santander, Spain. ³⁹Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. 40 Department of Immunology, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, Spain. 41 Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece. ⁴²Department of Medicine, University of Washington, Seattle, WA, USA. ⁴³Normandie University, UNIROUEN, Inserm U1245, and Rouen University Hospital, Department of Neurology, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France. ⁴⁴Department of Neurodegenerative Disease, MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK.⁴⁵Centre for Public Health, University of Iceland, Reykjavik, Iceland.⁴⁶Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy. 47University of Milan, Centro Dino Ferrari, Milan, Italy. 48Clinical Division of Neurogeriatrics, Department of Neurology, Medical University Graz, Graz, Austria. 49 Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Gr Austria. ⁵⁰Institute for Computational Biology, Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA. ⁵¹Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany. ⁵²Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA. 53Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA. ⁵⁴Laboratory for Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium. ⁵⁵Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium. ⁵⁶Department of Psychiatry and Psychotherapy, University Hospital, Saarland, Germany. ⁵⁷Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA. ⁵⁸Laboratory for Cognitive Neurology, Department of Neurology, University Hospital and University of Leuven, Leuven, Belgium. 59 Department of Neurology, Johns Hopkins University, Baltimore, MD, USA. 60 National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA. 61 Department of Psychiatry, Martin Luther University Halle-Wittenberg, Halle, Germany. 62 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA. ⁶³Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA. ⁶⁴Department of Psychiatry, University of Oxford, Oxford, UK. 65 Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA. 66 Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, TX, USA. 67 Division of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, UK. 68 Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. 69Office of Strategy and Measurement, University of North Texas Health Science Center, Fort Worth, TX, USA. 70C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, MA, USA. 71 Theme Aging, Unit for Hereditary Dementias, Karolinska University Hospital-Solna, Stockholm, Sweden. ⁷²Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Alzheimer Research Center, Division of Neurogeriatrics, Solna, Sweden. ⁷³German Center for Neurodegenerative Diseases, Bonn, Germany. ⁷⁴Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany. 75 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA. 76 Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden. ⁷⁷Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany. 78 Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA. 79 Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany. 80 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. 81Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA. 82Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA. 83 Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK. ⁸⁴Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA. 85 Section of Neuroscience, DIMEC-University of Parma, Parma, Italy. ⁸⁶FERB-Alzheimer Center, Gazzaniga (Bergamo), Italy. ⁸⁷Department of Pathology, University of Washington, Seattle, WA, USA. ⁸⁸Elderly and Psychiatric Disorders Department, Medical University of Lodz, Lodz, Poland. 89 Mercer's Institute for Research on Aging, St. James's Hospital and Trinity College, Dublin, Ireland. 90 St. James's Hospital and Trinity College, Dublin, Ireland. 91 Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA. 92A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland. 93Departments of Medicine, Geriatrics, Gerontology and Neurology, University of Mississippi Medical Center, Jackson, MS, USA. ⁹⁴Interdisciplinary Department of Medicine, Geriatric Medicine and Memory Unity, University of Bari, Bari, Italy. 95 Department of Neurology, University of Washington, Seattle, WA, USA. 96 Department of Geriatrics, Center for Aging Brain, University of Bari, Bari, Italy. 97 Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain. 98 Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain. 99 Department of Internal Medicine, Erasmus University Medical Center, Rotterdamt, the Netherlands. ¹⁰⁰Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, the Netherlands. ¹⁰¹Department of Neurology, Mayo Clinic, Rochester, MN, USA. ¹⁰²CHU Lille, Memory Center of Lille (Centre Mémoire de Ressources et de Recherche), Lille, France. ¹⁰³Department of Clinical and Behavioral Neurology, Experimental Neuropsychobiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy. ¹⁰⁴School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA. ¹⁰⁵Human Genome

