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Our previous work identified 19 genome-wide-significant 
common variant signals in addition to APOE that influence 
risk for LOAD (onset age > 65 years)1. These signals, com-

bined with ‘subthreshold’ common variant associations, account 
for ~31% of the genetic variance of LOAD2, leaving the majority 
of genetic risk uncharacterized3. To search for additional signals, 
we conducted a GWAS meta-analysis of non-Hispanic Whites 
(NHW) by using a larger Stage 1 discovery sample (17 new, 46 
total datasets; n = 21,982 cases, 41,944 cognitively normal con-
trols) from our group, the International Genomics of Alzheimer’s 
Project (IGAP) (composed of four consortia: Alzheimer Disease 
Genetics Consortium (ADGC), Cohorts for Heart and Aging 
Research in Genomic Epidemiology Consortium (CHARGE), 
The European Alzheimer’s Disease Initiative (EADI), and Genetic 
and Environmental Risk in AD/Defining Genetic, Polygenic and 
Environmental Risk for Alzheimer’s Disease Consortium (GERAD/
PERADES) (Supplementary Tables 1 and 2, and Supplementary 
Note). To sample both common and rare variants (minor allele fre-
quency (MAF) ≥ 0.01 and MAF < 0.01, respectively), we imputed 
the discovery datasets by using a 1,000 Genomes reference panel 
consisting of 36,648,992 single-nucleotide polymorphisms (SNPs), 
1,380,736 insertions/deletions, and 13,805 structural variants. After 
quality control, 9,456,058 common variants and 2,024,574 rare 
variants were selected for analysis. Genotype dosages were ana-
lyzed within each dataset, and then combined with meta-analysis 
(Supplementary Fig. 1 and Supplementary Tables 1–3).

Results
Meta-analysis of Alzheimer’s disease GWAS. The Stage 1 dis-
covery meta-analysis produced 12 loci with genome-wide sig-
nificance (P ≤ 5 × 10−8) (Table 1), all of which are previously 
described1,4–11. Genomic inflation factors (λ) were slightly inflated 
(λ median = 1.05; λ regression = 1.09; see Supplementary Figure 2  
for a quantile–quantile (QQ) plot); however, univariate linkage dis-
equilibrium score (LDSC) regression12,13 estimates indicated that 
the majority of this inflation was due to a polygenic signal, with the 
intercept being close to 1 (1.026, s.e.m. = 0.006). The observed heri-
tability (h2) of LOAD was estimated at 0.071 (0.011) using LDSC. 

Stage 1 meta-analysis was first followed by Stage 2, using the I-select 
chip we previously developed in Lambert et al.1 (including 11,632 
variants, n = 18,845; Supplementary Table 4) and finally Stage 3A 
(n = 11,666) or Stage 3B (n = 30,511) (for variants in regions not 
well captured in the I-select chip) (see Supplementary Figure 1 for 
the workflow). The final sample was 35,274 clinical and autopsy-
documented Alzheimer’s disease cases and 59,163 controls.

Meta-analysis of Stages 1 and 2 produced 21 genome-wide-
significant associations (P ≤ 5 × 10−8) (Table 1 and Fig. 1), 18 of 
which were previously reported as genome-wide significant in 
Lambert et al.1. Three other signals were not initially described 
in the initial IGAP GWAS: the rare R47H TREM2 coding vari-
ant previously reported by others7,8,14; ECHDC3 (rs7920721; 
NC_000010.10: g.11720308A>G), which was recently identified 
as a potential genome-wide-significant Alzheimer’s disease risk 
locus in several studies15–17, and ACE (rs138190086; NC_000017.10: 
g.61538148G>A) (Supplementary Figs. 3 and 4). In addition, 
seven signals showed suggestive association with P < 5 × 10−7 (clos-
est genes: ADAM10, ADAMTS1, ADAMTS20, IQCK, MIR142/
TSPOAP1-AS1, NDUFAF6, and SPPL2A) (Supplementary Figs. 
5–11). Stage 3A and meta-analysis of all three stages for these nine 
signals (excluding the TREM2 signal; see Supplementary Table 5 
for the variant list) identified five genome-wide-significant loci. 
In addition to ECHDC3, this included four new genome-wide 
Alzheimer’s disease risk signals at IQCK, ADAMTS1, ACE, and 
ADAM10 (Table 2). ACE and ADAM10 were previously reported 
as Alzheimer’s disease candidate genes18–22 but were not replicated 
in some subsequent studies23–25. A recent GWAS using family his-
tory of Alzheimer’s disease or dementia as a proxy26 also identified 
these two risk loci, suggesting that while use of proxy Alzheimer’s 
disease/dementia cases introduces less sensitivity and specificity for 
true Alzheimer’s disease signals overall in comparison to clinically 
diagnosed Alzheimer’s disease, proxy studies can identify disease-
relevant associations. Two of the four other signals approached 
genome-wide significance: miR142/TSPOAP1-AS1 (P = 5.3 × 10−8) 
and NDUFAF6 (P = 9.2 × 10−8) (Table 2). Stage 3A also extended 
the analysis of two loci (NME8 and MEF2C) that were previously 
genome-wide significant in our 2013 meta-analysis. These loci were 

Genetic meta-analysis of diagnosed Alzheimer’s 
disease identifies new risk loci and implicates Aβ, 
tau, immunity and lipid processing
Risk for late-onset Alzheimer’s disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD 
risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals).  
We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), 
two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer’s 
or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated 
disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding 
proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are 
associated not only with early-onset autosomal dominant Alzheimer’s disease but also with LOAD. Analyses of risk genes and 
pathways show enrichment for rare variants (P!=!1.32!×!10−7), indicating that additional rare variants remain to be identified. 
We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.
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not genome-wide significant in our current study and will deserve 
further investigation (NME8: P = 2.7 × 10−7; MEF2C: P = 9.1 × 10−8; 
Supplementary Figs. 12 and 13). Of note, GCTA COJO27 conditional 
analysis of the genome-wide loci indicates that TREM2 and three 
other loci (BIN1, ABCA7, and PTK2B/CLU) have multiple indepen-
dent LOAD association signals (Supplementary Table 6), suggesting 
that the genetic variance associated with some GWAS loci is prob-
ably underestimated.

We also selected 33 variants from Stage 1 (28 common and 5 rare 
variants in loci not well captured in the I-select chip; see Methods 
for full selection criteria) for genotyping in Stage 3B (including 
populations of Stage 2 and Stage 3A). We nominally replicated a 
rare variant (rs71618613; NC_000005.9: g.29005985A>C) within 
an intergenic region near SUCLG2P4 (MAF = 0.01; P = 6.8 × 10−3; 
combined P = 3.3 × 10−7) and replicated a low-frequency variant in 
the TREM2 region (rs114812713; NC_000006.11: g.41034000G>C, 
MAF = 0.03, P = 7.2 × 10−3; combined P = 2.1 × 10−13) in the 
gene OARD1 that may represent an independent signal accord-
ing to our conditional analysis (Table 2, Supplementary Figs. 14 
and 15, Supplementary Tables 6 and 7). In addition, rs62039712 
(NC_000016.9: g.79355857G>A) in the WWOX locus reached 
genome-wide significance (P = 3.7 × 10−8), and rs35868327 
(NC_000005.9: g.52665230T>A) in the FST locus reached sugges-
tive significance (P = 2.6 × 10−7) (Table 2 and Supplementary Figs. 16 
and 17). WWOX may play a role in Alzheimer’s disease through its 
interaction with tau28,29, and it is worth noting that the sentinel vari-
ant (defined as the variant with the lowest P value) is just 2.4 mega-
bases from PLCG2, which contains a rare variant that we recently 
associated with Alzheimer’s disease14. Since both rs62039712 and 
rs35868327 were only analyzed in a restricted number of samples, 
these loci deserve further attention.

