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BACKGROUND: Genotyping has expanded the
number red blood cell (RBC) and platelet (PLT) antigens
that can readily be typed, but often represents an
additional testing cost. The analysis of existing genomic
data offers a cost-effective approach. We recently
developed automated software (bloodTyper) for
determination of RBC and PLT antigens from whole
genome sequencing. Here we extend the algorithm to
whole exome sequencing (WES).
STUDY DESIGN AND METHODS: Whole exome
sequencing was performed on samples from
75 individuals. WES-based bloodTyper RBC and PLT
typing was compared to conventional polymerase chain
reaction (PCR) RHD zygosity testing and serologic and
single-nucleotide polymorphism (SNP) typing for 38 RBC
antigens in 12 systems (17 serologic and 35 SNPs) and
22 PLT antigens (22 SNPs). Samples from the first
20 individuals were used to modify bloodTyper to
interpret WES followed by blinded typing of 55 samples.
RESULTS: Over the first 20 samples, discordances
were noted for C, M, and N antigens, which were due to
WES-specific biases. After modification, bloodTyper was
100% accurate on blinded evaluation of the last
55 samples and outperformed both serologic (99.67%
accurate) and SNP typing (99.97% accurate) reflected by
two Fyb and one N serologic typing errors and one
undetected SNP encoding a Jknull phenotype. RHD
zygosity testing by bloodTyper was 100% concordant
with a combination of hybrid Rhesus box PCR and PCR–
restriction fragment length polymorphism for all samples.
CONCLUSION: The automated bloodTyper software
was modified for WES biases to allow for accurate RBC
and PLT antigen typing. Such analysis could become a
routing part of future WES efforts.

I
n recent years genotyping has greatly expanded the

number of red blood cell (RBC) and human platelet

(PLT) antigens that can readily be typed for both

donors and recipients. RBC and PLT genotyping has

ABBREVIATIONS: NGS = next generation sequencing; SNP =

single-nucleotide polymorphism; WES = whole exome sequencing;

WGS = whole genome sequencing.
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improved transfusion medicine practice by facilitating com-
plex reference laboratory workups, identifying antigen-
negative RBC and PLT donors, and expediting selection of
reagent RBCs. RBC genotyping has also increased the avail-
ability of RBC units for routine extended antigen matching
in chronically transfused patients and has enabled selection
of antigen-matched units when compatibility cannot be
demonstrated due to warm autoantibodies or drug interfer-
ence in pretransfusion testing. Although single-nucleotide
polymorphism (SNP)-based assays currently dominate the
RBC and PLT genotyping market, next generation sequenc-
ing (NGS) approaches including targeted NGS, whole
exome sequencing (WES), and whole genome sequencing
(WGS) are being actively pursued by several groups.1–23

Conventional genotyping assays typically target a lim-
ited number of SNPs, which allows for the development of
predefined rules for automated interpretation. Complex
samples, especially those with changes not present on SNP
assays, require further analysis by Sanger sequencing or an
alternative approach. Many NGS blood typing efforts have
simply expanded on this paradigm and only target a limited
number of genetic regions with analysis requiring subject
matter experts. However, the potential of NGS is much
broader, since it can be used to detect essentially any nucle-
otide change or structural variation. Nevertheless, the vol-
ume and complexity of the NGS data make it difficult to
evaluate the more than 2000 allelic variants across 46 RBC
and six PLT antigen–associated genes. Although manual
analysis of all antigen encoding genes is possible,6 rapid
and accurate automated interpretation of NGS data is desir-
able and necessary to scale for routine use. Toward this
goal, the development of automated interpretative software
has been described to analyze whole genomes for all molec-
ularly understood RBC and PLT antigens.5,10,17 We recently
demonstrated the feasibility of using software (bloodTyper)
to automatically type for all genetically defined RBC and
PLT antigens from 330 whole genomes (WGS) with more
than 99% accuracy when compared to conventional sero-
logic and SNP typing for 38 RBC and 22 PLT antigens.17

Compared to WGS, WES is less expensive and faster,24 but
we reasoned that differences in method might require mod-
ifications to bloodTyper. For example, with WES, only exons
and intronic regions near the exon boundaries are
sequenced; thus relevant intronic regions might be missing.
WES enrichment can also introduce capture biases leading
to unequal sequence read depth of coverage that could
affect copy number calculations and thereby impact the
accuracy of detecting some antigens (i.e., C antigen).

