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in average cortical thickness and hippocampal volume using 
available MRI data from the AD Neuroimaging Initiative.  Re-

sults:  CFA with categorical indicators required the smallest 
sample size to detect 25% cognitive decline with 80% power 
(n = 232) compared to common test (n = 277), standardize-
and-average (n = 291), and CFA with continuous indicators 
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Abstract 

  Background:  We sought to identify optimal approaches by 
calibrating longitudinal cognitive performance across stud-
ies with different neuropsychological batteries.  Methods:  
We examined four approaches to calibrate cognitive perfor-
mance in nine longitudinal studies of Alzheimer’s disease 
(AD) (n = 10,875): (1) common test, (2) standardize and aver-
age available tests, (3) confirmatory factor analysis (CFA) 
with continuous indicators, and (4) CFA with categorical in-
dicators. To compare precision, we determined the mini-
mum sample sizes needed to detect 25% cognitive decline 
with 80% power. To compare criterion validity, we correlated 
cognitive change from each approach with 6-year changes 
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(n = 315) approaches. Associations with changes in biomark-
ers changes were the strongest for CFA with categorical in-
dicators.  Conclusions:  CFA with categorical indicators dem-
onstrated greater power to detect change and superior cri-
terion validity compared to other approaches. It has wide 
applicability to directly compare cognitive performance 
across studies, making it a good way to obtain operational 
phenotypes for genetic analyses of cognitive decline among 
people with AD.  © 2014 S. Karger AG, Basel 

 Introduction 

 Genome-wide genetic studies and other large-scale 
studies require high-quality phenotypes and large sam-
ples to be adequately powered. Necessary sample sizes are 
generally beyond what is available in most existing stud-
ies  [1] . Developing consortia comprising multiple epide-
miologic studies to address genetic questions around 
 particular phenotypes is common because of enhanced 
power to detect associations  [2–4] . In particular, the 
 Genetic Architecture of Rate of Alzheimer’s Decline 
(GENAROAD) consortium was formed to examine the 
genetic basis of cognitive decline among persons with Al-
zheimer’s disease (AD). Combining samples introduces 
phenotypic heterogeneity, which is a major challenge to 
successful genetic studies  [5, 6] . In dementia research, 
growing recognition of the need to leverage existing data 
sources culminated in the International Database for 
Longitudinal Studies on Aging and Dementia (IDAD)  [7, 
8] . In the setting of measuring cognitive decline across 
different longitudinal studies, which employed a range of 
different cognitive tests, a common cognitive metric is an 
important phenotype  [9, 10] . There is great interest in 
developing efficient instruments to measure cognitive 
performance and change for clinical trials [e.g.,  11 ]. In 
this study, we empirically evaluated four alternative ap-
proaches for calibrating summary scores for cognitive 
performance across studies of AD that used different bat-
teries of cognitive tests.

  Although neuropsychological batteries are ubiquitous 
in clinical and epidemiologic studies of cognitive aging, 
there is no single, widely used method of assessing gen-
eral cognitive performance  [12] . This diversity compli-
cates the synthesis of findings across studies. Psychomet-
rically sound common cognitive measures are a center-
piece of the NIH Toolbox initiative  [13] . While such 
standardization efforts may produce more closely aligned 
datasets in the future, they do not address the need to 

evaluate existing data collected using different cognitive 
test batteries.

  The most obvious approach would be to use one or 
more tests that are in common across studies. For exam-
ple, in 2005 Alzheimer’s Disease Research Centers agreed 
to administer a common battery of tests on all partici-
pants through the Uniform Data Set (UDS) initiative 
 [14] . A second approach involves standardizing each test 
score in a battery by centering on the sample-specific 
mean and dividing by the sample-specific standard de-
viation, and then summing or averaging them together. 
A third approach is to use the confirmatory factor analy-
sis (CFA) to derive summary factors while treating each 
of the individual test scores as a continuous, linear indica-
tor. The fourth approach to calibrating cognitive perfor-
mance is to estimate a CFA for cognitive performance, 
but treat each test as a categorical indicator.

  In this study, we used these four approaches to derive 
summary scores for longitudinal cognitive performance 
across nine datasets of persons with AD. For each ap-
proach, we calculated and compared the minimum sam-
ple size required to detect a 25% annual decline in cogni-
tive performance with 80% power. To evaluate criterion 
validity, we then compared the strength of the association 
between cognitive change characterized by each approach 
and changes over up to six years in biologically based 
markers available from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI), which is one of the studies we 
analyzed. We chose to examine changes in average corti-
cal thickness and hippocampal volume because cognitive 
performance is strongly associated with changes in these 
biomarkers  [15–18] . We hypothesized that all approach-
es would demonstrate significant associations with these 
biomarkers, but that scores from a categorical indicator 
CFA would provide the most precise estimates of decline 
due to better fit to all available cognitive data, and thus 
greater power to detect associations.