Sequencing Center, Baylor College of Medicine, Houston, TX, USA. ¹⁰⁶Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA. 107 Arizona Alzheimer's Consortium, Phoenix, AZ, USA. 108 Banner Alzheimer's Institute, Phoenix, AZ, USA. 109 Department of Psychiatry, University of Arizona, Phoenix, AZ, USA. ¹¹⁰Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA. 11Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA. ¹¹²University Paris Descartes, EA 4468, AP-HP, Geriatrics Department, Hôpital Broca, Paris, France. ¹¹³Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy.¹¹⁴Departments of Psychiatry, Medicine, Family & Community Medicine, South Texas Veterans Health Administration Geriatric Research Education & Clinical Center (GRECC), UT Health Science Center at San Antonio, San Antonio, TX, USA. 115University of Bordeaux, Inserm 1219, Bordeaux, France. 116Department of Neurology, Bordeaux University Hospital / CHU de Bordeaux, Bordeaux, France. ¹¹⁷Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, ¹¹⁸Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMRS 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France. 119 AP-HP, Department of Genetics, Pitié-Salpêtrière Hospital, Paris, France. ¹²⁰Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy. ¹²¹Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. 122 Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada. ¹²³Inserm U1061 Neuropsychiatry, La Colombière Hospital, Montpellier, France. ¹²⁴Montpellier University, Montpellier, France. ¹²⁵Department of Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. ¹²⁶VA Puget Sound Health Care System/>GRECC, Seattle, WA, USA. ¹²⁷Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA. ¹²⁸Institut de la Mémoire et de la Maladie d'Alzheimer and Institut du Cerveau et de la Moelle Épinière, Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France. 129 Institut des Neurosciences Translationnelles de Paris, Institut du Cerveau et de la Moelle Épinière, Paris, France. 130 Inserm, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière, Paris, France. ¹³¹Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France. ¹³²Ageing Group, Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK. 133Departments of Neurology, Pharmacology & Neuroscience, Texas Tech University Health Science Center, Lubbock, TX, USA. ¹³⁴Department of Neurology, University of Michigan, Ann Arbor, MI, USA. ¹³⁵Geriatric Research, Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, MI, USA. ¹³⁶Michigan Alzheimer Disease Center, Ann Arbor, MI, USA. ¹³⁷Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden. ¹³⁸Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA. ¹³⁹Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA. ¹⁴⁰Department of Neurology, Indiana University, Indianapolis, IN, USA. 141 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA. 142 Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. ¹⁴³Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison, WI, USA. ¹⁴⁴Department of Medicine, University of Wisconsin, Madison, WI, USA. ¹⁴⁵Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA. ¹⁴⁶AXA Research Fund & Sorbonne University Chair, Paris, France. ¹⁴⁷Sorbonne University, GRC nº 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France. 148 Brain & Spine Institute, Inserm U 1127, CNRS UMR 7225, Paris, France. 149 Institute of Memory and Alzheimer's Disease, Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France. ¹⁵⁰Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado, Centro de Investigación Biomédica en Red de Enfermedades Raras, Santiago de Compostela, Spain. ¹⁵¹UK Dementia Research Institute, University of Cambridge, Cambridge, UK. ¹⁵²Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA. ¹⁵³Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA. ¹⁵⁴Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA. 155 Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany. ¹⁵⁶Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Phoenix, AZ, USA. ¹⁵⁷Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA. ¹⁵⁸Department of Psychology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. ¹⁵⁹Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. ¹⁶⁰Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. ¹⁶¹Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. ¹⁶²Swedish Medical Center, Seattle, WA, USA. ¹⁶³Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.¹⁶⁴Department of Neurology, Duke University, Durham, NC, USA.¹⁶⁵Departments of Biology, Brigham Young University, Provo, UT, USA. 166 University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA. 167 Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Pisa, Italy. 168 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁶⁹Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁷⁰Department of Pathology and Immunology, Washington University, St. Louis, MO, USA. ¹⁷¹Division of Psychiatry, University College London, London, UK. ¹⁷²USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA. ¹⁷³Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ¹⁷⁴Department of Molecular Neuroscience, UCL, Institute of Neurology, London, UK. ¹⁷⁵Mental Health & Behavioral Science Service, Bruce W. Carter VA Medical Center, Miami, FL, USA. ¹⁷⁶Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. ¹⁷⁷Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. ¹⁷⁸Department of Neurology, University of Southern California, Los Angeles, CA, USA. ¹⁷⁹Department of Neurology, Catholic University of Rome, Rome, Italy. 180 Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA. ¹⁸¹Department of Neurology, University of California, Davis, Sacramento, CA, USA. ¹⁸²Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA. 183 Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA. ¹⁸⁴Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA. ¹⁸⁵Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. ¹⁸⁶Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.¹⁸⁷Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA. 188Sanders-Brown Center on Aging, Department of Biostatistics, University of Kentucky, Lexington, KY, USA. 189Department of Psychiatry, New York University, New York, NY, USA. ¹⁹⁰Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany. ¹⁹¹Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany. ¹⁹²Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA. ¹⁹³Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA. ¹⁹⁴Emory Alzheimer's Disease Center, Emory University, Atlanta, GA, USA. ¹⁹⁵Department of Psychiatry, University of Freiburg, Freiburg, Germany. ¹⁹⁶Neurogenetics Program, University of California, Los Angeles, Los Angeles, CA, USA. 197 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA. 198 Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, MO, USA. 199 Division of Genetics, Department of Medicine and Partners Center for Personalized Genetic Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. 200 Department of Neurology, Washington University, St. Louis, MO, USA. ²⁰¹Department of Genetics, Washington University, St. Louis, MO, USA. ²⁰²Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA. 203 Department of Pathology (Neuropathology), University of Pittsburgh, Pittsburgh, PA, USA. 204 Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA. 205 Cologne Center for Genomics, University of Cologne, Cologne, Germany. 206 Department of Pathology, Duke University, Durham, NC, USA. 207 Department of Genome Sciences, University of Washington, Seattle, WA, USA. 208 Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA. 209 Sanders-Brown Center on Aging, College of Public Health, Department of Epidemiology, University of Kentucky, Lexington, KY, USA. 210 Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain. 211 Department of Medicine (Biomedical Genetics), Boston