Here, we present evidence that bloodTyper software
can be used for automated RBC and PLT antigen typing
from WES data. We describe specific modifications made to
bloodTyper for WES data analysis including correcting for
capture biases to more accurately calculate gene copy num-
ber. WES outperformed conventional hybrid Rhesus box
polymerase chain reaction (PCR) and PCR–restriction

fragment length polymorphism (RFLP) assays for RHD
zygosity determination. WES-based typing was more accu-
rate than serology for extended antigen typing and was able
to detect nucleotide changes not targeted by SNP assay.

MATERIALS AND METHODS

Study overview

Between October 2017 and August 2018, samples for RBC
and DNA isolation were collected from 75 individuals
undergoing WES as part of the MilSeq Project: Enabling Per-
sonalized Medicine through Exome Sequencing in the US
Air Force (Clinical Trials Gov Number NCT03276637; see
supplemental tables for self-identified ethnicities). DNA and
RBC samples were frozen for follow-up testing if needed. In
this substudy, we evaluated the performance of our auto-
mated RBC and PLT typing algorithm (bloodTyper) on WES
data compared to serologic and SNP based typing (Fig. 1).
The first 20 samples were analyzed by bloodTyper and com-
pared to serologic testing, SNP typing, and PCR-based RHD
zygosity and the algorithm was modified to address WES-
specific data challenges. The last 55 participant samples
were then analyzed as blinded samples by bloodTyper.

Serologic typing

Blood samples were collected in EDTA, and conventional
RBC serologic antigen typing was performed according to
standard tube typing methods.25 Commercially available
serologic typing reagents were used to type for the A, B, D,
C, E, c, e, K, k, Fya/b, Jka/b, M, N, S, s (Samples 1-47—Bio-
Rad for all except Ortho Clinical Diagnostics for Fyb and
Immucor for Jka/b; Samples 48-75—Immucor for all except
Ortho Clinical Diagnostics for D and Quotient for Fyb).

Blood Samples

(75 participants)

DNA Isolation RBC Isolation

Serologic
Typing

Automated WES
Typing (bloodTyper)

SNP Array,
Zygosity PCR,

Sanger Typing

Whole Exome
Sequencing (WES)

Serologic and SNP Array,

Zygosity PCR, Sanger Typing

RBC & PLT TypingComparison

Fig. 1. WES-based RBC and PLT antigen typing study overview.

DNA and RBC samples were collected from 75 individuals and

used for conventional serologic and DNA-based SNP array typing

of RBC and PLT antigens. The serologic, SNP array, and WES-

based typing results were compared and bloodTyper modified

for WES. [Color figure can be viewed at wileyonlinelibrary.com]
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SNP typing

DNA was isolated from WBCs by standard methods
(Qiagen). The PreciseType HEA (human erythrocyte anti-
gen) SNP-typing BeadChip array (Immucor) was performed
according to the manufacturer’s instructions to type for M,
N, S, s, U, C, c, E, e, V, VS, Lua/b, K, k, Kpa/b, Jsa/b, Fya/b,
Jka/b, Dia/b, Sc1, Sc2, Doa/b, Hy, Joa, Coa/b, and LWa/b. The
HPA (PLT antigen) BeadChip RUO array was used to type
for the following PLT antigens: HPA-1a/b, 2a/b, 3a/b, 4a/b,
5a/b, 6a/b, 7a/b, 8a/b, 9a/b, 11a/b, and 15a/b (Immucor).
To confirm results of samples found to be RHD*DAU0 by
WES, an RHD Exon 8 PCR-RFLP NlaIII was performed for
c.1136C>T and visualized by agarose gel electrophoresis
and ethidium bromide staining. RHCE BeadChip (Immucor)
assay was performed to confirm a CW+ sample found
by WES.