  Methods 

 Participants 
 Participants come from nine cohort studies and clinical trials 

of older adults, each of which included participants with AD. De-
scriptions of each study are in  table 1 . The studies include ADNI 
(ADNI1, ADNI-GO, and ADNI2)  [19] , the Rush Memory and 
 Aging Project (MAP)  [20] , the Religious Orders Study (ROS)  [21] , 
the Cache County Study on Memory and Aging  [22] , the Myriad 
Tarenflurbil phase III clinical trial  [23] , the Lilly Semagacestat 
phase III trial  [24] , the AddNeuroMed multicenter European 
study  [25] , Adult Changes in Thought (ACT)  [26] , and the Uni-
form Data Set from the National Alzheimer’s Disease Coordinat-
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ing Center (NACC), which includes data from 34 past and present 
AD Centers  [27] . Each cohort recruited participants with and 
without AD, but for the present study, we restricted the samples 
to participants and study visits at which AD was diagnosed.

  Four Approaches for Calibrating Cognitive Performance Across 
Studies 
 The first approach, which is to take tests in common across stud-

ies, is a ‘least common denominator’ approach that relies on studies 
having one or more common tests, and discards potentially infor-
mative data about cognitive performance provided by other tests.

  Second is the standardize and average approach ( fig.  1 a) in 
which all tests are standardized to the same scale and averaged to-
gether. This approach is intuitive and succeeds in placing cognitive 
performance on a common scale in a single sample, but it does not 
allow differential weighting of tests within a study and fails to en-
sure equal calibrations of the same test across different studies.

  The third approach is using confirmatory factor analysis (CFA) 
with continuous indicators ( fig. 1 b) in which tests may be weight-
ed differently, and test means and standard deviations are not fixed 
to be equal to each other within a study. This may improve mea-
surement precision and also the statistical power, and can be used 
to calibrate tests into common factors across studies with different 
batteries. The effect of any particular test on the overall score 
should be the same across studies with different numbers of tests. 
This approach is more flexible than the standardize and average 
approach, but makes a strong assumption of linearity between 
each cognitive test and the underlying general factor measured by 
all the tests together. Violations of this assumption are to be ex-
pected, as there is no reason to assume that the distance between 
each score increment on any test will be the same across the range 
of the underlying trait. For example, decline in the Mini-Mental 
State Examination (MMSE) from 30 to 28 suggests a more severe 
decline than decline from 10 to 8 (28–31). Nonlinear relationships 

Table 1.  Demographic characteristics of the overall and study-specific samples (n = 10,875)

  Description of study sample Sample 
size

Age, years
(mean ± SD)

Sex,
female
n (%)

Race,
white
n (%)

 Education Number of
study visits,
median (IQR)

Follow-up
time (years),
median (IQR)  high school 

or less
co llege graduate

Full sample 10,875 77.3±7.6 6,017
(55.0)

9,463
(86.4)

4,137
(39.4)

4,282
(40.8)

2,070
(19.7)

3.0
(2.0–6.0)

1.6
(1.0–3.6)

Range in sample 60.0–110.0 1.0–17.0 0.0–19.0

AD Neuroimaging 
Initiative (ADNI)

Clinical and cognitive 
biomarkers in AD; 
participants representative 
of clinical trial samples

431 75.4±6.7 175
(40.6)

401
(93.0)

98
(22.7)

197
(45.7)

136
(31.6)

5.0
(4.0–6.0)

2.0
(1.5–4.0)

Rush Memory and 
Aging Project (MAP)

Genetic and environmental 
risk factors for dementia in 
a diverse sample

412 82.8±5.9 279
(67.7)

394
(95.6)

146
(35.4)

178
(43.2)

88
(21.4)

2.0
(1.0–3.0)

1.0 
(0.0–3.8)

Religious Orders 
Study (ROS)

Study of dementia in 
members of Catholic 
religious orders

492 78.4±7.1 332
(67.8)

451
(92.2)

37
(7.5)

138
(28.1)

316
(64.4)

2.0
(1.0–4.0)

2.2
(0.0–6.0)

National Alzheimer’s 
Coordinating Center 
(NACC)

Coordinating center for 
Alzheimer’s Disease 
Centers

5,475 77.3±7.9 2,924
(53.4)

4,452
(81.3)

2,045
(37.6)

2,044
(37.6)

1,354
(24.9)

3.0
(2.0–4.0)

2.2
(1.1–3.7)

Cache County Study 
on Memory Health 
and Aging (Cache)

Study of genetic and 
environmental risk factors 
for AD

311 84.6±6.5 207
(66.6)

