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IMPORTANCE Mutations in known causal Alzheimer disease (AD) genes account for only 1% to
3% of patients and almost all are dominantly inherited. Recessive inheritance of complex
phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs)
detectable by single-nucleotide polymorphism (SNP) arrays.

OBJECTIVE To evaluate the association between ROHs and AD in an African American
population known to have a risk for AD up to 3 times higher than white individuals.

DESIGN, SETTING, AND PARTICIPANTS Case-control study of a large African American data set
previously genotyped on different genome-wide SNP arrays conducted from December 2013 to
January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed
genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on
SNP array: Alzheimer’s Disease Genetics Consortium data set (871 cases and 1620 control indi-
viduals) and Chicago Health and Aging Project–Indianapolis Ibadan Dementia Study data set
(279 cases and 1367 control individuals). We then examined the entire data set using imputed
genotypes from 1917 cases and 3858 control individuals.

MAIN OUTCOMES AND MEASURES The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated
separately for global burden evaluation, consensus regions, and gene-based analyses.

RESULTS The African American cohort had a low degree of inbreeding (F ~ 0.006). In the
Alzheimer’s Disease Genetics Consortium data set, we detected a significantly higher proportion
of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a
significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In
the Chicago Health and Aging Project–Indianapolis Ibadan Dementia Study data set, we identified
a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb)
and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total
of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31.
Analyses of imputed SNP data from the entire data set confirmed the association of AD with
global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size
of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of
controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also,
we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1
Mb), encoding a protein from the Claudin family, members of which were previously suggested as
AD biomarkers.

CONCLUSIONS AND RELEVANCE To our knowledge, we discovered the first evidence of
increased burden of ROHs among patients with AD from an outbred African American
population, which could reflect either the cumulative effect of multiple ROHs to AD or the
contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of
patients. Sequencing is required to uncover AD variants in these individuals.
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I n addition to the causal early-onset Alzheimer disease (AD)
genes (APP, PSEN1, and PSEN2) accounting for only 1% to
3% of patients,1 variations of modest effect in more than

25 loci have been found to be significantly associated with late-
onset AD (age >65 years), among them APOE has the largest
effect.2 These loci were mainly detected by genome-wide as-
sociation studies (GWASs) using common single-nucleotide
polymorphisms (SNPs) with a minor allele frequency greater
than 5%, while the search for rare pathogenic mutations among
them is still ongoing.3 Notably, except for the 2 rare recessive
mutations in APP (p.A673V4 and E693Δ5), approximately 200
mutations in the 3 causal AD genes all cause a dominant early-
onset form of the disease,6 which is in contrast to a previous
suggestion of up to approximately 90% recessive inheritance
for early-onset AD.7

Recessive inheritance of complex phenotypes (eg, late-
onset AD) can be linked to the presence of long runs of homo-
zygosity (ROHs) detectable by SNP arrays used in GWASs. Runs
of homozygosity could be the result of enhanced inbreeding
in previous generations7-9 or suppressed recombination by a
large inversion leading to an extended haplotype (eg, at the
MAPT locus10). Based on whole-exome data, long ROHs were
reported to be significantly enriched for potentially deleteri-
ous homozygous mutations.11,12 Because small ROHs are too
frequent and less likely to harbor rare recessive variants, most
studies have investigated ROHs greater than 1 megabase (Mb)
or several cutoffs (eg, ROH>2 Mb or >3 Mb)13 that could reveal
hidden associations by excluding outliers.

Hence, genome-wide study of ROHs could identify cases
with a higher probability of disease-associated rare recessive
mutations or risk haplotypes. We previously showed that the
global burden measurements of ROHs are significantly asso-
ciated with AD in an inbred population of Caribbean Hispanic
individuals, in which the average length of ROHs was signifi-
cantly larger in cases than control participants (P = .004), and
this association was stronger with familial AD (P < .001).8 Al-
though inbred populations are more powerful for ROH study,
in some outbred populations, ROHs were associated with sev-
eral neurological disorders including Parkinson disease,14

amyotrophic lateral sclerosis,15 and schizophrenia.16

Because studies of 2 outbred AD data sets of North Ameri-
can and European origin did not detect an association be-
tween AD and ROHs,13,17 we focused our investigation on Afri-
can American individuals, who have a risk for AD up to 3 times
higher than in white individuals18 and their first-degree rela-
tives with AD have a higher risk for dementia than those of
white individuals with AD.19 As a result, AD is the fourth lead-
ing cause of death among African American individuals.18 Our
investigation was also motivated by significant findings in a
Caribbean Hispanic population that has substantial West Afri-
can heritage.8 However, a large data set is needed because stud-
ies of African American individuals is complicated by a high
level of genetic divergence owing to their multiple sites of ori-
gin, mainly from West or Central Africa.20