Sanger sequencing

Sanger sequencing of genomic DNA was performed
according standard procedures. Sequencing was initiated
for samples in which WES indicated nucleotide changes not
present on the SNP-typing platform. RHD Exons 5 (c.733C
for RHD*DUC2) and 9 (c.1195A for RHD*weak D Type 45),
SLC14A1 Exon 5 (c.342-1A for JKnull), and ITGA2B Exon
26 (c.2614A for HPA-27bw+) were amplified using published
primers,26–28 sequenced by Genewiz (Warren, NJ), and ana-
lyzed with ClustalX.29

PCR-based RHD zygosity testing

RHD zygosity testing was performed using two different
PCR assays; detection of the hybrid Rhesus box by allele-
specific PCR and by PCR-RFLP with PstI according to publi-
shed methods.30,31 Briefly, allele-specific PCR targets a
product of 1507 bp within the hybrid box sequence with the
presence indicating at least one deleted RHD allele and
absence of a product indicating RHD homozygote. The
PCR-RFLP pattern differentiates RHD homozygote, hem-
izygote, and homozygote RHD deletion.

WES-based bloodTyper analysis

The custom interpretive blood typing software (bloodTyper)
utilizes a curated antigen allele database (http://
bloodantigens.com) to analyze NGS data.17 Variant calls for
RBC and PLT antigen–associated genes and promoter
regions were made using Genomic Analysis Tool Kit
(GATK) v3.7-0-gcfedb67 (UnifiedGenotyper and EMIT_ALL_
SITES output mode) and saved as a variant calling format
file (.vcf).32 Sequencing coverage was extracted from the
alignment file using BEDTools v2.17.0.33 The Integrative
Genomics Viewer34 was used as needed to verify coverage
and sequence identity. bloodTyper used a 4× nucleotide
calling cutoff when detecting antigen alleles. Toward the
end of this study, the KANNO blood group antigen was
identified to be located on the PRNP gene.35 After adding

the KANNO genetic change to our allele database all 75 sam-
ples were retrospectively typed for KANNO. bloodTyper also
evaluated for the most common HbS sickle cell disease HBB
gene variant c.20A>T36 (see supplemental information for
more details about WES sequencing workflow and copy
number analysis method).

RESULTS

WES sequencing coverage

One limitation of WES is that nonexonic regions
(e.g., upstream promoter and introns) are only sequenced if
they are near exon boundaries. We estimated the effect of
this limitation on RBC and PLT antigen typing by reviewing
the antigen allele tables37–39 for nonexonic nucleotide
changes that impact antigen phenotype predictions. Other
than the recently published transcription factor binding
regions deep within A4GALT1 Intron 1 and upstream
of XG that control the expression the P1 and Xga antigens,40–44

all other nonexonic changes associated with antigenic varia-
tion are located within 13 bp of an exon boundary. In fact,
analysis of WES data from all 75 participants showed a simi-
lar depth of coverage pattern to previous WGS efforts,6 with
overall adequate sequencing coverage of all exons, but with
some low-sequence coverage regions in nonantigen allele
nucleotide positions within CR1, C4A, C4B, and several
other genes (Fig. 2A). Other than the nucleotide positions
that control the expression of the P1 and Xga antigens, there
was adequate sequencing coverage (>4×) for all other allele
nucleotide positions with an average sequence depth of
coverage of 159× for exons and 125× for nonexon nucleo-
tide changes (Fig. 2B). Of note, the very common silencing
FY*B GATA mutation, c.–67T>C, found in those of African
ancestry is within the exonic untranslated region of ACKR1
and this position is present in the WES data with an average
121× depth of coverage.

WES RBC and PLT antigen typing accuracy

Although all antigens with a known genetic basis and WES
sequencing were interpreted by bloodTyper, it was only
possible to evaluate the actual performance for antigens
typed by confirmatory serologic and/or SNP-based typing
(see supplemental tables for full typing results). As shown
in Fig. 3, in the first 20 WES samples there were eight dis-
cordances between WES-based bloodTyper analysis when
compared with serologic and SNP typing: C (n = 5),
M (n = 1), N (n = 1), and Fyb (n = 1). Repeat serologic typ-
ing showed the Fyb discordance was due to serologic typing
error. The cause for the remaining discordances were due
to WES-specific issues and modifications were made to
bloodTyper to address them (see following sections for
more details).

