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Abstract. Functional imaging and neuropathological studies suggest that individuals with higher education have better cognitive
performance at the same level of brain pathology than less educated subjects. No in vivo studies are available that directly test
how education modifies the effect of structural pathology on cognition in Alzheimer’s disease (AD). The present study therefore
aimed to measure this effect using data from a large multi-center study. 270 patients with AD underwent cognitive testing
using the Mini Mental State Examination (MMSE), apolipoprotein E (APOE) genotyping, and cerebral magnetic resonance
imaging. A linear regression analysis was used to examine the relation of medial temporal lobe atrophy (MTA), as a proxy of AD
pathology, to MMSE score, adjusting for age, gender, APOE, cerebrovascular disease, ethnicity, education, and disease duration.
An interaction term for MTA and education was introduced to test the hypothesis that education modifies the effect of MTA
on cognition. There was a significant inverse association between MTA and cognition. Most interestingly, the interaction term
between education and MTA was significant suggesting that education modifies the relation of MTA to cognition. At any level
of pathology, cognition remained higher for better educated individuals.
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INTRODUCTION

The medial temporal lobe, which includes the hip-
pocampus and parahippocampal gyrus (the latter in-
cludes the entorhinal cortex), is preferentially affect-
ed by Alzheimer’s disease (AD) pathology, including
neurofibrillary tangle formation [1], amyloid-β depo-
sition [2], neuronal loss, and volume reduction [3].
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Although magnetic resonance imaging (MRI) findings
show some heterogeneity regarding their neuropatho-
logical basis [4], MRI medial temporal lobe atro-
phy (MTA) is a sensitive marker for pathologic AD
stage [5]; MRI is able to detect MTA at early clini-
cal stages of AD [6] and track its progression as the
disease advances [7]. Furthermore, MTA is associated
with cognitive impairment and decline over time and
predicts AD in individuals with minor cognitive im-
pairment [8]. The relationship between AD patholo-
gy and clinical symptoms, however, is not tight [9].
Elderly individuals may show a sufficient number of
amyloid-β containing plaques and neurofibrillary tan-
gles at autopsy to warrant a neuropathological diagno-
sis of AD but exhibit no symptoms of dementia during
life [10]. The disjunction between pathology and symp-
toms is thought to indicate a variable capacity among
individuals to withstand pathological change, which is
referred to as brain reserve [11] or cognitive reserve
(CR) [12,13]. Studies relating plaque counts at post-
mortem examination [14], regional blood flow [15–17],
or metabolism [18–25] to clinical symptoms and bio-
graphical variables have consistently demonstrated that
patients with higher pre-morbid intelligence, longer ed-
ucation, or greater occupational attainment have bet-
ter cognitive performance at the same level of disease
severity. Koepsell and colleagues [26], however, found
no evidence of larger education-related differences in
cognitive function in patients with more advanced AD
neuropathology. The neurobiological substrate of CR
is not known but may involve structural factors such
as brain size, neuron numbers, and synaptic density
as well as functional components including efficiency
of neural networks and brain connectivity [27]. Only
one study has explored the association between in vi-
vo structural indices of AD pathology, education, and
cognition so far. Kidron et al. [28] reported that ed-
ucation was a significant predictor of parietal atrophy,
controlling for cognitive impairment, disease duration,
age, and sex. There are, however, no other published
reports that directly test whether educational attainment
modifies the relationship between structural indices of
AD pathology, such as MRI-based assessments of brain
atrophy, and clinical symptoms. If such an effect were
present, it would suggest that the influence of CR is
powerful enough to offset significant amounts of brain
tissue loss. The present study was undertaken to test
the hypothesis that education modifies the association
between MTA and cognitive performance in AD, taking
into account other variables that are known to impact on
cognitive ability, including age [29], apolipoprotein E
(APOE) genotype [30], head size [31], cerebrovascular
lesion burden [32], and duration of disease [33].