Therefore, we conducted an ROH study of a large data set
of African American patients with late-onset AD, consisting of
10 case-control cohorts previously genotyped on 6 different
SNP arrays. The entire data set was previously evaluated by

the Alzheimer’s Disease Genetics Consortium (ADGC) in an
SNP-based GWAS, which replicated several AD loci (eg, ABCA7,
CR1, BIN1, EPHA1, and CD33).21 We evaluated global and locus-
based ROH measurements by analyzing raw genotypes from
2 independent African American cohorts that were grouped
based on their genotyping arrays. To maximize the statistical
power of our study that is dependent on both sample size and
SNP density, we also investigated the entire data set (1917 cases
and 3858 control individuals) using imputed SNP data from dif-
ferent genotyping arrays. Notably, SNP imputation has been
suggested to be a reliable approach for ROH studies.9

Methods
Genotyping Data
Details of the African American data sets, genotyping arrays,
and quality-control steps were reported previously.21 The data
sets for the study were approved for analysis by the institu-
tional review board at the University of Pennsylvania, Phila-
delphia, and all participants provided written informed
consent.

STRUCTURE22 analysis was performed to identify hid-
den population substructure and remove outliers. We stud-
ied nonimputed data from 2 cohorts that were grouped based
on their genotyping platforms. The first data set (called ADGC)
was genotyped at Children’s Hospital of Philadelphia (72.8%
female; 36.5% APOE ε4 carriers) using the Human 1M Duo Bead
Chip (Illumina Inc) that provided genotypes for 965 226 SNPs
used for the ROH analyses. After removing 90 population out-
liers from the ADGC data set, 871 cases and 1620 control indi-
viduals were included in the study (eFigure 1A in the Supple-
ment). The second data set consisted of merged data from the
Chicago Health and Aging Project (CHAP) (65.8% female; 38.4%
APOE ε4 carriers) and the Indianapolis Ibadan Dementia Study
(IIDS) (65.6% female; 36.3% APOE ε4 carriers). All samples in
the CHAP-IIDS data set were genotyped on the Illumina 1M plat-
form (Illumina Inc) that provided genotypes for 787 726 SNPs
for the ROH analyses. After removing 76 population outliers,
279 cases and 1367 control individuals were included in the
study (eFigure 1B in the Supplement).

The ROH analyses were also conducted for the entire data
set using imputed SNP data from all 10 cohorts. Genome-
wide imputation of allele dosages to select the final SNP set
for analyses (R2≥0.50) was previously done using the June 2011
panel from the 1000 Genomes build 37.21 IMPUTE223 files were
converted to PLINK24 input files using the GTOOL program
(http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool
.html). We excluded SNPs and individuals with more than 2%
missing genotypes, as well as SNPs with a minor allele fre-
quency of 5% or less in the entire data set. After removal of
population outliers,21 we analyzed ROHs among 1917 cases and
3858 control individuals, with a total genotyping rate of more
than 99% for 2 498 646 SNPs. The degree of inbreeding (F) was
estimated by the genetic relationship matrix implemented in
the GCTA program.25 Linkage disequilibrium structure was es-
timated using Haploview26 and based on the control geno-
type data of each group.
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Runs of Homozygosity Analyses
Runs of homozygosity for the nonimputed data were ana-
lyzed as previously described,8 while for the imputed data with
many more SNPs, we used 100 (vs 50) SNPs in the PLINK slid-
ing window and allowed 2 (vs 1) heterozygous SNPs in the win-
dow. The number, as well as the total and average length of
ROHs, was calculated for each sample. Runs of homozygosity
larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately13

in 3 types of analyses: (1) global burden evaluation; (2) analy-
sis of consensus regions (>100 kilobase [Kb]; >3 SNPs), which
were segments shared by all individuals carrying ROHs greater
than 1 Mb at each given locus; and (3) gene-based analysis to
estimate which genes were intersected by ROHs more fre-
quently in cases vs control individuals.