Candidate gene prioritization at genome-wide loci. To evaluate 
the biological significance and attempt to identify the underlying 
risk genes for the newly identified genome-wide signals (IQCK, ACE, 
ADAM10, ADAMTS1, and WWOX) and those found previously, we 
pursued five strategies: (1) annotation and gene-based testing for 

deleterious coding, loss-of-function (LOF) and splicing variants; 
(2) expression-quantitative trait loci (eQTL) analyses; (3) evaluation 
of transcriptomic expression in LOAD clinical traits (correlation 
with the BRAAK stage30 and differential expression in Alzheimer’s 
disease versus control brains31); (4) evaluation of transcriptomic 
expression in Alzheimer’s disease–relevant tissues32–34; and (5) gene 
cluster/pathway analyses. For the 24 signals reported here, other 
evidence indicates that APOE35,36, ABCA7 (refs. 37–40), BIN1 (ref. 41), 
TREM2 (refs. 7,8), SORL1 (refs. 42,43), ADAM10 (ref. 44), SPI1 (ref. 45), 
and CR1 (ref. 46) are the true Alzheimer’s disease risk gene, although 
there is a possibility that multiple risk genes exist in these regions47. 
Because many GWAS loci are intergenic, and the closest gene to the 
sentinel variant may not be the actual risk gene, in these analyses 
we considered all protein-coding genes within ±500 kilobases (kb) 
of the sentinel variant linkage disequilibrium (LD) regions (r2 ≥ 0.5) 
for each locus as a candidate Alzheimer’s disease gene (n = 400 
genes) (Supplementary Table 8).

We first annotated all sentinel variants for each locus and vari-
ants in LD (r2 > 0.7) with these variants in a search for deleterious 
coding, LOF or splicing variants. In line with findings that most 
causal variants for complex disease are non-coding48, only 2% of 
1,073 variants across the 24 loci (excluding APOE) were exonic 
variants, with a majority (58%) being intronic (Supplementary 
Fig. 18 and Supplementary Table 9). Potentially deleterious vari-
ants include the rare R47H missense variant in TREM2, common 
missense variants in CR1, SPI1, MS4A2, and IQCK, and a relatively 
common (MAF = 0.16) splicing variant in IQCK. Using results of a 
large whole-exome-sequencing study conducted in the ADGC and 
CHARGE sample49 (n = 5,740 LOAD cases and 5,096 controls), we 
also identified ten genes located in our genome-wide loci as hav-
ing rare deleterious coding, splicing or LOF burden associations  
with LOAD (false discovery rate (FDR) P < 0.01), including pre-
viously implicated rare-variant signals in ABCA7, TREM2, and 
SORL1 (refs. 14,49–55), and additional associations with TREML4 in 
the TREM2 locus, TAP2 and PSMB8 in the HLA-DRB1 locus, PIP in 
the EPHA1 locus, STYX in the FERMT2 locus, RIN3 in the SLC24A4 
locus, and KCNH6 in the ACE locus (Supplementary Table 10).
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Fig. 1 | Manhattan plot of meta-analysis of Stage 1, 2, and 3 results for genome-wide association with Alzheimer’s disease. The threshold for genome-
wide significance (P!<!5 × 10−8) is indicated by the red line, while the blue line represents the suggestive threshold (P!<!1!×!10−5). Loci previously identified 
by the Lambert et al.1 IGAP GWAS are shown in blue and newly associated loci are shown in red. Loci are named for the closest gene to the sentinel variant 
for each locus. Diamonds represent variants with the smallest P values for each genome-wide locus.
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For eQTL analyses, we searched existing eQTL databases 
and studies for cis-acting eQTLs in a prioritized set of variants 
(n = 1,873) with suggestive significance or in LD with the sentinel 
variant in each locus. Of these variants, 71–99% have regulatory 
potential when considering all tissues according to RegulomeDB56 
and HaploReg57, but restricting to Alzheimer’s disease–relevant tis-
sues (via Ensembl Regulatory Build58 and GWAS4D59) appears to 
aid in regulatory variant prioritization, with probabilities for func-
tional variants increasing substantially when using GWAS4D cell-
dependent analyses with brain or monocytes, for instance (these 
and other annotations are provided in Supplementary Table 11). 
Focusing specifically on eQTLs, we found overlapping cis-acting 
eQTLs for 153 of the 400 protein-coding genes, with 136 eQTL-
controlled genes in Alzheimer’s disease–relevant tissues (that 
is, brain and blood/immune cell types; see Methods for details) 
(Supplementary Tables 12 and 13). For our newly identified loci, 
there were significant eQTLs in Alzheimer’s disease–relevant tis-
sue for ADAM10, FAM63B, and SLTM (in the ADAM10 locus); 
ADAMTS1 (ADAMTS1 locus); and ACSM1, ANKS4B, C16orf62, 
GDE1, GPRC5B, IQCK, and KNOP1 (IQCK locus). There were no 
eQTLs in Alzheimer’s disease–relevant tissues in the WWOX or 
ACE locus, although several eQTLs for PSMC5 in coronary artery 
tissue were found for the ACE locus. eQTLs for genes in previ-
ously identified loci include BIN1 (BIN1 locus), INPP5D (INPP5D 
locus), CD2AP (CD2AP locus), and SLC24A4 (SLC24A4 locus). 
Co-localization analysis confirmed evidence of a shared causal 
variant affecting expression and disease risk in 66 genes over 20 
loci, including 31 genes over 13 loci in LOAD-relevant tissue (see 
Supplementary Table 14 and 15 for complete lists). Genes impli-
cated include CR1 (CR1 locus), ABCA7 (ABCA7 loci), BIN1 (BIN1 
locus), SPI1 and MYBPC3 (SPI1 locus), MS4A2, MS4A6A, and 
MS4A4A (MS4A2 locus), KNOP1 (IQCK locus), and HLA-DRB1 
(HLA-DRB1 locus) (Supplementary Table 12).

To study the differential expression of genes in brains of patients 
with Alzheimer’s disease versus controls, we used 13 expression 
studies31. We found that 58% of the 400 protein-coding genes within 
the genome-wide loci had evidence of differential expression in at 
least one study (Supplementary Table 16). Additional comparisons 
to Alzheimer’s disease related gene expression sets revealed that 62 
genes were correlated with pathogenic stage (BRAAK) in at least 
one brain tissue30 (44 genes in prefrontal cortex, the most relevant 
LOAD tissue; 36 in cerebellum and 1 in visual cortex). Finally, 38 
genes were present in a set of 1,054 genes preferentially expressed 
in aged microglial cells, a gene set shown to be enriched for 
Alzheimer’s disease genes (P = 4.1 × 10−5)34. We also annotated our 
list of genes with brain RNA-seq data, which showed that 80% were 
expressed in at least one type of brain cell, and the genes were most 
highly expressed in fetal astrocytes (26%), followed by microglia/
macrophages (15.8%), neurons (14.8%), astrocytes (11.5%), and 
oligodendrocytes (6.5%). When not considering fetal astrocytes, 
mature astrocytes (21%), and microglial cells (20.3%), the resi-
dent macrophage cells of the brain thought to play a key role in 
the pathologic immune response in LOAD8,14,60, became the highest 
expressed cell types in the genome-wide set of genes, with 5.3% of 
the 400 genes showing high microglial expression (Supplementary 
Table 17; see Supplementary Table 18 for the highly expressed gene 
list by cell type).