University School of Medicine, Boston, MA, USA. 212 Functional Genomics Center Zurich, ETH/University of Zurich, Zurich, Switzerland. 213 Department of Neurology, Oregon Health & Science University, Portland, OR, USA. ²¹⁴Department of Neurology, Portland Veterans Affairs Medical Center, Portland, OR, USA. ²¹⁵Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA. ²¹⁶Department of Pathology, Boston University School of Medicine, Boston University, Boston, MA, USA. 217 Inserm U558, University of Toulouse, Toulouse, France. 218 Department of Neuropsychology, University of California San Francisco, San Francisco, CA, USA. ²¹⁹Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK. ²²⁰Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA. ²²¹Department of Neurology, Emory University, Atlanta, GA, USA. 222 Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany. 223 German Center for Neurodegenerative Diseases, Munich, Germany.²²⁴Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA.²²⁵Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 226 Department of Pathology, University of Michigan, Ann Arbor, MI, USA. 227 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Munich, Germany. 228 Helmholtz Center Munich, Institute of Epidemiology, Neuherberg, Munich, Germany.²²⁹Ludwig-Maximilians University Chair of Epidemiology, Munich, Germany.²³⁰Joint Biobank Munich and KORA Biobank, Baltimore, MD, USA. ²³¹Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA. ²³²Human Genetics, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK. 233 Department of Medicine-Pulmonary, New York University, New York, NY, USA. ²³⁴Department of Neurology, University of Miami, Miami, FL, USA.²³⁵Department of Pathology, University of California, San Diego, La Jolla, CA, USA. ²³⁶Institute of Neurology, Catholic University of Sacred Hearth, Rome, Italy. ²³⁷School of Nursing Northwest Research Group on Aging, University of Washington, Seattle, WA, USA. ²³⁸Institute of Primary Care and Public Health, Cardiff University, University Hospital of Wales, Cardiff, UK. ²³⁹Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. 240 Cambridge Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK. 241Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA. ²⁴²Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany. ²⁴³Department of Pathology, University of Southern California, Los Angeles, CA, USA. 244 Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA, ²⁴⁵Institute of Psychiatry, Psychology and Neuroscienceó, King's College London, London, UK, ²⁴⁶UK Dementia Research Institute, King's College London, London, UK. 247 Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany. ²⁴⁸German Center for Neurodegenerative Diseases, Goettingen, Germany. ²⁴⁹IBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal. ²⁵⁰Molecular Genetics Laboratory-Hospital, University of Central Asturias, Oviedo, Spain. ²⁵¹Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA. 252 Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.²⁵³Department of Neurology, University of California, Irvine, Irvine, CA, USA.²⁵⁴Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.²⁵⁵Centro di Ricerca, Trasferimento e Alta Formazione DENOTHE, University of Florence, Florence, Italy. 256 Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA. 257 IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy. ²⁵⁸Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy. ²⁵⁹Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA. 260 Alzheimer's Disease Center, New York University, New York, NY, USA. 261 Oxford Healthy Aging Project, Clinical Trial Service Unit, University of Oxford, Oxford, UK. 262Department of Epidemiology, Columbia University, New York, NY, USA. 263 Oxford Project to Investigate Memory and Ageing, University of Oxford, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.²⁶⁴Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, Los Angeles, CA, USA. ²⁶⁵Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA. ²⁶⁶Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 267Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA. 268Department of Psychiatry, University of Southern California, Los Angeles, CA, USA. 269 Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. 270 Department of Pathology, Johns Hopkins University, Baltimore, MD, USA. 271 Sanders-Brown Center on Aging, Department of Neuroscience, University of Kentucky, Lexington, KY, USA. 272 Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA. ²⁷³Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA. ²⁷⁴Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Pathology, Columbia University, New York, NY, USA. 275 Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. 276 Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA. 277 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 278 Department of Human Genetics, Emory University, Atlanta, GA, USA. 279 Department of Pathology, Oregon Health & Science University, Portland, OR, USA. 280 National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA. ²⁸¹Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria.²⁸²A list of members and affiliations appears in the Supplementary Note.²⁸³Gerontology and Geriatrics Research Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy. 284 Department Geriatric Care, Orthogeriatrics and Rehabilitation, Galliera Hospital, Genova, Italy. 285 IdiPAZ, Instituto de Investigación Sanitaria la Paz, Madrid, Spain. 286 Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain. 287 German Center for Neurodegenerative Diseases, Berlin, Germany. 288 Instituto di Ricovero e Cura a Carattere Scientifico, Associazione Oasi Maria Santissima Srl, Troina, Italy. 289 Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA. 290 Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Autonomous University Barcelona, Barcelona, Spain. ²⁹¹Somerset Partnership NHS Trust, Somerset, UK. ²⁹²The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. 293 Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 294 University of Bristol Medical School, Learning & Research level 2, Southmead Hospital, Bristol, UK. ²⁹⁵Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.²⁹⁶Memory Research and Resources Center, CMRR de Bordeaux, Bordeaux, France.²⁹⁷Utah State University, Logan, UT, USA. ²⁹⁸Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands. ²⁹⁹Departments of Radiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands. 300 Department of Research Rouvray Psychiatric Hospital, Sotteville-lès-Rouen, France. ³⁰¹Department of Neurology, Medical University Graz, Graz, Austria. ³⁰²Center for Applied Genomics, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 303 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 304 Department of Ophthalmology, Boston University School of Medicine, Boston University, Boston, MA, USA. 305Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA. 306Department of Health Services, University of Washington, Seattle, WA, USA. ³⁰⁷Kaiser Permanente, Washington Health Research Institute, Seattle, WA, USA. ³⁰⁸Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA. ³⁰⁹Centre Hospitalier Universitaire de Lille, Lille, France. ³¹⁰These authors contributed equally: Brian W. Kunkle, Benjamin Grenier-Boley, Jean Charles-Lambert, Margaret A. Pericak-Vance. ³¹¹These authors jointly supervised this work: Agustin Ruiz, Cornelia M. van Duijn, Peter A. Holmans, Sudha Seshadri, Julie Williams, Phillippe Amouyel, Gerard D. Schellenberg, Jean-Charles Lambert, Margaret A. Pericak-Vance. *e-mail: bkunkle@miami.edu; jean-charles.lambert@pasteur-lille.fr; mpericak@miami.edu