We obtained P values uncorrected (empirical P value 1) and
corrected (empirical P value 2) for multiple testing using PLINK.
All nominally significant genes were checked if they be-
longed to the 77 genes reported to be associated with the 4 most
common neurodegenerative disorders, keeping in mind their
essential overlap at the clinical, neuropathological, and
genetic levels.27

Global burden measurements among autosomal chromo-
somes were investigated with a 1-tailed test (10 000 permu-
tations) for the number of ROHs, their total and average length
per individual, and the proportions of cases and control indi-
viduals with ROHs. A 1-tailed test was used because African
American individuals have a high incidence of AD18 and such
a population is more suitable for the detection of risk but not
protective alleles.

Results
Analyses of the ADGC Data Set
Results of the global burden ROH analysis of the ADGC data set
(871 cases and 1620 control individuals) are presented in Table 1.
We detected a significantly higher proportion of cases with ROHs
greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02) com-
pared with control individuals. In addition, the global rate of
ROHsgreaterthan2Mbperpersonwasmarginallyhigherincases
than control individuals (P = .05). Analysis of ROH consensus re-
gionsdetectedasignificantassociation(empiricalPvalue1 < .001;
empirical P value 2 = .04) between AD and a 114-kb locus on
chr4q31.3 containing the SH3D19 and RPS3A genes (Chr4:
152172448-152286356/hg18flankedbyrs6817611andrs7669180).
This consensus region was overlapped by ROHs greater than 2
Mb in 7 cases and no control individuals (Figure 1A; eTable 1 in
the Supplement) and belongs to a single linkage disequilibrium
block based on Haploview investigation of the ADGC control
genotypes (eFigure 2 in the Supplement). Gene-based analysis
revealed only nominally significant loci, including PSEN2 (em-
pirical P value 1 = .003) overlapped by ROHs greater than 1 Mb
in 1.26% of cases (n = 11) vs 0.25% of control individuals (n = 4)
and SIGMAR1 (empirical P value 1 < .001) overlapped by ROHs
greater than 1 Mb in 1.61% of cases (n = 14) vs 0.25% of control
individuals (n = 4) (Table 2).

Analyses of CHAP-IIDS Data Set
The global burden analyses of ROHs did not reveal significant
results in the CHAP-IIDS data set, likely owing to the limited

Table 1. Global Burden Measurements of ROHs Using 3 Different-Sized Cutoffs

Measurement

1 Mb 2 Mb 3 Mb

Affected Unaffected P Value Affected Unaffected P Value Affected Unaffected P Value
ADGC Data Set

Total No. 7178 12 993 … 1032 1700 … 479 755 …

ROH segments per genome/individual,
No.

8.24 8.02 .07 1.19 1.05 .05 0.55 0.47 .12

Proportion 0.99 1 >.99 0.66 0.59 .004a 0.32 0.28 .02

Total size of ROH, kb 14 850 13 910 .21 8884 8392 .38 13 490 12 910 .43

Average size of ROH, kb 1624 1579 .12 3274 3264 .46 4751 4739 .48

CHAP-IIDS Data Set

Total No. 1919 9442 … 196 1087 … 66 351 …

ROH segments per genome/individual,
No.

6.88 6.91 .56 0.70 0.79 .91 0.24 0.26 .66

Proportion 0.99 0.99 .93 0.48 0.52 .90 0.18 0.18 .50

Total size of ROH, kb 10 480 10 850 .69 5139 5633 .64 7453 9443 .73

Average size of ROH, kb 1487 1506 .67 3133 2993 .19 4997 4818 .36

Imputed Data From the Entire African American Data Set (All 10 Cohorts)

Total No. 23 742 46 715 … 2199 4107 … 824 1412 …

ROH segments per genome/individual,
No.