We conducted pathway analyses (MAGMA61) separately for 
common (MAF > 0.01) and rare variants (MAF < 0.01). For com-
mon variants, we detected four function clusters including (1) 
APP metabolism/Aβ formation (regulation of Aβ formation: 
P = 4.56 × 10−7 and regulation of APP catabolic process: P = 3.54 × 
10−6); (2) tau protein binding (P = 3.19 × 10−5); (3) lipid metabo-
lism (four pathways including protein−lipid complex assembly: 
P = 1.45 × 10−7); and (4) immune response (P = 6.32 × 10−5) (Table 3  
and Supplementary Table 19). Enrichment of the four clusters 

remained after removal of genes in the APOE region. When APOE-
region genes and genes near genome-wide-significant genes were 
removed, tau showed moderate association (P = 0.027), and lipid 
metabolism and immune-related pathways showed strong associa-
tions (P < 0.001) (Supplementary Table 20). Genes driving these 
enrichments (that is, having a gene-wide P < 0.05) included SCNA, 
a Parkinson’s risk gene that encodes alpha-synuclein, the main com-
ponent of Lewy bodies, whch may play a role in tauopathies62,63, 
for the tau pathway; apolipoprotein genes (APOM, APOA5) and 
ABCA1, a major regulator of cellular cholesterol, for the lipid metab-
olism pathways; and 52 immune pathway genes (Supplementary 
Table 21). While no pathways were significantly enriched for rare 
variants, lipid and Aβ pathways did reach nominal significance in 
rare-variant-only analyses. Importantly, we also observed a highly 
significant correlation between common and rare pathway gene 
results (P = 1.32 × 10−7), suggesting that risk Alzheimer’s disease 
genes and pathways are enriched for rare variants. In fact, 50 dif-
ferent genes within tau, lipid, immunity and Aβ pathways showed 
nominal rare-variant driven associations (P < 0.05) with LOAD.

To further explore the APP/Aβ pathway enrichment, we ana-
lyzed a comprehensive set of 335 APP metabolism genes64 curated 
from the literature. We observed significant enrichment of this gene 
set in common variants (P = 2.27 × 10−4; P = 3.19 × 10−4 excluding 
APOE), with both ADAM10 and ACE nominally significant drivers 
of this result (Table 4 and Supplementary Tables 22 and 23). Several 
‘sub-pathways’ were also significantly enriched in the common vari-
ants, including ‘clearance and degradation of Aβ’, and ‘aggregation 
of Aβ’, along with its subcategory ‘microglia’, the latter support-
ing microglial cells suspected role in response to Aβ in LOAD65. 
Nominal enrichment for risk from rare variants was found for the 
pathway ‘aggregation of Aβ: chaperone’ and 23 of the 335 genes.

To identify candidate genes for our novel loci, we combined 
results from our five prioritization strategies in a priority ranking 
method similar to that of Fritsche et al.66 (Fig. 2 and Supplementary 
Table 24). ADAM10 was the top ranked gene of the 11 genes within 
the ADAM10 locus. ADAM10, the most important α-secretase in 
the brain, is a component of the non-amyloidogenic pathway of APP 
metabolism67 and sheds TREM2 (ref. 68), an innate immunity recep-
tor expressed selectively in microglia. Overexpression of ADAM10 
in mouse models can halt Aβ production and subsequent aggrega-
tion69. In addition, two rare ADAM10 alterations segregating with 
disease in LOAD families increased Aβ plaque load in ‘Alzheimer-
like’ mice, with diminished α-secretase activity from the alterations 
probably the causal mechanism19,44. For the IQCK signal, which is 
also an obesity locus70,71, IQCK, a relatively uncharacterized gene, 
was ranked top, although four of the other 11 genes in the locus 
have a priority rank ≥ 4, including KNOP1 and GPRC5B, the latter 
being a regulator of neurogenesis72,73 and inflammatory signaling in 
obesity74. Of the 22 genes in the ACE locus, PSMC5, a key regulator 
of major histocompatibility complex (MHC)75,76, has a top score of 
4, while DDX42, MAP3K3, an important regulator of macrophages 
and innate immunity77,78, and CD79B, a B lymphocyte antigen 
receptor subunit, each have a score of 3. Candidate gene studies have 
associated ACE variants with Alzheimer’s disease risk20,22,79, includ-
ing a strong association in the Wadi Ara, an Israeli Arab commu-
nity with high risk of Alzheimer’s disease21. However, these studies 
yielded inconsistent results23, and our work reports a clear genome-
wide association in NHW at this locus. While ACE was not priori-
tized, it should not be rejected as a candidate gene, as its expression 
in Alzheimer’s disease brain tissue is associated with Aβ load and 
Alzheimer’s disease severity80. Furthermore, cerebrospinal fluid 
(CSF) levels of the angiotensin-converting enzyme (ACE) are asso-
ciated with Aβ levels81 and LOAD risk82, and studies show ACE can 
inhibit Aβ toxicity and aggregation83. Finally, angiotensin II, a prod-
uct of ACE function, mediates a number of neuropathological pro-
cesses in Alzheimer’s disease84 and is now a target for intervention  
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in phase II clinical trials of Alzheimer’s disease85. Another novel 
genome-wide locus reported here, ADAMTS1, is within 665 kb of 
APP on chromosome 21. Of three genes at this locus, our analyses 
nominate ADAMTS1 as the likely risk gene, although we cannot 
rule out that this signal is a regulatory element for APP. ADAMTS1 
is elevated in Down's syndrome with neurodegeneration and 
Alzheimer’s disease86, and it is a potential neuroprotective gene87–89 
or a neuroinflammatory gene important to microglial response90. 
Finally, WWOX and MAF, which surround an intergenic signal in 
an obesity associated locus91, were both prioritized for the WWOX 

locus, with MAF, another important regulator of macrophages92,93, 
being highly expressed in microglia in the Brain RNA-seq database, 
and WWOX, a high-density-lipoprotein cholesterol and triglycer-
ide–associated gene94,95, being expressed most highly in astrocytes 
and neurons. WWOX has been implicated in several neurological 
phenotypes96; in addition, it binds tau and may play a critical role 
in regulating tau hyper-phosphorylation, neurofibrillary forma-
tion and Aβ aggregation28,29. Intriguingly, treatment of mice with its 
binding partner restores memory deficits97, hinting at its potential 
in neurotherapy.