Methods

Samples. All Stage 1 meta-analysis samples are from four consortia: ADGC, CHARGE, EADI, and GERAD/PERADES. Summary demographics of all 46 case-control studies from the four consortia are described in Supplementary Tables 1 and 2. Written informed consent was obtained from study participants or, for those with substantial cognitive impairment, from a caregiver, legal guardian, or other proxy. Study protocols for all cohorts were reviewed and approved by the appropriate institutional review boards. Further details of all cohorts can be found in the Supplementary Note.

Pre-imputation genotype chip quality control. Standard quality control was performed on all datasets individually, including exclusion of individuals with low call rate, individuals with a high degree of relatedness, and variants with low call rate. Individuals with non-European ancestry according to principal components analysis of ancestry-informative markers were excluded from the further analysis.

Imputation and pre-analysis quality control. Following genotype chip quality control, each dataset was phased and imputed to the 1,000 Genomes Project (phase 1 integrated release 3, March 2012)¹⁵² using SHAPEIT/IMPUTE2^{133,134} or MaCH/Minimac^{135,136} software (Supplementary Table 3). All reference population haplotypes were used for the imputation, as this method improves accuracy of imputation for low-frequency variants¹³⁷. Common variants (MAF \geq 0.01%) with an r^2 or an information measure <0.40 from MaCH and IMPUTE2 were excluded from further analyses. Rare variants (MAF < 0.01%) with a 'global' weighted imputation quality score of <0.70 were also excluded from analyses. This score was calculated by weighting each variant's MACH/IMPUTE2 imputation quality score by study sample size and combining these weighted scores for use as a post-analysis filter. We also required the presence of each variant in 30% of cases and 30% of controls across all datasets.

Stage 1 association analysis and meta-analysis. Stage 1 single variant-based association analysis employed an additive genotype model adjusting for age (defined as age-at-onset for cases and age-at-last exam for controls), sex, and population substructure using principal components¹³⁸. The score test was implemented on all case-control datasets. This test is optimal for meta-analysis of rare variants due to its balance between power and control of type 1 error¹³⁹. Family datasets were tested using GWAF¹⁴⁰, with generalized estimating equations (GEE) implemented for common variants (MAF \geq 0.01), and a general linear mixed effects model (GLMM) implemented for rare variants (MAF < 0.01), per our preliminary data showing that the behavior of the test statistics for GEE was fine for common variants with regression coefficient $|\beta| > 5$ or *P* value equal to 0 or 1 were excluded from further analysis.

Within-study results for Stage 1 were meta-analyzed in METAL¹⁴¹ using an inverse-variance-based model with genomic control. The meta-analysis was split into two separate analyses according to the study sample size, with all studies being included in the analysis of common variants (MAF \geq 0.01), and only studies with a total sample size of 400 or greater being included in the rare-variant (MAF < 0.01) analysis. See the Supplementary Note for further details of the meta-analyses methods.

Stage 1 summary statistics quality control and analysis. Genomic inflation was calculated for lambda (λ) in the GenABEL package¹⁴². In addition, we performed LDSC regression via LD Hub v.1.9.0 (refs.^{12,13}) to calculate the LD score regression intercept and derive a heritability estimate for the inverse-variance weighted metaanalysis summary statistics. The *APOE* region (Chr19:45,116,911–46,318,605) was removed to calculate the intercept. Removal of the *APOE* region reduced the heritability estimate slightly from 0.071 (s.e.m.=0.011) to 0.0637 (s.e.m.=0.009).

LDSC was also employed via the LD Hub web server to obtain genetic correlation estimates (rg)¹¹⁶ between LOAD and a wide range of other disorders, diseases and human traits, including 518 UK BioBank traits¹⁴³. UK BioBank is a large long-term study (~500,000 volunteers aged 40 to 69) begun in 2006 in the United Kingdom, which is investigating the contributions of genetic predisposition and environmental exposure (that is, nutrition, lifestyle, and medications) to the development of disease. While volunteers in the study are generally healthier than the overall United Kingdom population¹⁴⁴, its large size and comprehensive data collection make the study an invaluable resource for researchers looking to interrogate the combined effect of genetics and environmental factors on disease. Before analyses in LD Hub, we removed all SNPs with extremely large effect sizes including the MHC (Chr6:26,000,000–34,000,000) and *APOE* region, as outliers can overly influence the regression analyses. A total of 1,180,989 variants were used in the correlation analyses. Statistical significance of the genetic correlations was estimated using 5% Benjamini–Hochberg FDR corrected *P* values.