The remaining 55 samples were analyzed with the mod-
ified WES-based algorithm, blinded to the information
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generated by the other antigen typing techniques for 38 RBC
and 22 PLT antigens. There were four discordances, all of
which underwent repeat serologic typing from frozen stored

RBC samples. Two Fyb and one N typing discordance were
shown to be serologic typing error. Additionally, a discor-
dance was noted between a serologic Jk(b−) phenotype and

Fig. 2. WES sequence read depth of coverage. (A) Circos plot53 showing the read depth of coverage for protein coding DNA positions. The

mean coverage for all 75 samples shown as a scatter plot with the grid lines represent intervals of 100× depth of coverage and dots

colored green at least 10× and red less than 10×. The central area contains stacked heat maps showing the depth of coverage for each of

the 75 samples ordered by RHD zygosity with 2× outer ring, 1× middle ring, and 0× center ring. (B) Frequency plot of the mean

sequence read depth of coverage for exon (protein coding positions and untranslated regions) and nonexonic (intronic and upstream

promoter) positions found in the antigen allele lists. Note: For RHD positions the mean only included samples with 2× RHD zygosity.

nt = nucleotide. [Color figure can be viewed at wileyonlinelibrary.com]
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SNP-predicted Jk(b+) in one sample; WES detected a hetero-
zygous SLC14A1 nucleotide change c.342−1G>A, which
encodes a Jknull phenotype (confirmed by Sanger sequenc-
ing). The c.342−1A change has been reported on both JK*A
and JK*B backgrounds and even if intronic sequence reads
were present the approximately 5300-bp distance between
the relevant nucleotide positions would likely preclude short
read NGS-based cis or trans phasing of the heterozygous
c.342−1A with the JK*A and JK*B nucleotide changes. Thus,
bloodTyper gave a warning that a Jknull allele was present
and that the sample would require further investigation to
determine Jka and Jkb antigens.

The modified bloodTyper algorithm for WES typing
accuracy was 100% (2088 of 2088 individual antigen typings
from 55 participants). Serologic typing accuracy was 99.67%
(932 of 935 individual antigen typings from 55 participants),
and SNP typing was 99.97% (3499 of 3500 individual antigen
typings from 55 participants).

WES RHD zygosity modifications

Whole exome sequencing depth of coverage for RHD was
more variable than WGS-based analysis,17 especially for
RHD Exons 4, 7, 9, and 10 (Fig. S1, available as supporting
information in the online version of this paper). However, it
was possible to calculate copy number correction factors for
these exons using homozygous RHD samples as a baseline
(Fig. S2B). As shown in Fig. 4A, the correction factors
improved the copy number agreement across the RHD
exons for all RHD zygosity states: 2× (homozygous), 1×
(hemizygous), and 0× (null). Sequence read depth–based
WES zygosity determination using both uncorrected and
corrected exon copy numbers, agreed with a combination of
conventional hybrid box PCR and PCR-RFLP based RHD
zygosity testing with 29 RHD homozygous, 36 hemizygous,
and 10 gene deletion samples (Fig. 4A). One sample from a
Hispanic individual (#41) was consistent with a homozygote
by hybrid box assay, but hemizygote by PCR-RFLP and

Fig. 3. WES, serology, and SNP typing concordance. Results of automated bloodTyper WES-based RBC and PLT antigen typing compared

to conventional serologic and DNA-based SNP typing. Concordance for 75 MilSeq samples for 59 (37 RBC and 22 PLT) antigens. [Color

figure can be viewed at wileyonlinelibrary.com]
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WES. Two samples from individuals of African ancestry (#11
and #40) indicated hemizygote by PCR-RFLP but homozy-
gote by hybrid box assay and WES.

Analysis of Exon 8 is difficult, since the human reference
genome Exon 8 contains c.1136T found in RHD*DAU0,
which causes Exon 8 sequencing from non-DAU0 individuals

to incorrectly align.17 In the first 20 samples, there was one
(#11) that without correction appeared to have 2× aligned
reads over RHD Exon 8, indicative of proper Exon 8 alignment
suggesting a homozygous RHD*DAU0 individual (confirmed
by PCR-RFLP). In the last 55, there were two additional sam-
ples (#29 and #40) with similar levels of 2× Exon 8 alignment,

Fig. 4. bloodTyper Rh modifications for WES. Data shown for all 75 participants before and after copy number correction. (A, left)