12.38 12.11 .02 1.15 1.07 .09 0.43 0.37 .11

Proportion 1 1 >.99 0.61 0.58 .06 0.22 0.19 .006a

Total size of ROH, kb 18 790 18 080 .10 7401 6828 .25 12 650 12 210 .42

Average size of ROH, kb 1447 1431 .10 2986 2889 .03 4734 4599 .18

Abbreviations: ADGC, Alzheimer’s Disease Genetics; CHAP-IIDS, Chicago Health and Aging Project–Indianapolis Ibadan Dementia Study; ROHs, runs of
homozygosity; ellipses, no comparison for pure number of ROHs.
a Results that remain significant even after Bonferroni correction (P < .02) calculated based on the 3 ROH cutoffs.
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number of patients (279 cases and 1367 control individuals)
(Table 1). However, analysis of consensus regions detected a
significant association between AD and a 202-kb region on
Chr15q24.1, which was overlapped by ROHs greater than 1 Mb
in 5 cases and no control individuals (empirical P value 1 < .001;
empirical P value 2 = .02). This region is flanked by SNPs
rs12442211 and rs11635599 (chr15:72032728-72235049/hg18)
and contains the STOML1, PML, GOLGA6A, and ISLR2 genes
(Figure 1B; eFigure 3 and eTable 2 in the Supplement). The ROH
grouping function of PLINK revealed that 4 of 5 cases with this
consensus region have a shared haplotype (eTable 2 in the
Supplement). Notably, in the gene-based analysis of ROHs
greater than 1 Mb, the genes located at this consensus region
generated the top nominally significant results (empirical P
value 1 < .001), while in the analysis of ROHs greater than 2 Mb,
the top nominally significant gene was CD2AP (the AD gene

detected by GWAS28), which was intersected in 3 cases (1%) but
no control individuals (empirical P value 1 = .005).

After correction for multiple testing, the only association
with AD in the gene-based analysis was observed for 13 genes
within a 3-Mb region on Chr3p21.31 (PFKFB4, UCN2, COL7A1,
UQCRC1, TMEM89, C3orf18, HEMK1, CISH, MAPKAPK3,
DOCK3, MANF, RBM15B, and VPRBP) that were intersected by
ROHs greater than 3 Mb more frequently in cases (n = 8; 2.9%)
vs control individuals (n = 5-6; 0.4%) (empirical P value
1 < .001; empirical P value 2 = .03) (Figure 2).

Analyses of the Entire Data Set
Global burden ROH analyses of the entire data set using im-
puted SNP data from 1917 cases and 3858 control individuals
revealed a significantly higher rate of ROHs greater than 1 Mb
in cases vs control individuals (P = .02). Also, the average size

Figure 1. Significant Results Obtained by Analyses of Consensus Regions

Scale

151 500 000| 152 000 000|
Significant consensus region at the ADGC data set

RefSeq genes

152 500 000| 153 000 000|chr4:

10AD24322
10AD30747
11AD35549
10AD32217
11AD35543
11AD35799

10AD32219

1 Mb hg18

SNORD73A
RPS3A LOC100996286FAM160A1DCLK2

DCLK2

RPS3A PRPSS48 LOC100996286PET112DCLK2 MAB21L2

LRBA
LRBA

SH3D19

SH3D19
SH3D19

SH3D19

Scale

72 050 000| 73 100 000|
Significant consensus region at the CHAP-IIDS data set

RefSeq genes

72 150 000| 72 200 000| 72 250 000|chr15:

PT-J7BC_5951
PT-9X4V_537994104
PT-28ZI_899514246

PT-J6L9_937
PT-J6KB_796

100 kb hg18

ADGC data setA

CHAP-IIDS data setB

LOXL1/NM_005576
STOML1/NM_001256674

STOML1/NM_001256676
STOML1/NM_001256677

STOML1/NM_001256673
STOML1/NM_001256672

STOML1/NM_001256675

STOML1/NM_004809
ISLR/NM_201526
ISLR/NM_005545

ISLR2/NM_001130136

ISLR2/NM_001130137
ISLR2/NM_001130138

ISLR2/NM_020851

LOC283731/NR_027073GOLGA6A/NM_001038640

PML/NM_033238

PML/NM_002675
PML/NM_033249

PML/NM_033250
PML/NM_033246

PML/NM_033244

PML/NM_033240

PML/NM_033247

PML/NM_033239

Consensus regions are indicated by red bars containing white arrowheads.
A, The consensus region detected in the Alzheimer’s Disease Genetics
Consortium (ADGC) data set contains the SH3D19 and RPS3A genes intersected
by runs of homozygosity greater than 2 Mb in 7 cases (samples 10AD24322,
10AD30747, 11AD35799, 11AD35549, 10AD32217, 10AD32219, and 11AD35543)
and no control individuals. B, The consensus region detected in the Chicago