GCTA COJO²⁷ was used to conduct conditional analysis of the Stage 1 summary statistics, with 28,730 unrelated individuals from the ADGC as a reference panel for calculation of LD. See URLs for methods for creation of the 'ADGC reference dataset'.

Stage 2 and 3 genotyping, quality control, and analysis. Stage 2 genotypes were determined for 8,362 cases and 10,483 controls (Supplementary Table 4). 1,633

variants from the I-select chip were located in the 24 genome-wide loci (defined by the LD blocks of the sentinel variants; excluding the *APOE* region), with an average of 68 variants per locus. The most well-covered loci were *HLA-DRB1*, *M24A2*, and *PICALM* (763, 202, and 156 variants available, respectively); the least were *MAF*, *ADAMTS1*, and *INPP5D* (0, 4, and 5 variants, respectively).

Stage 3A was conducted for variants selected as novel loci from meta-analyses of Stages 1 and 2 with $P < 5 \times 10^{-7}$ (9 variants) and variants that were previously significant ($P < 5 \times 10^{-8}$) that were not genome-wide significant after Stages 1 and 2 (2 variants) (4,930 cases and 6,736 controls) (Supplementary Table 5). Variants were genotyped using Taqman.

Stage 3B, which combined samples from Stage 2 and 3A, included variants with MAF < 0.05 and $P < 1 \times 10^{-5}$ or variants with MAF ≥ 0.05 and $P < 5 \times 10^{-6}$ in novel loci not covered in the 2013 iSelect genotyping¹ (13,292 cases and 17,219 controls) (Supplementary Table 7). See the Supplementary Note for details on selection of variants for Stage 3B follow-up genotyping. For Stages 1, 2, and 3, samples did not overlap.

Per-sample quality checks for genetic sex and relatedness were performed in PLINK. Sex mismatches or individuals showing a high degree of relatedness (identical-by-descent value of 0.98 or greater) were removed from the analysis. A panel of ancestry-informative markers was used to perform principal component analysis with SMARTPCA from EIGENSOFT 4.2 software¹⁴⁵, and individuals with non-European ancestry were excluded. Variant quality control was also performed separately in each country including removal of variants missing in more than 10% of individuals, having a Hardy–Weinberg *P* value in controls lower than 1×10^{-6} or a *P* value for missingness between cases and controls lower than 1×10^{-6}

Per-study analysis for Stage 2 and Stage 3 followed the same analysis procedures described for Stage 1, except for covariate adjustments per cohort, where all analyses were adjusted on sex and age apart from the Italian, Swedish, and Gr@ACE cohorts, which were also adjusted for principal components. Within-study results were meta-analyzed in METAL¹⁴¹ using an inverse-variance-based model.

Characterization of gene(s) and non-coding features in associated loci.

We determined the base-pair boundaries of the search space for potential gene(s) and non-coding features in each of the 24 associated loci (excluding *APOE*) using the 'proxy search' mechanism in LDLink¹⁴⁶. LDLink uses 1,000 genomes genotypes to calculate LD for a selected population; in our case all five European populations were selected (population codes CEU, TSI, FIN, GBR, and IBS). The boundaries for all variants in LD ($r^2 \ge 0.5$) with the top associated variant from the Stage 2 meta-analysis for each region ±500 kb of the ends of the LD blocks (as eQTL controlled genes are typically less than 500 kb from their controlling variant¹⁴⁷) were input into the UCSC genome browser's 'Table Browser' for RefSeq¹⁴⁸ and GENCODEv24lift37¹⁴⁹ genes at each associated locus. The average size of the LD blocks was 123 kb.

Identification of potentially causal coding or splicing variants. To identify deleterious coding or splicing variants that may represent causal variants for our genome-wide loci, we first used SNIPA¹⁵⁰ to identify variants in high LD (defined as $r^2 > 0.7$) with the sentinel variants of the 24 genome-wide loci (excluding *APOE*) (n = 1,073). The sentinel variants were defined as the variants with the lowest *P* in each genome-wide locus. We then used Ensembl VEP¹⁵¹ for annotation of the set of sentinel variants and their proxies. We used BLOSUM62 (ref. ¹⁵²), SIFT¹⁵³, Polyphen-2 (ref. ¹⁵⁴), CADD¹⁵⁵, Condel¹⁵⁶, MPC¹⁵⁷ and Eigen¹⁵⁸ to predict the pathogenicity of protein-altering exonic variants and MaxEntScan to predict the splicing potential of variants. Splicing variants with high splicing potential according to MaxEntScan¹⁵⁹ and protein-coding variants predicted to be deleterious by two or more programs were considered to be potentially causal variants for a locus. It should be noted that while we do include rare variants from imputation in our analyses, we may be missing many rare causal variants in this study.