Table 3 | Significant pathways (q value!≤ !0.05) from MAGMA pathway analysis for common and rare variant subsets

Pathway No. of genes in 
the pathway in the 
dataset

Common 
variant Pa

Common variant 
q value

Rare variant Pa Rare variant  
q value

Pathway description

GO:65005 20 1.4 ×!10−7a 9.5!×!10−4 6.7!×!10−2 8.4 ×!10−1 Protein−lipid complex assembly
GO:1902003 10 4.5 ×!10−7a 1.4 ×!10−3 4.9 ×!10−2 8.4 ×!10−1 Regulation of Aβ formation
GO:32994 39 1.1 ×!10−6a 2.5 ×!10−3 1.7 ×!10−2 8.1 ×!10−1 Protein−lipid complex
GO:1902991 12 3.5 ×!10−6a 5.8 ×!10−3 5.6!×!10−2 8.4 ×!10−1 Regulation of amyloid precursor 

protein catabolic process
GO:43691 17 5.5!×!10−6a 6.7 ×!10−3 3.0 ×!10−2 8.1!×!10−1 Reverse cholesterol transport
GO:71825 35 6.1 ×!10−6a 6.7 ×!10−3 1.2 ×!10−1 8.4 ×!10−1 Protein−lipid complex subunit 

organization
GO:34377 18 1.6 ×!10−5a 1.5!×!10−2 1.8 ×!10−1 8.4 ×!10−1 Plasma lipoprotein particle assembly
GO:48156 10 3.1!×!10−5a 2.6 ×!10−2 7.7 ×!10−1 8.5 ×!10−1 Tau protein binding

GO:2253 382 6.3 ×!10−5a 4.6 ×!10−2 2.0!×!10−1 8.4 ×!10−1 Activation of immune response
aSignificant after FDR correction (q value!≤ !0.05).

Table 4 | Top results of pathway analysis of the Aβ-centered biological network from Campion et al.64 (see Supplementary Table 12 
for full results)

Category Subcategory No. of 
genes

Common 
variant P 0!kb

Common 
variant  
P 35–10!kb

Rare variant 
P 0!kb

Rare variant  
P 35–10!kb

Aβ-centered 
biological network 
(all genes)

– 331 2.2 ×!10−4a 1.5 ×!10−4a 8.2 ×!10−1 5.1 ×!10−1

Clearance and 
degradation of Aβ

– 74 2.1 ×!10−4a 3.2 ×!10−3 3.1 ×!10−1 5.1 ×!10−1

Clearance and 
degradation of Aβ

Microglia 47 2.2 ×!10−4a 1.8 ×!10−2 2.4 ×!10−1 6.8 ×!10−1

Aggregation of Aβ – 35 7.0 ×!10−4a 9.9 ×!10−3 9.0 ×!10−2 1.6!×!10−1

Aggregation of Aβ Miscellaneous 21 1.0 ×!10−3a 3.3 ×!10−2 9.5!×!10−2 1.9 ×!10−1

APP processing and 
trafficking

Clathrin/caveolin-dependent endocytosis 10 1.1!×!10−3 1.1 ×!10−2 3.6 ×!10−1 1.8 ×!10−1

Mediator of Aβ 
toxicity

– 51 3.8 ×!10−2 4.6 ×!10−2 5.8 ×!10−1 5.7 ×!10−1

Mediator of Aβ 
toxicity

Calcium homeostasis 6 6.9 ×!10−2 1.2!×!10−1 3.9 ×!10−1 2.5 ×!10−1

Mediator of Aβ 
toxicity

Miscellaneous 3 7.6 ×!10−2 2.3 ×!10−2 9.7 ×!10−1 7.6 ×!10−1

Clearance and 
degradation of Aβ

Enzymatic degradation of Aβ 15 7.7 ×!10−2 2.6 ×!10−2 6.1 ×!10−1 2.9 ×!10−1

Mediator of Aβ 
toxicity

Tau toxicity 20 9.0 ×!10−2 3.4 ×!10−1 7.1 ×!10−1 6.8!×!10−1

Aggregation of Aβ Chaperone 9 1.5 ×!10−1 3.0!×!10−1 1.9 ×!10−1 1.1!×!10−2

aSignificant after Bonferroni correction for 33 pathway sets tested.
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ADAM10 11 ADAM10 5
IQCK 12 IQCK 6
ACE 22 PSMC5 4

ADAMTS1 3 ADAMTS1 4
MAF 2

WWOX 2

CR1 7
CD55 6
YOD1 5

BIN1 9 BIN1 6
INPP5D 11 INPP5D 7

HLA-DRB1 7
PSMB8 7

C4A 6
GPSM3 6

HLA-DPA1 6
HLA-DQA1 6 `
HLA-DRA 6

HLA-DRB5 6
PSMB9 6

TREM2 21 TREM2 6
CD2AP 8 CD2AP 5

AGFG2 6
PILRA 6
EPHB4 5
C7orf43 5

GAL3ST4 5
ZKSCAN1 5

EPHA1 23 FAM131B 5
PTK2B 6 PTK2B 5

CLU 8 CLU 6
ECHDC3 8 ECHDC3 4

PSMC3 6
ACP2 5

C1QTNF4 5
CELF1 5
MTCH2 5
NDUFS3 5
NUP160 5

SPI1 5
MS4A6A 8
MS4A7 6

MS4A4A 5
EED 5

PICALM 5
SORL1 4 SORL1 5

FERMT2 9 STYX 5
SLC24A4 10 RIN3 7

ABCA7 7
HMHA1 6
CNN2 5

WDR18 5
CASS4 11 CASS4 5

SPI1 23

aGenes with rank 6 or above are shown only. An additional 4 genes in HLA-DRB1  have a priority rank of 5. 