MATERIALS AND METHODS

Subjects and data collection

The MIRAGE Study was designed as a family-based
multi-center study of genetic and environmental risk
factors for AD, the details of which, regarding data col-
lection and reliabilities of questionnaires, are published
elsewhere [34–36]. Briefly, participants included in
this investigation were ascertained through research
registries or specialized memory clinics at 17 sites in
the USA (14), Canada (1), Germany (1), and Greece (1)
between February 2002 and November 2006. All indi-
viduals were diagnosed with probable AD according to
the National Institute of Neurological and Communica-
tion Disorders and Stroke/Alzheimer’s Disease and Re-
lated Disorders Association (NINCDS/ADRDA) crite-
ria [37]. Medical history, risk factor information, blood
samples for genetic analyses, and cranial MRI scans
were collected from all study participants. The pa-
tients’ educational level was dichotomized according to
the highest level attained (low education: less than high
school graduate; high education: high school graduate
or higher), because the MIRAGE Study assesses levels
of educational attainment which are not interval-scaled.
A combination of informed written consent by patient
and informed consent by proxy was obtained. Proce-
dures involving experiments on human subjects were
done in accord with the Helsinki Declaration of 1975.
Cognitive ability was assessed in all patients using the
Mini-Mental Status Examination (MMSE) [38]. For
the present study only patients with an MMSE score
lower than 26 were used to ensure diagnostic accura-
cy [39]. No other exclusion criteria were applied.

Acquisition of MRI scans

The MRI scanning procedures and analysis protocols
have been described previously [40]. In brief, double
spin echo, fluid-attenuated inversion recovery, and high
resolution T1 images were acquired from each individ-
ual according to exactly the same protocol. All MRI
were acquired on 1.5 T scanners and the sequences
were modified to suit differences in machine manufac-
turers and operating systems. Qualitative rating scales
were applied, which, by their simplicity, are relatively
insensitive to measures at multiple sites [41]. In ad-
dition, all data were analyzed by a single rater (C.D.),
who was blind to all clinical and genetic data, to re-
duce inter-rater variance [42]. The amount of MTA
was determined from the high resolution T1 scans us-
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ing a semi-quantitative visual scale [43], ranging from
0 (no atrophy) to 4 (most severe atrophy) that discrimi-
nates well between individuals with AD and cognitive-
ly healthy subjects, and has a high degree of inter-rater
reliability [44]. Wahlung and colleagues [45] further-
more reported a high correlation between the visual
rating and time-consuming volumetric procedures, and
the visual rating had a higher diagnostic accuracy in the
differentiation between patients with AD and healthy
control subjects than the volumetric assessment. White
matter hyperintensities (WMH) were rated from fluid-
attenuated inversion recovery images on a 100 mm vi-
sual analogue scale, on which 0 stood for the total ab-
sence of WMH and 100 for the most severe degree of
WMH. Examples of quantified abnormalities were in-
corporated as landmarks in the rating process. Finally,
the presence or absence of MRI infarction (INF) was
determined from the size, location, and imaging charac-
teristics of the lesion, using information from all avail-
able scans according to a previously described standard
protocol [46]. An overall rating of cerebrovascular dis-
ease (CVD) was created using a combination of WMH
and INF data to describe the additive effects of both
lesion types. CVD stands for the summed severity of
WMH and INF; e.g., in the absence of INF, CVD equals
WMH severity, whereas in the presence of accompa-
nying INF, the CVD rating is obtained by summing
the single scores for WMH and INF. Previous work
found that MRI ratings of WMH and INF are associat-
ed with cerebrovascular abnormalities but not with AD
pathology [4]. Wu et al. [47] reported a high correla-
tion between the semi-quantitative visual rating and an
automated quantitative rating on segmented brains.

APOE genotyping

APOE genotyping was performed using a standard
polymerase chain reaction as reported elsewhere [48].
For the purpose of the present study, subjects were
classified as APOE ε4 (−) or ε4 (+).

Measurement of head circumference

Head circumference was measured in a standardized
manner by placing a measuring tape over the eyebrows
and passing it around the head to fit snugly over the
most posterior protuberance of the occiput [49].