Health and Aging Project (CHAP)–Indianapolis Ibadan Dementia Study (IIDS)
data set contains the STOML1, PML, GOLGA6A, and ISLR2 genes intersected by
runs of homozygosity greater than 1 Mb in 5 cases (samples PT-J6K8_796,
PT-J6L9_937, PT-28ZI_899514246, PT-9X4V_537994104, and PT-J7BC_5951)
and no control individuals.
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of ROHs greater than 2 Mb (P = .03) and the proportion of ROHs
greater than 3 Mb (P = .006) were significantly higher in cases
compared with control individuals (Table 1). Of note, analy-
ses of imputed data for the ADGC data set confirmed a signifi-
cantly higher global proportion of cases with ROHs greater than
2 Mb (P = .004) or ROHs greater than 3 Mb (P = .002) ob-
served in the nonimputed ADGC data, indicating reliability of
the ROH results generated based on imputed data.

Evaluation of relatedness revealed a low degree of inbreed-
ing for both cases and control individuals (F ~ 0.006). Thus, we
also conducted the global burden analyses of smaller ROHs
(>0.5 Mb) that showed significant association of AD with ROH
rate (P = .04); however, the gene-based analysis did not reveal
anysignificantresultsaftercorrectionformultipletesting.Incon-
trast, gene-based analysis of ROHs greater than 1 Mb revealed a
significant association between AD and the CLDN17 gene on
21q22.11, which was intersected by ROHs in 11 cases (0.57%) but
no control individuals (empirical P value 1 < .001; empirical
P value 2 = .01) (Figure 3). We also observed a significant gene
cluster on Chr3p21.31 (empirical P value 2 = .006-.04) that was
intersected by ROHs greater than 3 Mb in approximately 2.4% of
cases vs approximately 1% of control individuals (eTable 3 in the
Supplement). This association was mainly driven by the
CHAP-IIDS data set because genes from this locus were also sig-
nificantintheanalysisofrawgenotypesfromtheCHAP-IIDSdata
set (C3orf18, CISH, COL7A1, DOCK3, HEMK1, MAPKAPK3,
PFKFB4, and UCN2). Indeed, the genes at the Chr3p21.31 locus
became insignificant after the CHAP-IIDS data set was removed
from the entire data set, although a global proportion of ROHs
greater than 3 Mb remained significantly higher in cases vs con-
trol individuals (P = .004).

Discussion
Our results suggest the existence of recessive AD loci among
African American individuals. A greater global burden of ROH

measurements was detected in the entire (imputed) data set
and ADGC cohort but not in the much smaller CHAP-IIDS data
set (Table 1). To our knowledge, this is the first report of an as-
sociation between AD and ROHs in an outbred population
(F ~ 0.006), in contrast to the report of Caribbean Hispanic in-
dividuals with a level of inbreeding similar to second cousins
(F ~ 0.02).8,29 The mean total length of ROHs among African
American individuals from both the ADGC (15 Mb) and CHAP-
IIDS (10 Mb) data sets was comparable with that in Caribbean
Hispanic individuals of African origin (19 Mb),8 but much less
than in Caribbean Hispanic individuals of European origin (40
Mb) who have a very high degree of inbreeding (F ~ 0.06),8

likely owing to an increase in consanguineous marriages af-
ter settlement in the Dominican Republic and Puerto Rico. Like-
wise, the average ROH size for the Caribbean Hispanic indi-
viduals of European origin was larger (2.1 Mb)8 than for the
African American individuals (1.5 Mb), reflecting more recom-
bination events in an older African American population.