Clinical 
expression

Novel genome-wide loci

Known genome-wide loci

ABCA7 50

MS4A2 24

PICALM 13

12CR1

HLA-DRB1a 46

eQTL

WWOX 3

NYAP1 53

Evidence type Exonic
Tissue 

expression

Fig. 2 | Top prioritized genes of 400 genes located in genome-wide-significant loci. The criteria include: (1) deleterious coding, LOF or splicing variant 
in the gene; (2) significant gene-based tests; (3) expression in a tissue relevant to Alzheimer’s disease (astrocytes, neurons, microglia/macrophages, 
oligodendrocytes); (4) a HuMi microglial-enriched gene; (5) having an eQTL effect on the gene in any tissue, in Alzheimer’s disease–relevant tissue, and/
or a co-localized eQTL; (6) being involved in a biological pathway enriched in Alzheimer’s disease (from the current study); (7) expression correlated with 
the BRAAK stage; and (8) differential expression in a 1!+!Alzheimer's disease (AD) study. Novel genome-wide loci from the current study are listed first, 
followed by known genome-wide loci. Each category is assigned an equal weight of 1, with the priority score equaling the sum of all categories. Colored 
fields indicate that the gene meets the criteria. Genes with a priority score!≥!4 are listed for each locus. If no gene reached a score of!≥!5 in a locus, then the 
top ranked gene(s) is listed.
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For previously reported loci, applying the same prioritization 
approach highlights several genes, as described in Fig. 2, some of 
which are involved in APP metabolism (FERMT2, PICALM) or tau 
toxicity (BIN1, CD2AP, FERMT2, CASS4, PTK2B)98–101. Pathway, 
tissue and disease trait enrichment analyses support the utility of 
our prioritization method, as the 53 prioritized genes with a score ≥ 
5 are (1) enriched in substantially more Alzheimer’s disease–rel-
evant pathways, processes and dementia-related traits; (2) enriched 
in candidate Alzheimer’s disease cell types such as monocytes 
(adjusted P = 9.0 × 10−6) and macrophages (adjusted P = 5.6 × 10−3); 
and (3) more strongly associated with dementia-related traits and 
Alzheimer’s disease–relevant pathways (Supplementary Table 25 
and 26; see Supplementary Fig. 19 for the interaction network of 
these prioritized genes). To further investigate the cell types and 
tissues the prioritized genes are expressed in, we performed differ-
entially expressed gene (DEG) set enrichment analysis of the priori-
tized genes by using GTEx102 tissues, and we identified significant 
differential expression in several potentially relevant Alzheimer’s 
disease tissues including immune-related tissues (upregulation in 
blood and spleen), obesity-related tissue (upregulation in adipose), 
heart tissues (upregulation in left ventricle and atrial appendage), 
and brain tissues (dowregulation in cortex, cerebellum, hippo-
campus, basal ganglia, and amygdala). Furthermore, the 53 genes 
are overexpressed in ‘adolescence’ and ‘young adult’ brain tissues 
in BrainSpan103, a transcriptomic atlas of the developing human 
brain, which is consistent with accumulating evidence suggest-
ing Alzheimer’s disease may start decades before the onset of dis-
ease104,105 (Supplementary Fig. 20; see Supplementary Fig. 21 for a 
tissue expression heat map for the 53 genes).

Fine-mapping of the HLA region. The above approach prioritized 
HLA-DRB1 as the top candidate gene in the MHC locus, known 
for its complex genetic organization and highly polymorphic nature 
(see Supplementary Fig. 22 for a plot of the region of the Stage 1 
results). Previous analyses in the ADGC (5,728 Alzheimer’s disease 
cases and 5,653 controls) have linked both HLA class I and II haplo-
types with Alzheimer’s disease risk106. In order to further investigate 
this locus in a much larger sample, we used a robust imputation 
method and fine-mapping association analysis of alleles and haplo-
types of HLA class I and II genes in 14,776 cases and 23,047 controls 
from our datasets (Supplementary Table 27). We found risk effects 
of HLA-DQA1*01:02 (FDR P = 0.014), HLA-DRB1*15:01 (FDR 
P = 0.083), and HLA-DQB1*06:02 (FDR P = 0.010) (Supplementary 
Table 28). After conditioning on the sentinel meta-analysis vari-
ant in this region (rs78738018), association signals were lost for 
the three alleles, suggesting that the signal observed at the variant 
level is due to the association of these three alleles. These alleles 
form the HLA-DQA1*01:02~HLA-DQB1*06:02~HLA-DRB1*15:01 
(DR15) haplotype, which is also associated with Alzheimer’s disease 
in our sample (FDR P = 0.013) (Supplementary Table 29). Taken 
together, these results suggest a central role of the DR15 haplo-
type in Alzheimer’s disease risk, a finding originally discovered in 
a small study in the Tunisian population107 and more recently in a 
large ADGC analysis106. Intriguingly, the DR15 haplotype and its 
component alleles also associate with protection against diabetes108, 
a high risk for multiple sclerosis109,110, and risk or protective effects 
with many other immune-mediated diseases (Supplementary 
Table 30). Moreover, the associated diseases include a large num-
ber of traits queried from an HLA-specific Phewas111, including 
neurological diseases (for example, Parkinson’s disease112,113) and 
diseases with risk factors for Alzheimer’s disease (for example, 
hyperthyroidism114), pointing to potential shared and/or interact-
ing mechanisms and co-morbidities, a common paradigm in the 
MHC locus115. Two additional alleles, HLA-DQA1*03:01 and HLA-
DQB1*03:02, belonging to another haplotype, show a protective 
effect on Alzheimer’s disease, but their signal was lost after condi-

tioning on HLA-DQA1*01:02, and the HLA-DQA1*03:01~HLA-
DQB1*03:02 haplotype is not associated with Alzheimer’s disease 
(FDR P = 0.651).

Genetic correlations with Alzheimer’s disease. As described 
above, several of our genome-wide loci have potentially interest-
ing co-morbid or pleiotropic associations with traits that may be 
relevant to the pathology of Alzheimer’s disease. To investigate the 
extent of LOAD’s shared genetic architecture with other traits, we 
performed LD-score regression to estimate the genetic correlation 
between LOAD and 792 human diseases, traits and behaviors12,116 
(Supplementary Table 31). The common variant genetic architec-
ture of LOAD was positively correlated with a maternal family his-
tory of Alzheimer’s disease/dementia (rg for the genetic correlation 
of two traits = 0.81; FDR P = 2.79 × 10−7), similar to the Marioni 
et al. family proxy analyses26, which found maternal genetic cor-
relation with Alzheimer’s disease to be higher than that for pater-
nal Alzheimer’s disease (rg = 0.91 and 0.66, respectively). There is 
substantial overlap between these estimates, as the Marioni et al. 
analyses include the 2013 IGAP summary statistics and employed 
the same UK Biobank variable that we used for rg estimates with 
maternal history of dementia. We also find significant negative 
correlation between Alzheimer’s disease and multiple measures of 
educational attainment (for example, college completion, rg = −0.24; 
years of schooling, rg range = −0.19 to −0.24; cognitive scores, 
rg = −0.24 and −0.25) (FDR P < 0.05), supporting the theory that 
a greater cognitive reserve could help protect against development 
of LOAD117. The extent to which socioeconomic, environmental, 
or cultural factors contribute to the correlation between educa-
tional attainment and risk for Alzheimer’s disease is unknown, but 
research shows dementia risk to be associated with lower socio-
economic status, independently of education status118,119. We also 
found negative correlations at P < 0.05 with multiple measures of 
cardiovascular health (that is, family history of high blood pres-
sure and heart disease and vascular/heart problems) and diabetes 
(that is, fasting proinsulin, basal metabolic rate and fasting insulin), 
supporting previous research suggesting that use of blood pres-
sure and diabetic medications may reduce the risk of Alzheimer’s 
disease120. In fact, use of blood pressure medication does show a 
negative genetic correlation with Alzheimer’s disease in our study 
(rg = −0.12; P = 0.035), although this result does not survive FDR 
correction. These and other top results from this analysis (for exam-
ple, body mass index, height; see Supplementary Table 31 for a full 
list of other nominally significant correlations) have been linked to 
Alzheimer’s disease previously116,120–127, either through suggestive 
or significant genetic or epidemiological associations (see Kuzma  
et al.128 for a recent review), but the multiple measures here support 
and emphasize their genetic correlation with LOAD and highlight 
the possible genetic pleiotropy or co-morbidity of these traits with 
pathology of LOAD.