Sequence read depth–based copy numbers for RHD Exons 1 to 10. (A, right) Performance of copy number RHD zygosity, with dotted line

showing cutoff between RHD homozygous (D+/+), hemizygous (D+/−), and null (D−/−). Cutoffs were determined using the first

20 WES samples compared to PCR-based zygosity. (B, left) Sequence read depth–based copy numbers for RHCE Exons 1 to 10. (B, right)

Performance of copy number–based C antigen calling, with dotted line showing cutoff between C− and C+ calls. Cutoffs were

determined using the first 20 WES samples compared to C/c serologic typing. [Color figure can be viewed at wileyonlinelibrary.com]
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but these were heterozygous RHD*DAU0 individuals by
PCR-RFLP (c.1136C/T). As such, it appears that WES can
detect the presence of RHD*DAU0, but not its zygosity.

WES C antigen modifications

Determination of the C antigen requires special consider-
ation when typing from NGS data because the C antigen is
the result of an ancestral 4-kb gene conversion of RHD Exon
2 and surrounding intronic regions into RHCE.45 As such
RHCE*C Exon 2 sequence reads misalign to RHD Exon
2.6,11,13,17,18 For WGS analysis, a copy number approach
using sequence depth of coverage was useful to detect mis-
alignment;17 however, for WES data this approach did not
immediately work (Figs. 3 and 4B).

In the first 20 samples, serologic typing identified
10 samples with the C−c+ phenotype, which based on the
above pattern should have 2× coverage across RHCE includ-
ing Exon 2. However, over these 10 samples the RHCE
depth of coverage was more variable than our previous
WGS-based analysis17 especially Exons 4, 6, 7, and
10 (Fig. S1), which affects the baseline read depth used in
the Exon 2 copy number calculation. To overcome this,
RHCE correction factors were calculated to normalize the
copy number for each exon (Fig. S2). Without exon copy
number correction bloodTyper correctly called the C/c sta-
tus in 70% of the first 20 samples (14/20), but with correc-
tion the C/c antigens were correctly typed in 100% of the
last 55 samples (55/55).

WES M and N antigen modifications

M and N antigens require special consideration in NGS-
based typing since the sequence alignment efficiency is low.
This was shown to be true especially for the M antigen in a
previous WGS study with 15× coverage that required a
lower 2× calling cutoff.17 However, despite the 91× average
WES depth of coverage for the M/N antigen nucleotide
positions (c.59, c.71, and c.72), in the first 20 samples the
alignment efficiency of M antigen reads were still very low
(averages of 12× for M+N− and 4× for M+N+), but N reads
were more than adequate (averages of 195× for M−N+ and
85× for M+N+). One M+N+ serologic and SNP-typed sample
(#12) had a false M− antigen typing by WES (M reads of 0×
c.59, 0× c.71, and 2× c.72). Some of this low level of align-
ment could potentially be explained by the fact that the ref-
erence genome encodes the N antigen.

However, as the MNS blood group system consists of
three highly similar genes (GYPA, GYPB, and GYPE), mis-
alignment to homologous genes might also account for the
low M sequence read alignment. Analysis of GYPB and
GYPE for misaligned M-specific GYPA sequences showed
that as the M dosage (copy number) increased, the GYPA
Exon 2 coverage decreased, and GYPE Exon 2 coverage
increased (Fig. 5A). This suggested that Exon 2 M allele
reads were misaligning to GYPE Exon 2. Examination of
GYPA, GYPB, and GYPE Exon 2 sequences are shown in
Fig. 4A. M+ GYPA reads are homologous to GYPE (c.59C,
c.71G, and c.72T) and homologous to N+ GYPA at c.38C. As

Fig. 5. bloodTyper MNS modifications for WES. Data shown for all 75 participants. (A, left) Mean Exon 2 sequence depth of coverage for

GYPA, GYPB, and GYPE based on the M antigen dosage. (A, right) M and N antigen sequence positions in GYPA, GYPB, and GYPE.

Sequence similarities between each gene are shown with colored boxes. The sequence pattern to find GYPA M antigen reads misaligned

in GYPE is show in the purple box. (B) Number of normally aligned M sequence reads aligned to GYPA (left) and misaligned GYPA M

sequence reads in GYPE (right) compared to M antigen dosage. [Color figure can be viewed at wileyonlinelibrary.com]
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shown in Fig. 4B, an understanding of the partial mis-
alignment was used to look for M+ specific reads misaligned
to GYPE using the following pattern: GYPA-specific c.38C
along with the M+-specific c.59C (M c.38C_c.59C reads).
This approach was able to correctly identify the M antigen
status in 100% of the remaining 55 participant samples.