Locus-based ROH analyses could reveal only a small pro-
portion of the genetic variance contributing to AD because we
analyzed very rare and sparse ROHs (7-12 per genome; Table 1).
The significant results observed in the locus-based investiga-
tion were unique to our African American data set; only 12
nominal genes were detected in both the Caribbean Hispanic8

and African American cohorts: NKTR, SEC22C, SS18L2, ZBTB47,
SCN5A, and RBMS3 (Chr3p22-24); PAX5, ZCCHC7, NFX1, and
AQP7 (Chr9p13); and INSR and ZNF557 (Chr19p13.2) (eTable 4
in the Supplement). Also, no significant loci were common be-
tween the ADGC and CHAP-IIDS data sets, which could in part
be explained by the difference in data set size and the sparse
overlap of SNPs between the 2 genotyping arrays. In general,
replication of the association is expected for common varia-
tions (eg, SNPs in GWASs with frequency of >5%); however, rare
genetic variations (eg, ROHs) with a frequency of less than 1%
could be unique founder events that might not be observed
in other data sets.30 Nevertheless, the locus-based analyses de-
tected 61 nominally significant genes common to both data sets

Table 2. Nominally Significant Results Obtained in Gene-Based ROH Analyses for the Genes Known to Be Linked With Neurodegenerative Disorders

ROH Minimum Size Gene Transcript Associated Disease

Empirical P Value Frequency, %

1 2 Cases Controls
ADGC Data Set

1 Mb HIP1R NM_003959 PD .002 .93 2.30 0.80

PSEN2 NM_000447 AD .003 .90 1.26 0.25

SIGMAR1 NM_001282209 ALS/FTD <.001 .23 1.61 0.25

VCP NM_007126 ALS/FTD .03 >.99 0.92 0.25

2 Mb SIGMAR1 NM_001282209 ALS/FTD .01 .81 0.69 0.06

VCP NM_007126 ALS/FTD .01 .81 0.69 0.06

3 Mb SIGMAR1 NM_001282209 ALS/FTD .046 .99 0.34 0

VCP NM_007126 ALS/FTD .046 .99 0.34 0

CHAP-IIDS Data Set

1 Mb ATXN2 NM_002973 ALS/FTD <.001 .99 10.75 5.27

CD2AP NM_012120 AD .02 >.99 1.08 0.07

2 Mb CD2AP NM_012120 AD .004 .54 1.08 0

3 Mb MEF2C NM_001193350 AD .03 .88 0.72 0

Abbreviations: AD, Alzheimer disease; ADGC, Alzheimer’s Disease Genetics Consortium; ALS, amyotrophic lateral sclerosis; CHAP-IIDS, Chicago Health and Aging
Project–Indianapolis Ibadan Dementia Study; FTD, frontotemporal dementia; PD, Parkinson disease; ROH, run of homozygosity.
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(eTable 5 in the Supplement), including 49 coding genes, with
43 of them located at an approximate 2-Mb region within
Chr3p21.31, where genes that survived correction for mul-
tiple testing were detected in the CHAP-IIDS data set. The func-
tional significance of the Chr3p21.31 locus is also supported by
its epigenomic architecture with a high density of gene regu-
latory elements according to the map of histone modifica-
tions obtained by ChIP sequencing of the IMR90 cell line (eFig-

ure 4 in the Supplement). Importantly, such loci are enriched
in disease-associated genetic variants,31,32 further encourag-
ing the targeted sequencing of the Chr3p21.31 locus.

Most GWASs’ significant loci (SNP or ROH based) remain
to be explained by follow-up studies. The molecular basis of
genetic association is usually investigated in 3 steps: detec-
tion of the disease loci followed by its sequencing and func-
tional studies of potentially damaging variations. Our study

Figure 2. Significant Results Obtained by Gene-Based Analyses of the Chicago Health and Aging Project (CHAP)–Indianapolis Ibadan Dementia Study
(IIDS) Data Set
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The top section shows the runs of homozygosity (ROHs) greater than 3 Mb on
chromosome 3 among cases (n = 279) and control individuals (n = 1367). Owing
to an unbalanced distribution of cases and control individuals, fewer ROHs were
observed among cases compared with control individuals, except at the
Chr3p21.31 locus (section within the dashed lines), which was affected by ROHs
greater than 3 Mb significantly more frequently in cases (2.9%, red bars)

compared with control individuals (0.4%, blue bars). The middle section shows
2 down-brackets pointing to the significantly overlapped genes. The bottom
section shows the linkage disequilibrium structure of the Chr3:46500000-
52500000/hg18 region estimated based on control genotypes from the
CHAP-IIDS data set. tRNA indicates transfer ribonucleic acid; UCSC, University
of California–Santa Cruz.
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represents the first step that revealed the patients with a higher
probability of having rare recessive mutations at certain ROH
locus, and these individuals will be included in the sequenc-
ing step. There is also a possibility of a more complicated
mechanism underlying the observed association, such as the
action of risk haplotypes or a cumulative effect of ROHs on AD
risk, making it more challenging to dissect the molecular ba-
sis of the association with ROHs.