Discussion
In conclusion, our work identifies five new genome-wide associa-
tions for LOAD and shows that GWAS data combined with high-
quality imputation panels can reveal rare disease risk variants (for 
example, TREM2). The enrichment of rare variants in pathways 
associated with Alzheimer’s disease indicates that additional rare 
variants remain to be identified, and larger samples and better 
imputation panels will facilitate identifying them. While these rare 
variants may not contribute substantially to the predictive value of 
genetic findings, they will enhance the understanding of disease 
mechanisms and potential drug targets. Discovery of the risk genes 
at genome-wide loci remains challenging, but we demonstrate that 
converging evidence from existing and new analyses can prioritize 
risk genes. We also show that APP metabolism is associated with 
not only early-onset Alzheimer’s disease but also LOAD, suggest-
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ing that therapies developed by studying early-onset families could 
also be applicable to the more common late-onset form of the dis-
ease. Pathway analysis showing that tau is involved in LOAD sup-
ports recent evidence that tau may play an early pathological role in 
Alzheimer’s disease129–131 and confirms that therapies targeting tan-
gle formation/degradation could potentially affect LOAD. Finally, 
our fine-mapping analyses of HLA and genetic correlation results 
point to LOAD’s shared genetic architecture with many immune-
mediated and cognitive traits, suggesting that research and inter-
ventions that elucidate mechanisms behind these relationships 
could also yield fruitful therapeutic strategies for LOAD.

URLs. ADGC Reference Dataset: https://kauwelab.byu.edu/
Portals/22/adgc_combined_1000G_09192014.pdf; AlzBase: http://
alz.big.ac.cn/alzBase/; Brain RNA-seq Database: http://www.
brainrnaseq.org/; Enrichr: http://amp.pharm.mssm.edu/Enrichr/; 
exSNP: http://www.exsnp.org/; NESDA eQTL catalog: https://eqtl.
onderzoek.io/index.php?page=info; FUMA: http://fuma.ctglab.nl/; 
HLA-PheWas catalog: https://phewascatalog.org/hla; INFERNO: 
http://inferno.lisanwanglab.org/index.php; LD Hub: http://ldsc.
broadinstitute.org/ldhub/; STRING: https://string-db.org/.
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Methods
Samples. All Stage 1 meta-analysis samples are from four consortia: ADGC, 
CHARGE, EADI, and GERAD/PERADES. Summary demographics of all 46  
case-control studies from the four consortia are described in Supplementary 
Tables 1 and 2. Written informed consent was obtained from study participants or, 
for those with substantial cognitive impairment, from a caregiver, legal guardian, 
or other proxy. Study protocols for all cohorts were reviewed and approved by the 
appropriate institutional review boards. Further details of all cohorts can be found 
in the Supplementary Note.

Pre-imputation genotype chip quality control. Standard quality control was 
performed on all datasets individually, including exclusion of individuals with low 
call rate, individuals with a high degree of relatedness, and variants with low call 
rate. Individuals with non-European ancestry according to principal components 
analysis of ancestry-informative markers were excluded from the further analysis.

Imputation and pre-analysis quality control. Following genotype chip quality 
control, each dataset was phased and imputed to the 1,000 Genomes Project 
(phase 1 integrated release 3, March 2012)132 using SHAPEIT/IMPUTE2133,134 or 
MaCH/Minimac135,136 software (Supplementary Table 3). All reference population 
haplotypes were used for the imputation, as this method improves accuracy of 
imputation for low-frequency variants137. Common variants (MAF ≥ 0.01%) with 
an r2 or an information measure <0.40 from MaCH and IMPUTE2 were excluded 
from further analyses. Rare variants (MAF < 0.01%) with a ‘global’ weighted 
imputation quality score of <0.70 were also excluded from analyses. This score was 
calculated by weighting each variant’s MACH/IMPUTE2 imputation quality score 
by study sample size and combining these weighted scores for use as a post-analysis 
filter. We also required the presence of each variant in 30% of cases and 30% of 
controls across all datasets.

Stage 1 association analysis and meta-analysis. Stage 1 single variant-based 
association analysis employed an additive genotype model adjusting for age 
(defined as age-at-onset for cases and age-at-last exam for controls), sex, and 
population substructure using principal components138. The score test was 
implemented on all case-control datasets. This test is optimal for meta-analysis 
of rare variants due to its balance between power and control of type 1 error139. 
Family datasets were tested using GWAF140, with generalized estimating equations 
(GEE) implemented for common variants (MAF ≥ 0.01), and a general linear 
mixed effects model (GLMM) implemented for rare variants (MAF < 0.01), per our 
preliminary data showing that the behavior of the test statistics for GEE was fine 
for common variants but inflated for rare variants, while GLMM controlled this 
rare-variant inflation. Variants with regression coefficient |β| > 5 or P value equal to 
0 or 1 were excluded from further analysis.

Within-study results for Stage 1 were meta-analyzed in METAL141 using an 
inverse-variance-based model with genomic control. The meta-analysis was split 
into two separate analyses according to the study sample size, with all studies being 
included in the analysis of common variants (MAF ≥ 0.01), and only studies with a 
total sample size of 400 or greater being included in the rare-variant (MAF < 0.01) 
analysis. See the Supplementary Note for further details of the meta-analyses methods.

Stage 1 summary statistics quality control and analysis. Genomic inflation was 
calculated for lambda (λ) in the GenABEL package142. In addition, we performed 
LDSC regression via LD Hub v.1.9.0 (refs. 12,13) to calculate the LD score regression 
intercept and derive a heritability estimate for the inverse-variance weighted meta-
analysis summary statistics. The APOE region (Chr19:45,116,911–46,318,605) 
was removed to calculate the intercept. Removal of the APOE region reduced the 
heritability estimate slightly from 0.071 (s.e.m. = 0.011) to 0.0637 (s.e.m. = 0.009).

LDSC was also employed via the LD Hub web server to obtain genetic 
correlation estimates (rg)116 between LOAD and a wide range of other disorders, 
diseases and human traits, including 518 UK BioBank traits143. UK BioBank is a 
large long-term study (~500,000 volunteers aged 40 to 69) begun in 2006 in the 
United Kingdom, which is investigating the contributions of genetic predisposition 
and environmental exposure (that is, nutrition, lifestyle, and medications) to the 
development of disease. While volunteers in the study are generally healthier 
than the overall United Kingdom population144, its large size and comprehensive 
data collection make the study an invaluable resource for researchers looking to 
interrogate the combined effect of genetics and environmental factors on disease. 
Before analyses in LD Hub, we removed all SNPs with extremely large effect sizes 
including the MHC (Chr6:26,000,000–34,000,000) and APOE region, as outliers 
can overly influence the regression analyses. A total of 1,180,989 variants were used 
in the correlation analyses. Statistical significance of the genetic correlations was 
estimated using 5% Benjamini−Hochberg FDR corrected P values.

GCTA COJO27 was used to conduct conditional analysis of the Stage 1 
summary statistics, with 28,730 unrelated individuals from the ADGC as a 
reference panel for calculation of LD. See URLs for methods for creation of the 
‘ADGC reference dataset’.

Stage 2 and 3 genotyping, quality control, and analysis. Stage 2 genotypes were 
determined for 8,362 cases and 10,483 controls (Supplementary Table 4). 1,633 

variants from the I-select chip were located in the 24 genome-wide loci (defined by 
the LD blocks of the sentinel variants; excluding the APOE region), with an average 
of 68 variants per locus. The most well-covered loci were HLA-DRB1, M24A2, and 
PICALM (763, 202, and 156 variants available, respectively); the least were MAF, 
ADAMTS1, and INPP5D (0, 4, and 5 variants, respectively).