Statistical analyses

Data were analyzed using the Statistical Package for
Social Sciences (SPSS), v16.0 (SPSS Inc., Chicago, IL,
USA). All p-values shown are two-sided and subject
to a significance level of 0.05. Correlations (Pearson
product-moment or Spearman’s rank correlation coef-
ficients) were calculated in order to explore dependen-
cies in the dataset. More precisely, correlations were
computed between the MMSE score and the MTA rat-
ing, education, and the CVD rating; and between age
and the MTA, and the CVD ratings. The association of
MTA and cognitive function was examined using mul-
tiple linear regression analysis with the MMSE score
as the dependent variable. MTA score and other vari-
ables with a putative effect on cognitive function in-
cluding age, education, gender, head circumference,
APOE genotype, CVD rating, and duration of disease
were considered as predictors. The regression model
also included a trichotomous classification variable for
ethnicity (Caucasian, African-American, and Asian-
American) with Caucasian as the referent to control for
ethnic differences in educational attainment. To con-
trol for differences in scanner sensitivity for WMH at
the different study centers, variables for the main effect
of study center and the interaction between center and
WMH were also included in the regression analysis.

To determine whether education modified the effect
of MTA on cognitive ability, an interaction term be-
tween education and MTA was added to the regression
model. In this test of effect modification, the interac-
tion term directly examines the extent to which educa-
tion changes the effect of MTA on cognition. Thus, the
interaction term is the primary focus of the analysis.
In addition, to compare the distribution of the variable
MMSE score with the normal distribution, a normal
P-P plot of regression standardized residuals was gen-
erated, which compares the cumulative proportions of
standardized residuals of the MMSE score with the cu-
mulative proportions of the respective normal distribu-
tion. If the normality assumption is not violated, points
are clustered around a straight line.

RESULTS

A description of the study sample is given in Table 1.
A total of 270 patients with AD were included who had
an average age of 75 years, a mean MMSE score of 17
(median 19, range 0–25, kurtosis 0.28, skewness 0.89),
and a mean MTA rating of 2.5 (median 3, range 0–4,
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Table 1
Description of the patient sample

Variable Value

N 270
Age [years] * 75.23 (8.83)
Men: women 109: 161
Duration of disease [years] * 5.49 (4.42)
Caucasian: African-American: Asian-American 193: 41: 27
Educational level, high: low 166: 104
MMSE score * 17.38 (5.86)
MTA * 2.59 (1.19)
APOE ε4 (+): ε4 (−) 160: 110
CVD rating * 24.46 (24.95)
Head circumference [cm] 55.99 (2.67)

* mean (SD); MTA: medial temporal lobe atrophy; CVD: cerebrovas-
cular disease; MMSE: Mini-Mental-State Examination; APOE:
apolipoprotein E.

kurtosis 0.80, skewness 0.42). Approximately 60% of
the subjects were female, APOE ε4 allele carriers, and
high school graduates. Correlation analysis revealed
some plausible significant associations. In particular, a
higher MMSE score was associated with a less severe
MTA (r = −0.31, p < 0.001), and older age was
correlated with both higher MTA (r = 0.35, p < 0.001)
and CVD (r = 0.36, p < 0.001) ratings. There was
no significant correlation between disease severity as
indicated by the MMSE score as well as the MTA rating,
education, and the CVD rating (MMSE: r = 0.08, p =
0.43; MTA: r = 0.09, p = 0.16; CVD: r = 0.02, p =
0.76).

In the linear regression analysis, MTA (p < 0.001)
and age (p = 0.03) were inversely associated with cog-
nitive performance (indicated by a negative β) (Ta-
ble 2). The other independent variables were not sig-
nificant (gender: p = 0.47; APOE genotype: p = 0.92;
head circumference: p = 0.74; CVD: p = 0.78; educa-
tion: p = 0.35; Asian-American ethnicity: p = 0.15;
African-American ethnicity: p = 0.07; duration of dis-
ease: p = 0.07; study center: p = 0.36, study center *
WMH: 0.52).

Most interestingly, in the model with an added inter-
action term between MTA and education, the interac-
tion term showed a statistically significant inverse as-
sociation with the MMSE score (p = 0.03), indicating
that education attenuated the impact of MTA on cog-
nitive performance (again, indicated by a negative β).
In this model, age (p = 0.02) and education (p = 0.02)
were significant predictors of cognitive performance
(Table 2). MTA and the other independent variables
did not show significant effects (MTA: p = 0.18; gen-
der p = 0.42; APOE genotype: p = 0.90; head circum-
ference: p = 0.67; CVD: p = 0.62; Asian-American
ethnicity: p = 0.11, African-American ethnicity: p =

Table 2
Linear regression models examining the relation of MTA and educa-
tion to global cognitive function