Yet, it is essential to conduct follow-up sequencing stud-
ies because long ROHs are likely to harbor deleterious
mutations.11,12 The first priority should be given to significant
loci in each investigated data set. In addition to the gene clus-
ter on Chr3p21.31, a consensus region significantly associ-
ated with AD was detected on Chr15q24.1 in the CHAP-IIDS data
set (empirical P value 2 = .02) and on Chr4q31.3 in the ADGC
data set (empirical P value 2 = .04). Both loci contain good func-
tional gene candidates. For instance, the locus on Chr15q24.1
includes PML, which is involved in the pathway of presenilin-
APP-PML-p53 and overexpressed in AD brain,33 while the
Chr4q31.3 region includes SH3D19, which is implicated in the
regulation of the ADAM family of metalloproteins respon-
sible for α-secretase activity in the amyloid pathway.34-37 Po-
tentially damaging variations reported in public databases
within both consensus regions are presented in eTable 6 in the
Supplement. Although the Database of Genomic Variants does
not indicate that any large (>1-Mb) deletions affect the signifi-
cant loci identified in our study, gene dosage analyses should
be included in the follow-up study because, in some in-
stances, ROHs could be the result of hemizygous deletions. No-
tably, recurrent microdeletions at 15q24 could not be respon-
sible for the association with AD because such deletions cause
a syndrome accompanied by major dysmorphic features (OMIM
613406).38,39

Analyses of the entire data set using imputed SNP data con-
firmed the significant contribution of recessive loci in the ge-
netics of AD among African American individuals. We ob-
served a higher rate of ROHs greater than 1 Mb per individual
(P = .02), larger average size of ROHs greater than 2 Mb (P = .03),
and a greater proportion of individuals with ROHs greater than
3 Mb (P = .006) in cases than control individuals (Table 1). Also,

gene-based analyses revealed significant association with
CLDN17 (empirical P value 2 = .01) that encodes claudin 17, a
member of the claudin family. Claudins were suggested as AD
biomarkers40 and are important for the formation of tight junc-
tions, particularly at the blood-brain barrier, where their ex-
pression is altered in AD and vascular dementia.41 Our results
encourage further investigation of genes responsible for the
integrity of the blood-brain barrier, the disruption of which has
been implicated in AD pathogenesis.42,43

Similar to the white population, the APOE ε4 allele con-
tributes to AD risk in a dose-dependent manner in the Afri-
can American population.44 However, we and others8,13,17 did
not observe significant ROHs overlapping APOE, likely owing
to frequent recombination events at this locus. Indeed, SNP-
based GWASs have detected only small, approximately 70-kb
extended APOE haplotypes.45 Nevertheless, several genes as-
sociated with neurodegenerative diseases were nominally sig-
nificant including AD genes (PSEN2 and CD2AP) and VCP
(Table 2). The overlap between different loci implicated in neu-
rodegenerative disorders has to be systematically explored be-
cause there are many similarities that connect these disor-
ders. For instance, VCP mutations have been shown to
segregate with different disease phenotypes, including
dementia (OMIM 601023), and VCP has been implicated in
several cellular functions, including ubiquitin-dependent
protein degradation highly relevant to neurodegeneration.46

Conclusions
We observed a significant enrichment of ROHs among cases with
AD, indicating the existence of recessive risk factors in African
American individuals. So far, investigation of AD loci detected
bytheSNP-basedstudieshaverevealedonlyafewdamagingvari-
ants (eg, in ABCA747 or SORL148). Similarly, AD-associated ROH
loci have to be examined by targeted sequencing for the presence
of rare recessive mutations.11 The complex genetics of late-onset
AD might also be explained by the cumulative effect of multiple
risk haplotypes underlying the association between AD and
greater global burden of ROHs in our study.

Figure 3. Significant Results Obtained by Gene-Based Analyses of the Entire Data Set
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The CLDN17 gene was intersected by runs of homozygosity (ROH) in 11 cases (red bars) but no control individuals (blue bar). CCDS indicates consensus coding
sequence; tRNA, transfer ribonucleic acid; UCSC, University of California–Santa Cruz.
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