Stage 3A was conducted for variants selected as novel loci from meta-analyses 
of Stages 1 and 2 with P < 5 × 10−7 (9 variants) and variants that were previously 
significant (P < 5 × 10−8) that were not genome-wide significant after Stages 1 and 
2 (2 variants) (4,930 cases and 6,736 controls) (Supplementary Table 5). Variants 
were genotyped using Taqman.

Stage 3B, which combined samples from Stage 2 and 3A, included variants with 
MAF < 0.05 and P < 1 × 10−5 or variants with MAF ≥ 0.05 and P < 5 × 10−6 in novel 
loci not covered in the 2013 iSelect genotyping1 (13,292 cases and 17,219 controls) 
(Supplementary Table 7). See the Supplementary Note for details on selection of 
variants for Stage 3B follow-up genotyping. For Stages 1, 2, and 3, samples did  
not overlap.

Per-sample quality checks for genetic sex and relatedness were performed 
in PLINK. Sex mismatches or individuals showing a high degree of relatedness 
(identical-by-descent value of 0.98 or greater) were removed from the analysis. A 
panel of ancestry-informative markers was used to perform principal component 
analysis with SMARTPCA from EIGENSOFT 4.2 software145, and individuals with 
non-European ancestry were excluded. Variant quality control was also performed 
separately in each country including removal of variants missing in more than 10% 
of individuals, having a Hardy−Weinberg P value in controls lower than 1 × 10−6 or 
a P value for missingness between cases and controls lower than 1 × 10−6.

Per-study analysis for Stage 2 and Stage 3 followed the same analysis 
procedures described for Stage 1, except for covariate adjustments per cohort, 
where all analyses were adjusted on sex and age apart from the Italian, Swedish, 
and Gr@ACE cohorts, which were also adjusted for principal components.  
Within-study results were meta-analyzed in METAL141 using an inverse- 
variance-based model.

Characterization of gene(s) and non-coding features in associated loci.  
We determined the base-pair boundaries of the search space for potential gene(s) 
and non-coding features in each of the 24 associated loci (excluding APOE) using 
the ‘proxy search’ mechanism in LDLink146. LDLink uses 1,000 genomes genotypes 
to calculate LD for a selected population; in our case all five European populations 
were selected (population codes CEU, TSI, FIN, GBR, and IBS). The boundaries 
for all variants in LD (r2 ≥ 0.5) with the top associated variant from the Stage 2 
meta-analysis for each region ±500 kb of the ends of the LD blocks (as eQTL 
controlled genes are typically less than 500 kb from their controlling variant147) 
were input into the UCSC genome browser’s ‘Table Browser’ for RefSeq148 and 
GENCODEv24lift37149 genes at each associated locus. The average size of the LD 
blocks was 123 kb.

Identification of potentially causal coding or splicing variants. To identify 
deleterious coding or splicing variants that may represent causal variants for 
our genome-wide loci, we first used SNIPA150 to identify variants in high LD 
(defined as r2 > 0.7) with the sentinel variants of the 24 genome-wide loci 
(excluding APOE) (n = 1,073). The sentinel variants were defined as the variants 
with the lowest P in each genome-wide locus. We then used Ensembl VEP151 for 
annotation of the set of sentinel variants and their proxies. We used BLOSUM62 
(ref. 152), SIFT153, Polyphen-2 (ref. 154), CADD155, Condel156, MPC157 and Eigen158 
to predict the pathogenicity of protein-altering exonic variants and MaxEntScan 
to predict the splicing potential of variants. Splicing variants with high splicing 
potential according to MaxEntScan159 and protein-coding variants predicted to 
be deleterious by two or more programs were considered to be potentially causal 
variants for a locus. It should be noted that while we do include rare variants  
from imputation in our analyses, we may be missing many rare causal variants  
in this study.

Identification of genes with rare-variant burden via gene-based testing. We used 
the summary statistics results of a large whole-exome sequencing (WES) study of 
LOAD, the Alzheimer’s Disease Sequencing Project (ADSP) case-control study 
(n = 5,740 LOAD cases and 5,096 cognitively normal controls of NHW ancestry) to 
identify genes within our genome-wide loci that may contribute to the association 
signal through rare deleterious coding, splicing or LOF variants. The individuals 
in the ADSP study largely overlap with individuals in the ADGC and CHARGE 
cohorts included in our Stage 1 meta-analysis. All 400 protein-coding genes within 
our LD-defined genome-wide loci were annotated with the gene-based results 
from this study, and the results were corrected using a 1% FDR P as a cutoff for 
significance. Complete details of the analysis can be found in Bis et al.49 and the 
Supplementary Note.

Regulatory variant and eQTL analysis. To identify potential functional risk 
variants and genes at each associated locus, we first annotated a list of prioritized 
variants from the 24 associated loci (excluding APOE) (n = 1,873). This variant list 
combined variants in LD with the sentinel variants (r2 ≥ 0.5) using INFERNO160 
LD expansion (n = 1,339) and variants with suggestive significance (P < 10−5) and 
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LD (r2 ≥ 0.5) with the sentinel variants for the 24 associated loci (excluding APOE) 
(n = 1,421 variants). We then identified variants with regulatory potential in this 
set of variants using four programs that incorporate various annotations to identify 
likely regulatory variants: RegulomeDB56, HaploReg v.4.1 (refs. 57,161), GWAS4D59, 
and the Ensembl Regulatory Build58. We used the ChromHMM (core 15-state 
model) as ‘source epigenomes’ for the HaploReg analyses. We used immune 
(Monocytes-CD14+, GM12878 lymphoblastoid, HSMM myoblast) and brain 
(NH-A astroctyes) for the Ensembl Regulatory Build analyses. We then used the 
list of 1,873 prioritized variants to search for genes functionally linked via eQTLs 
in LOAD relevant tissues including various brain and blood tissue types, including 
all immune-related cell types, most specifically myeloid cells (macrophages and 
monocytes) and B-lymphoid cells, which are cell types implicated in LOAD and 
neurodegeneration by a number of recent studies14,45,162,163. While their specificity 
may be lower for identifying Alzheimer’s disease risk eQTLs, we included whole 
blood cell studies in our Alzheimer’s disease–relevant tissue class due to their high 
correlation of eQTLs with Alzheimer’s disease–relevant tissues (70% with brain164; 
51–70% for monocytes and lymphoblastoid cell lines165) and their large sample 
sizes that allow for increased discovery power. See the Supplementary Note for 
details on the eQTL databases and studies searched, and Supplementary Table 13 
for sample sizes of each database/study.

Formal co-localization testing of our summary Stage 1 results was conducted 
using (1) COLOC166 via INFERNO and (2) Summary Mendelian Randomization 
(SMR)-Heidi analysis167. The approximate Bayes factor (ABF), which was 
used to assess significance in the INFERNO COLOC analysis, is a summary 
measure that provides an alternative to the P value for the identification of 
associations as significant. SMR-Heidi analysis, which employs a heterogeneity 
test (HEIDI test) to distinguish pleiotropy or causality (a single genetic variant 
affecting both gene expression and the trait) from linkage (two distinct genetic 
variants in LD, one affecting gene expression and one affecting trait), was also 
employed for co-localization analysis. Genes located less than 1 Mb from the 
GWAS sentinel variants that pass a 5% Benjamini–Hochberg FDR-corrected 
SMR P-value significance threshold and a HEIDI P-value > 0.05 threshold were 
considered significant. The Westra eQTL168 summary data and Consortium for 
the Architecture of Gene Expression (CAGE) eQTL summary data were used for 
analysis. These datasets, conducted in whole blood, are large eQTL studies (Westra: 
discovery phase n = 5,311, replication phase n = 2,775; CAGE: n = 2,765), and while 
there is some overlap in samples between the two datasets, CAGE provides finer 
coverage. The ADGC reference panel dataset referenced above for GCTA COJO 
analysis was used for LD calculations.