Identification of genes with rare-variant burden via gene-based testing. We used the summary statistics results of a large whole-exome sequencing (WES) study of LOAD, the Alzheimer's Disease Sequencing Project (ADSP) case-control study (n = 5,740 LOAD cases and 5,096 cognitively normal controls of NHW ancestry) to identify genes within our genome-wide loci that may contribute to the association signal through rare deleterious coding, splicing or LOF variants. The individuals in the ADSP study largely overlap with individuals in the ADGC and CHARGE cohorts included in our Stage 1 meta-analysis. All 400 protein-coding genes within our LD-defined genome-wide loci were annotated with the gene-based results from this study, and the results were corrected using a 1% FDR *P* as a cutoff for significance. Complete details of the analysis can be found in Bis et al.⁴⁹ and the Supplementary Note.

Regulatory variant and eQTL analysis. To identify potential functional risk variants and genes at each associated locus, we first annotated a list of prioritized variants from the 24 associated loci (excluding *APOE*) (n = 1,873). This variant list combined variants in LD with the sentinel variants ($r^2 \ge 0.5$) using INFERNO¹⁶⁰ LD expansion (n = 1,339) and variants with suggestive significance (P < 10⁻⁵) and

LD ($r^2 \ge 0.5$) with the sentinel variants for the 24 associated loci (excluding APOE) (n = 1,421 variants). We then identified variants with regulatory potential in this set of variants using four programs that incorporate various annotations to identify likely regulatory variants: RegulomeDB56, HaploReg v.4.1 (refs. 57,161), GWAS4D59 and the Ensembl Regulatory Build⁵⁸. We used the ChromHMM (core 15-state model) as 'source epigenomes' for the HaploReg analyses. We used immune (Monocytes-CD14⁺, GM12878 lymphoblastoid, HSMM myoblast) and brain (NH-A astroctyes) for the Ensembl Regulatory Build analyses. We then used the list of 1,873 prioritized variants to search for genes functionally linked via eQTLs in LOAD relevant tissues including various brain and blood tissue types, including all immune-related cell types, most specifically myeloid cells (macrophages and monocytes) and B-lymphoid cells, which are cell types implicated in LOAD and neurodegeneration by a number of recent studies^{14,45,162,163}. While their specificity may be lower for identifying Alzheimer's disease risk eQTLs, we included whole blood cell studies in our Alzheimer's disease-relevant tissue class due to their high correlation of eQTLs with Alzheimer's disease-relevant tissues (70% with brain¹⁶⁴; 51-70% for monocytes and lymphoblastoid cell lines¹⁶⁵) and their large sample sizes that allow for increased discovery power. See the Supplementary Note for details on the eQTL databases and studies searched, and Supplementary Table 13 for sample sizes of each database/study.

Formal co-localization testing of our summary Stage 1 results was conducted using (1) COLOC¹⁶⁶ via INFERNO and (2) Summary Mendelian Randomization (SMR)-Heidi analysis¹⁶⁷. The approximate Bayes factor (ABF), which was used to assess significance in the INFERNO COLOC analysis, is a summary measure that provides an alternative to the P value for the identification of associations as significant. SMR-Heidi analysis, which employs a heterogeneity test (HEIDI test) to distinguish pleiotropy or causality (a single genetic variant affecting both gene expression and the trait) from linkage (two distinct genetic variants in LD, one affecting gene expression and one affecting trait), was also employed for co-localization analysis. Genes located less than 1 Mb from the GWAS sentinel variants that pass a 5% Benjamini-Hochberg FDR-corrected SMR P-value significance threshold and a HEIDI P-value > 0.05 threshold were considered significant. The Westra eQTL¹⁶⁸ summary data and Consortium for the Architecture of Gene Expression (CAGE) eQTL summary data were used for analysis. These datasets, conducted in whole blood, are large eQTL studies (Westra: discovery phase n = 5,311, replication phase n = 2,775; CAGE: n = 2,765), and while there is some overlap in samples between the two datasets, CAGE provides finer coverage. The ADGC reference panel dataset referenced above for GCTA COJO analysis was used for LD calculations.

Human brain gene expression analyses. We also evaluated gene expression of all candidate genes in the associated loci (see Supplementary Table 8 for a complete list of genes searched), using differential Alzheimer's disease gene expression results from AlzBase³¹, brain tissue expression from the Brain RNAseq Database^{32,33} (see URLs), and the HuMi_Aged gene set³⁴, a set of genes preferentially expressed in aged human microglia established through RNA-seq expression analysis of aged human microglia cells from ten post-mortem brains. AlzBase includes transcription data from brain and blood from aging, nondementia, mild cognitive impairment, early-stage Alzheimer's disease, and latestage Alzheimer's disease. See ALZBase (see URLs) for a complete list of studies included in the search. Correlation values for the BRAAK stage expression were taken from the Zhang et al.³⁰ study of 1,647 post-mortem brain tissues from LOAD patients and non-demented subjects.