Model 1 Model 2
Model terms β (SE) P β (SE) P

MTA −1.54 (0.41) < 0.001 −0.75 (0.56) 0.18
Education 0.82 (0.88) 0.35 4.86 (2.13) 0.02
Age −0.12 (0.06) 0.03 −0.13 (0.05) 0.02
Education x MTA NA NA −1.57 (0.74) 0.03

Model 1 included separate terms for education and MTA to assess
their independent contribution to global cognitive function, and Mod-
el 2 added an interaction term between education and MTA to deter-
mine whether education modified the relation of atrophy to level of
cognitive function. Ethnicity and variables with a putative effect on
cognition such as age, education, gender, head circumference, apoE
genotype, and CVD rating were included in both models (only sig-
nificant predictors are shown). β indicates the estimated effect and
SE the respective standard error in the multiple regression analysis.
Negative β represent an inverse interaction between the predictor
and cognition performance, whereas positive β point to a positive
interaction.
NA: not applicable.

0.09; duration of disease: p = 0.09; study center: p =
0.48, study center * WMH: 0.43). The normal P-P
plot of regression standardized residuals supported the
normality assumption (Fig. 1).

DISCUSSION

The present study suggests that educational attain-
ment modifies the association between ratings of MTA
and cognitive performance in patients with AD, tak-
ing into account other factors which may have an im-
pact on cognition, including age, gender, APOE geno-
type, head size, and cerebrovascular lesion burden. In
well-educated patients, the effect of MTA on cognition
was weaker than in less-educated subjects. This find-
ing is consistent with the concept of CR [12,13]. It
is also in line with previous studies relating functional
and structural indicators of neurodegeneration, includ-
ing metabolism, cerebral blood flow or brain atrophy,
with cognitive ability and education as a measure of
CR. These studies have consistently demonstrated that
the association between in vivo pathological indices
and cognitive impairment was weaker in better edu-
cated individuals with AD [15,16,18,21,28], dementia
with Lewy bodies [22], frontotemporal dementia [50],
and non-fluent progressive aphasia [20]. In addition,
clinico-pathological studies have suggested that not on-
ly functional alterations but also morphological brain
changes have a less negative effect on cognitive ability
shortly before death in patients with greater CR [51].
In line with these studies, our findings suggest that the
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Fig. 1. Normal P-P Plot of regression standardized residuals (dependent variable: MMSE).

effect of CR, whatever its nature, is robust enough to
offset the consequences of brain tissue loss on cognitive
ability.

Some limitations of the study should be considered
in the interpretation of the results. First, our patient
sample was generally well-educated and was recruit-
ed from memory clinics or similar institutions, so that
the results may not be generalizable. This may be one
of the reasons for the underrepresentation of CVD in
the study sample. Particularly, cerebral infarction was
rather rare, so that the CVD rating predominantly rep-
resents WMH. Therefore, effects of CVD on cognition
may have been underestimated. Second, MTA was as-
sessed using a visual rating procedure which may not
be sensitive to minor or non-linear changes. Therefore,
the analysis might be improved by volumetric MTA
measurements. Third, we considered education level
as a dichotomous outcome and may not have captured

non-linear effects of years of schooling or identified a
level of education that is optimal for assessing the ef-
fect of education on the association of MTA with cog-
nitive performance. Furthermore, it has to be noted
that education might not be the ideal proxy for CR, al-
though it has been used as such in most studies. Other
demographic factors, such as intelligence [18], lifetime
occupation [17], leisure activities [15], or social net-
works [52] may also contribute to CR in a way that is
yet to be understood. Forth, the MMSE was used to rate
cognitive impairment in the MIRAGE study. Although
it is a reliable assessment scale in AD, more sensitive
tests may have further improved the results.

In conclusion, the present study strengthens the con-
cept of CR by demonstrating that manifest morpholog-
ical brain changes have a less negative effect on cog-
nition in patients with AD and greater educational at-
tainment. Therefore, education is not only associat-
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ed with a cognitive advantage such that well-educated
individuals have better cognitive function and require
more pathology to reach any given level of cognitive
impairment; education also modifies the association
between pathology and cognition at any given level of
brain damage. Future studies using more precise volu-
metric measures of MTA in a larger sample are needed
to refine and extend the results of the present study.
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