Human brain gene expression analyses. We also evaluated gene expression 
of all candidate genes in the associated loci (see Supplementary Table 8 for a 
complete list of genes searched), using differential Alzheimer’s disease gene 
expression results from AlzBase31, brain tissue expression from the Brain RNA-
seq Database32,33 (see URLs), and the HuMi_Aged gene set34, a set of genes 
preferentially expressed in aged human microglia established through RNA-seq 
expression analysis of aged human microglial cells from ten post-mortem brains. 
AlzBase includes transcription data from brain and blood from aging, non-
dementia, mild cognitive impairment, early-stage Alzheimer’s disease, and late-
stage Alzheimer’s disease. See ALZBase (see URLs) for a complete list of studies 
included in the search. Correlation values for the BRAAK stage expression were 
taken from the Zhang et al.30 study of 1,647 post-mortem brain tissues from LOAD 
patients and non-demented subjects.

Pathway analysis. Pathway analyses were performed with MAGMA61, which 
performs SNP-wise gene analysis of summary statistics with correction for LD 
between variants and genes to test whether sets of genes are jointly associated 
with a phenotype (that is, LOAD), compared to other genes across the genome. 
Adaptive permutation was used to produce an empirical P value and an FDR-
corrected q value. Gene sets used in the analyses were from GO169,170, KEGG171,172, 
REACTOME173,174, BIOCARTA, and MGI175 pathways. Analyses were restricted to 
gene sets containing between 10 and 500 genes, a total of 10,861 sets. Variants were 
restricted to common variants (MAF ≥ 0.01) and rare variants (MAF < 0.01) only for 
each analysis, and separate analyses for each model included and excluded the APOE 
region. Analyses were also performed after removal of all genome-wide-significant 
genes. Primary analyses used a 35-kb upstream/10-kb downstream window 
around each gene in order to capture potential regulatory variants for each gene, 
while secondary analyses were run using a 0-kb window176. To test for significant 
correlation between common and rare-variant gene results, we performed a gene 
property analysis in MAGMA, regressing the gene-wide association statistics from 
rare variants on the corresponding statistics from common variants, correcting for 
LD between variants and genes using the ADGC reference panel. The Aβ-centered 
network pathway analysis used a curated list of 32 Aβ-related gene sets and all 335 
genes combined (see Campion et al.64 for details). The combined dataset of 28,730 
unrelated individuals from the ADGC referenced in the GCTA COJO analysis was 
used as a reference set for LD calculations in these analyses.

Validation of prioritization method. Evaluation of the prioritization of the risk 
genes in genome-wide loci was done using STRING177, and Jensen Diseases178, 

Jensen Tissues179, dbGAP gene sets, and the ARCHS4180 resource via the EnrichR181 
tool. We evaluated both the 400 genes set list and a list of 53 genes with priority 
score ≥ 5 (adding in APOE to both lists as the top gene in the APOE locus) using 
the standard settings for both STRING and EnrichR. We used the q value, which is 
the adjusted P value using the Benjamini–Hochberg FDR method with a 5% cutoff 
for correction for multiple hypotheses testing. We also performed ‘differentially 
expressed gene (DEG)’ sets analysis via FUMA182. These analyses were performed 
in order to assess whether our 53 prioritized genes were significantly differentially 
expressed in certain GTEx v.7 (ref. 102; 30 general tissues and 53 specific tissues) 
or BrainSpan tissues (11 tissue developmental periods with distinct DEG sets 
ranging from early prenatal to middle adulthood)103. FUMA defines DEG sets 
by calculating a two-sided t-test per tissue versus all remaining tissue types or 
developmental periods. Genes with a Bonferonni-corrected P < 0.05 and absolute 
log(fold change) ≥ 0.58 were considered DEGs. Input genes were tested against 
each of the DEG sets using the hypergeometric test. Significant enrichment was 
defined by Bonferonni-corrected P ≤  0.05.

HLA region analysis. Non-familial datasets from the ADGC, EADI and GERAD 
consortiums were used for HLA analysis. After imputation quality control, a total 
of 14,776 cases and 23,047 controls were available for analysis (Supplementary 
Table 27). Within ADGC, GenADA, ROSMAP, TARC1, TGEN2, and a subset of 
the UMCWRMSSM datasets were not imputed as Affymetrix genotyping arrays 
are not supported by the imputation software.

Imputation of HLA alleles. Two-field resolution HLA alleles were imputed using  
the R package HIBAG v.1.4 (ref. 183) and the NHW-specific training set.  
This software uses specific combinations of variants to predict HLA alleles.  
Alleles with an imputation posterior probability lower than 0.5 were considered  
as undetermined as recommended by HIBAG developers. HLA-A, HLA-B, HLA-C 
class I genes, and HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 class II 
genes were imputed. Individuals with more than two undetermined HLA alleles 
were excluded.

Statistical analysis. All analyses were performed in R184. Associations of HLA alleles 
with disease were tested using logistic regressions, adjusting for age, sex, and 
principal components as specified above for single variant association analysis. 
Only HLA alleles with a frequency higher than 1% were analyzed. Haplotype 
estimations and association analyses with disease were performed using the 
‘haplo.glm’ function from the haplo.stats R package185 with age, sex, and principal 
components as covariates. Analysis was performed on two-loci and three-loci 
haplotypes of HLA-DQA1, HLA-DQB1, and HLA-DRB1 genes. Haplotypes with 
a frequency below 1% were excluded from the analysis. Considering the high LD 
in the MHC region, only haplotypes predicted with posterior probabilities higher 
than 0.2 were considered for analysis. Meta-analysis P values were computed using 
an inverse-variance-based model as implemented in METAL software141. For 
haplotypes analysis, only individuals with no undetermined HLA alleles and only 
datasets with more than 100 cases or controls were included. Adjustments on HLA 
significant variants and HLA alleles were performed by introducing the variant or 
alleles as covariates in the regression models. Adjusted P values were computed 
using the FDR method and the R ‘p.adjust’ function, and applied to the meta-
analysis P values. The FDR threshold was set to 10%.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics for the Stage 1 discovery have been deposited 
in The National Institute on Aging Genetics of Alzheimer's Disease Data Storage 
Site (NIAGADS)—a NIA/NIH-sanctioned qualified-access data repository, under 
accession NG00075. Stage 1 data (individual level) for the GERAD cohort can 
be accessed by applying directly to Cardiff University. Stage 1 ADGC data are 
deposited in NIAGADS. Stage 1 CHARGE data are accessible by applying to dbGaP 
for all US cohorts and to Erasmus University for Rotterdam data. AGES primary 
data are not available owing to Icelandic laws. Stage 2 and Stage 3 primary data are 
available upon request.
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