Pathway analysis. Pathway analyses were performed with MAGMA⁶¹, which performs SNP-wise gene analysis of summary statistics with correction for LD between variants and genes to test whether sets of genes are jointly associated with a phenotype (that is, LOAD), compared to other genes across the genome. Adaptive permutation was used to produce an empirical P value and an FDRcorrected q value. Gene sets used in the analyses were from GO^{169,170}, KEGG^{171,172}, REACTOME^{173,174}, BIOCARTA, and MGI¹⁷⁵ pathways. Analyses were restricted to gene sets containing between 10 and 500 genes, a total of 10,861 sets. Variants were restricted to common variants (MAF ≥ 0.01) and rare variants (MAF < 0.01) only for each analysis, and separate analyses for each model included and excluded the APOE region. Analyses were also performed after removal of all genome-wide-significant genes. Primary analyses used a 35-kb upstream/10-kb downstream window around each gene in order to capture potential regulatory variants for each gene, while secondary analyses were run using a 0-kb window¹⁷⁶. To test for significant correlation between common and rare-variant gene results, we performed a gene property analysis in MAGMA, regressing the gene-wide association statistics from rare variants on the corresponding statistics from common variants, correcting for LD between variants and genes using the ADGC reference panel. The $A\beta$ -centered network pathway analysis used a curated list of 32 Aβ-related gene sets and all 335 genes combined (see Campion et al.64 for details). The combined dataset of 28,730 unrelated individuals from the ADGC referenced in the GCTA COJO analysis was used as a reference set for LD calculations in these analyses.

Validation of prioritization method. Evaluation of the prioritization of the risk genes in genome-wide loci was done using STRING¹⁷⁷, and Jensen Diseases¹⁷⁸,

Jensen Tissues¹⁷⁹, dbGAP gene sets, and the ARCHS4¹⁸⁰ resource via the EnrichR¹⁸¹ tool. We evaluated both the 400 genes set list and a list of 53 genes with priority score \geq 5 (adding in APOE to both lists as the top gene in the APOE locus) using the standard settings for both STRING and EnrichR. We used the q value, which is the adjusted P value using the Benjamini-Hochberg FDR method with a 5% cutoff for correction for multiple hypotheses testing. We also performed 'differentially expressed gene (DEG)' sets analysis via FUMA182. These analyses were performed in order to assess whether our 53 prioritized genes were significantly differentially expressed in certain GTEx v.7 (ref. ¹⁰²; 30 general tissues and 53 specific tissues) or BrainSpan tissues (11 tissue developmental periods with distinct DEG sets ranging from early prenatal to middle adulthood)¹⁰³. FUMA defines DEG sets by calculating a two-sided *t*-test per tissue versus all remaining tissue types or developmental periods. Genes with a Bonferonni-corrected P < 0.05 and absolute $\log(\text{fold change}) \ge 0.58$ were considered DEGs. Input genes were tested against each of the DEG sets using the hypergeometric test. Significant enrichment was defined by Bonferonni-corrected P < 0.05.

HLA region analysis. Non-familial datasets from the ADGC, EADI and GERAD consortiums were used for HLA analysis. After imputation quality control, a total of 14,776 cases and 23,047 controls were available for analysis (Supplementary Table 27). Within ADGC, GenADA, ROSMAP, TARC1, TGEN2, and a subset of the UMCWRMSSM datasets were not imputed as Affymetrix genotyping arrays are not supported by the imputation software.

Imputation of HLA alleles. Two-field resolution HLA alleles were imputed using the R package HIBAG v.1.4 (ref.¹⁸³) and the NHW-specific training set. This software uses specific combinations of variants to predict HLA alleles. Alleles with an imputation posterior probability lower than 0.5 were considered as undetermined as recommended by HIBAG developers. *HLA-A, HLA-B, HLA-C* class I genes, and *HLA-DPB1, HLA-DQA1, HLA-DQB1*, and *HLA-DRB1* class II genes were imputed. Individuals with more than two undetermined HLA alleles were excluded.

Statistical analysis. All analyses were performed in R184. Associations of HLA alleles with disease were tested using logistic regressions, adjusting for age, sex, and principal components as specified above for single variant association analysis. Only HLA alleles with a frequency higher than 1% were analyzed. Haplotype estimations and association analyses with disease were performed using the 'haplo.glm' function from the haplo.stats R package¹⁸⁵ with age, sex, and principal components as covariates. Analysis was performed on two-loci and three-loci haplotypes of HLA-DQA1, HLA-DQB1, and HLA-DRB1 genes. Haplotypes with a frequency below 1% were excluded from the analysis. Considering the high LD in the MHC region, only haplotypes predicted with posterior probabilities higher than 0.2 were considered for analysis. Meta-analysis P values were computed using an inverse-variance-based model as implemented in METAL software¹⁴¹. For haplotypes analysis, only individuals with no undetermined HLA alleles and only datasets with more than 100 cases or controls were included. Adjustments on HLA significant variants and HLA alleles were performed by introducing the variant or alleles as covariates in the regression models. Adjusted P values were computed using the FDR method and the R 'p.adjust' function, and applied to the metaanalysis P values. The FDR threshold was set to 10%.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Genome-wide summary statistics for the Stage 1 discovery have been deposited in The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS)—a NIA/NIH-sanctioned qualified-access data repository, under accession NG00075. Stage 1 data (individual level) for the GERAD cohort can be accessed by applying directly to Cardiff University. Stage 1 ADGC data are deposited in NIAGADS. Stage 1 CHARGE data are accessible by applying to dbGaP for all US cohorts and to Erasmus University for Rotterdam data. AGES primary data are not available owing to Icelandic laws. Stage 2 and Stage 3 primary data are available upon request.