One N antigen discordance in the first 20 samples was
due to two N-like sequence reads in an N− individual. This
discordance was corrected by increasing the N antigen
nucleotide cutoff from 2× to the usual 4× for other nucleo-
tide changes. With this adjustment, bloodTyper was 100%
accurate at typing the N antigen over the last 55 WES sam-
ples. Poststudy analysis showed that the cutoff adjustment
prevented the incorrect calling of another sample with two
N-like reads in an N− individual by serologic and SNP
typing.

Clinically relevant antigen typings

In the MilSeq Project protocol, under institutional review
board approval and with patient consent, extended RBC and
PLT antigen profiles were summarized for each participant
and provided to the physician as part of the clinical report
designed for that study. Among the MilSeq Project partici-
pants, the absence of high-prevalence PLT antigens was rev-
ealed in two HPA-1a− and one HPA-2a− individuals. None
of the participants lacked high-prevalence RBC antigens, but
three were e−, which occurs in 2% to 3% of Caucasians and
is uncommon less than 0.1% in other ethnic groups. Addi-
tional information of relevance for determining risk for allo-
antibody production for transfusion included three patients
of African ancestry whose RBCs were typed as Fy(b−) due to
a GATA mutation (ACKR1 c.−67T>C). Because Fyb is absent
on RBCs but present in tissues, it is presumed that these
individuals are not at risk of developing anti-Fyb alloanti-
bodies. The cohort also included participants positive for
uncommon antigens including four V+/VS+, four Co(b+),
three Lu(a+), two Kp(a+), one Js(a+), one Di(a+), one weak
D Type 45 hemizygote and one heterozygote, one partial D
(DUC2) heterozygote, one CW+, one HPA-9bw+, and one
HPA-27bw+. The analysis also identified sickle trait (HBB
c.20A>T) in one participant of African ancestry, which when
present in blood donors can occlude filters during pos-
tdonation leukoreduction.46 All of the above antigen findings
were confirmed by serology and/or SNP array testing, except
for RHD*weak D Type 45, RHD*DUC2, HPA-27bw+, and
HbS, which were confirmed by Sanger sequencing.

DISCUSSION

In this study, we demonstrated the ability of automated
analysis software, bloodTyper, to accurately type RBC and
PLT antigens from whole exomes. After testing bloodTyper
on the first 20 samples, modifications were made to the typ-
ing algorithm to accommodate for WES data, including copy

number correction factors for RHD/RHCE exons and a novel
method to detect GYPA M antigen-specific sequences mis-
aligned to GYPE. With these modifications, WES-based typ-
ing was 100% accurate for all antigens tested by serologic
and SNP typing methods.

Our study is not the first to evaluate large-scale
targeted NGS or WES for RBC antigen typing.9,11,13–15,20,22

However, ours is the first to automate the analysis and to
evaluate its use for extended antigen typing. Similar to our
previous experience with WGS17 the C, M, and N antigens
required WES-specific algorithmic modifications. Previous
WGS and WES studies have shown that RHD Exon 8 does
not properly align since the reference sequence is
RHD*DAU0.6,13,17 Others have indicated that it was not pos-
sible to detect RHD*DAU0 in WES data.13 In this study, we
found that it was possible to detect the presence of
RHD*DAU0, but we were not able to distinguish between
homozygous and heterozygous RHD*DAU0.

Whole exome sequencing data performed well in
determining RHD zygosity and was more reliable than
conventional PCR methods in samples from minorities
which are known to be discordant when altered RHD
alleles are present.47–50 However, large RHD structural
changes such as RHD*D-CE(2-9)-D, which were not pre-
sent in any of the tested samples, would likely complicate
WES-based zygosity calculations. Although it might be
possible to use read depth-based copy number methods
to call for these other large structural changes and then
adjust the RHD zygosity call accordingly. After correcting
for WES coverage biases, we were able to use sequence
depth of coverage copy number to accurately type for the
C antigen. Such an approach is vital here, since the
intronic 109-bp insertion in Intron 2 is often used in SNP-
based assays as a marker for the C antigen, but this region
is not sequenced by WES.