References

- 132. Genomes Project, C.. et al. An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56–65 (2012).
- Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet.* 5, e1000529 (2009).
- 134. Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. *Nat. Methods* **9**, 179–181 (2012).
- Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.. *Genet. Epidemiol.* 34, 816–834 (2010).

NATURE GENETICS

- Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nat. Genet.* 44, 955–959 (2012).
- 137. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457-470 (2011).
- Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. *Nat. Genet.* 38, 904–909 (2006).
- Ma, C. et al. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. *Genet. Epidemiol.* 37, 539–550 (2013).
- Chen, M.-H. H. & Yang, Q. GWAF: an R package for genome-wide association analyses with family data. *Bioinformatics* 26, 580–581 (2010).
- Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient metaanalysis of genomewide association scans. *Bioinformatics* 26, 2190–2191 (2010).
- 142. Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-wide association analysis. *Bioinformatics* 23, 1294–1296 (2007).
- 143. Sudlow, C. et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med.* **12**, 1–10 (2015).
- 144. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. *Am. J. Epidemiol.* **186**, 1026–1034 (2017).
- 145. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. *PLoS Genet.* **2**, e190 (2006).
- Machiela, M. J. & Chanock, S. J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. *Bioinformatics* 31, 3555–3557 (2015).
- Zhang, X. et al. Synthesis of 53 tissue and cell line expression QTL datasets reveals master eQTLs. *BMC Genomics* 15, 532 (2014).
- Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. *Nucleic Acids Res.* 40, D130–D135 (2012).
- 149. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. *Genome Res.* 22, 1760–1774 (2012).
- Arnold, M., Raffler, J., Pfeufer, a, Suhre, K. & Kastenmuller, G. SNiPA: an interactive, genetic variant-centered annotation browser. *Bioinformatics* 31, 1334–1336 (2014).
- 151. McLaren, W. et al. The Ensembl variant effect predictor. *Genome Biol.* 17, 122 (2016).
- 152. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. *Nat. Genet.* **22**, 231–238 (1999).
- Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. *Nucleic Acids Res.* 31, 3812–3814 (2003).
- 154. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. *Nat. Methods* 7, 248–249 (2010).
- Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.* 46, 310–315 (2014).
- Gonzalez-Perez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).
- Samocha, K. E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at https://doi.org/10.1101/148353 (2017).
- Ionita-Laza, I., McCallum, K., Xu, B. & Buxbaum, J. D. A spectral approach integrating functional genomic annotations for coding and noncoding variants. *Nat. Genet.* 48, 214–220 (2016).
- Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).

- Amlie-Wolf, A. et al. INFERNO—INFERring the molecular mechanisms of NOncoding genetic variants. *Nucleic Acids Res.* 46, 8740–8753 (2018).
- 161. Ward, L. D. & Kellis, M. HaploRegv4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. *Nucleic Acids Res.* 44, D877–D881 (2015).
- Thériault, P., ElAli, A. & Rivest, S. The dynamics of monocytes and microglia in Alzheimer's disease. *Alzheimers Res. Ther.* 7, 41 (2015).
 Raj, T. et al. Polarization of the effects of autoimmune and
- neurodegenerative risk alleles in leukocytes. *Science* 344, 519–523 (2014).
 164. Oi T et al. Identifying anna targeta far brain ralated traits using
- 164. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. *Nat. Commun.* 9, 2282 (2018).
- 165. Schramm, K. et al. Mapping the genetic architecture of gene regulation in whole blood. *PLoS ONE* **9**, e93844 (2014).
- Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. *PLoS Genet.* 10, e1004383 (2014).
- Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat. Genet.* 48, 481–489 (2016).
- Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. *Nat. Genet.* 45, 1238–1243 (2013).
- Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat. Genet.* 25, 25–29 (2000).
- Blake, J. A. et al. Gene ontology consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).
- 171. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res.* 44, D457–D462 (2016).
- Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).
- Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016).
- 174. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. *Nucleic Acids Res.* **39**, D691–D697 (2011).
- 175. Eppig, J. T., Blake, Ja, Bult, C. J., Kadin, Ja & Richardson, J. E. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. *Nucleic Acids Res.* 43, D726–D736 (2014).
- O'Dushlaine, C. et al. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. *Nat. Neurosci.* 18, 199–209 (2015).
- Szklarczyk, D. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. *Nucleic Acids Res.* 43, D447–D452 (2015).
- Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J. X. & Jensen, L. J. DISEASES: text mining and data integration of disease-gene associations. *Methods* 74, 83–89 (2015).
- 179. Santos, A. et al. Comprehensive comparison of large-scale tissue expression datasets. *PeerJ* **3**, e1054 (2015).
- Lachmann, A. et al. Massive mining of publicly available RNA-seq data from human and mouse. *Nat. Commun.* 9, 1366 (2018).
- Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res.* 44, W90–W97 (2016).
- Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nat. Commun.* 8, 1826 (2017).
- Zheng, X. et al. HIBAG—HLA genotype imputation with attribute bagging. *Pharmacogenomics. J.* 14, 192–200 (2014).
- 184. R v.3.4.3 (R Development Core Team, 2017).
- 185. haplo.stats v.1.7.9 (2018).