In contrast to our findings with WGS we were not able
to call M antigen simply by lowering the calling cutoff from
4× to 2×, since even at 2× there was a false M− call. How-
ever, using a defined sequence read pattern capable of find-
ing GYPA M+ specific reads that misaligned to GYPE, M
antigen typing was 100% accurate over the last 55 samples.
This same technique should also be usable with WGS data
for more robust M+ antigen typing, especially in analysis of
genomes with lower than 15× coverage.

Similar to our previous WGS bloodTyper validation,17

we also encountered serologic Fyb errors. Initial Fyb sero-
logic typing was falsely negative in two single-dose Fyb [Fy(a
+b+)] samples and one double dose [Fy(a−b+)] sample,
none of which on SNP or WES showed the presence of a
known weak Fyb, that is, Fyx phenotype. Based on our prior
experience with donor typing discrepancies, we have
observed that serologic Fyb reagents are not good at picking
up single-dose expression of Fyb (data not shown). The
double-dose sample was homozygous for c.298A is which is
part of a known weak allele (FY*02W.01), but c.298A is not
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thought to be responsible for weak Fyb without c.265T,51

which was not found in this homozygous c.265C sample. It
should also be noted that although allelic dropout of c.265T
could account for this discordance, this is unlikely given
that the 146× depth of coverage for c.265C in this sample
was similar to other samples at this same position (mean of
194× with a standard deviation of 38×).

A limitation of the current study is that not every
known RBC or PLT antigen could be tested for comparison
because some antigens are very rare or only common in
specific ethnicities. Similarly, the data set did not include
samples with hybrid Rh and MNS changes. The copy num-
ber analysis algorithm will likely require future optimiza-
tions to address Rh and MNS hybrids. Full validation of
bloodTyper for all known antigenic backgrounds will
require the testing of additional data sets representing
untested phenotypes. Other than for the P1 and Xga nucle-
otide changes, all other nucleotide changes were within
13 bp of exons and captured by WES. There are also rare
weak A and B3 subgroup nucleotide changes, not yet added
to official allele tables, in ABO Intron 1 and upstream gene
promoter regions that would not be detected by WES.

The ability to detect less common null nucleotide
changes is an important advantage of both WGS and WES
over available SNP typing assays. As shown here, the
sequencing of intronic regions near exon boundaries covers
the vast majority of allele nucleotide changes, including a
Jknull c.342−1A nucleotide change not detected by the SNP
assay in a participant of self-declared Native
Hawaiian/Pacific Islander/Asian ancestry (#70). Although
the c.342−1A nucleotide is very rare in most ethnicities, it is
present in 1.1% of Asians (chr18:43314238A).52 Although
bloodTyper detected the c.342−1A nucleotide change, it
issued a warning since it could not cis/trans phase c.342
−1A with the JK*A and JK*B nucleotide changes. While
c.342−1A has been reported on both JK*A and JK*B back-
grounds, it is more prevalent on JK*B. Therefore, future
modifications to bloodTyper will impute this and other
allele haplotypes based on prevalence with notation of
potential exceptions. As additional genomic data sets are
made available, ethnicity-based haplotype frequencies
should allow for even better imputation of short read NGS
data. In addition, long and linked read sequencing NGS
will increase this advantage since it should be able to
cis/trans phase many more heterozygous changes like the
one found here.

In summary, we have modified an automated WGS-
based antigen typing software bloodTyper to accurately type
RBC and PLT antigen from WES data. bloodTyper-based
analysis could become a routine part of WES analysis. Given
that WES is less expensive than WGS, it opens up the possi-
bility of routinely using WES to aid in complex alloantibody
workups. In addition, this work demonstrates the flexibility
of bloodTyper to adapt to different data types, which in the
future could include targeted NGS, high-density SNP arrays,

and long-read NGS. This flexibility should also make it pos-
sible to extend bloodTyper to analyze for human neutrophil
antigens and hemoglobinopathies.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
online version of this article.

Appendix S1. Supporting Information.
Table S1. Automated typing of red blood cell and platelet
antigens from whole exome sequences" by Lane WJ et al.
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