311
(100.0)

161
(51.9)

108
(34.8)

41
(13.2)

3.0
(2.0–6.0)

1.9
(1.3–4.9)

Myriad Tarenflurbil 
phase III clinical trial

Phase III clinical trial 
participants with mild AD 
from 133 centers

2,370 75.8±7.1 1,201
(50.7)

2,114
(89.2)

1,103
(46.5)

1,267
(53.5)

0
(0.0)

9.0
(6.0–9.0)

1.5
(1.0–1.6)

Lilly Semagacestat 
phase III clinical trial

Phase III clinical trial of 
patients with AD

350 74.1±7.8 184
(52.6)

350
(100.0)

170
(48.6)

130
(37.1)

50
(14.3)

4.0
(3.0–4.0)

1.3
(0.9–1.5)

AddNeuroMed Study of biomarkers for AD 
in the UK

284 77.8±6.5 178
(62.7)

277
(97.5)

226
(80.1)

42
(14.9)

14
(5.0)

5.0
(3.0–5.0)

1.0
(1.0–1.0)

Adult Changes in 
Thought (ACT)

Prospective longitudinal 
cohort study of older adults 
from a Seattle-area Health 
Maintenance Organization

750 77.2±6.4 487
(64.9)

688
(91.7)

321
(42.8)

308
(41.1)

121
(16.1)

6.0
(4.0–7.0)

8.0
(6.0–12.0)

 SD = Standard deviation; MCI = mild cognitive impairment; CIND = cognitive impairment without dementia.
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between test scores and the underlying ability, measured by all 
tests together, pose a challenge to the continuous CFA approach.

  The fourth approach entails CFA with categorical indicators 
( fig. 1 c). Discretizing test scores does not require the strong linear-
ity assumption made by the CFA with the continuous indicators 
 approach. Discretization may be viewed as a limitation because it 
represents a loss of information. However, as performance on many 
cognitive tests is based on time or counts, which may have skewed 
distributions, it might be inappropriate to treat data from such tests 
as continuous indicators in CFA. Further, even for scores with less 
skewed distributions, the apparent gain of information from the 
 continuous indicators approach comes at the expense of the assump-
tion of linearity. When that assumption has been tested with cogni-
tive test data, it has been found to be violated [e.g.,  28, 30, 31 ].

  Variables 
  Neuropsychological Test Batteries.  Batteries of neuropsycholog-

ical tests were administered in each study to measure a variety of 
cognitive functions. Each study administered at least two and as 
many as 19 cognitive tests. Many tests included multiple indicators 
(e.g., forwards and backwards subtests of the Digit Span test). We 
inventoried available cognitive tests in each study and identified 
tests in common across studies ( table 2 ). We evaluated the internal 
consistency of each study’s battery using Cronbach’s α  [32] . We 
used parallel analysis with screen plots to characterize the number 
of factors underlying each battery  [33] .

   Average Cortical Thickness.  MRI scans were conducted within 
one month of testing at each ADNI study visit. MRI data acquisition 
in ADNI is documented elsewhere (http://www.adni-info.org/ 
Scientists/MRIProtocols.aspx). Briefly, 1.5 Tesla scanners were used 
to collect high-resolution sagittal three-dimensional T1-weighted 
Magnetization Prepared RApid Gradient Echo (MP-RAGE) scans 
with voxel sizes of 1.1 × 1.1 × 1.2 millimeters. To maximize reliabil-

ity, MP-RAGE sequences were optimized for each study scanner. 
Scanners were routinely quality checked using a phantom by inves-
tigators at the Mayo site  [19, 34] . Cortical thickness measurements 
were determined from MP-RAGE scans and processed through the 
longitudinal Freesurfer pipeline (version 5.1)  [35, 36] .

   Hippocampal Volume.  Hippocampal volume data were ob-
tained as previously described  [37] .

  Statistical Analysis 
  Single Common Test Approach.  The total scores for the MMSE 

were available in all studies. The MMSE is a 30-point cognitive test 
of global mental status comprised of questions spanning different 
cognitive domains  [38] . To facilitate direct comparisons with oth-
er approaches, we rescaled the MMSE in the pooled sample to have 
a mean of 50 and SD of 10 from the first study visit at which AD 
was diagnosed.

   Standardize and Average Approach.  We standardized each 
neuropsychological test to the mean and standard deviation (SD) 
from the first study visit in the sample, which was the earliest visit 
with a diagnosis of AD. Thus, for any test within a study, a score 
of 0 reflects the average of all scores from first visits of people with 
AD, and scores of +1 and –1 reflect one standard deviation above 
and below that average also for first visits of people with AD. We 
then averaged performance across available tests.

   CFA with Continuous Indicators Approach.  We obtained lon-
gitudinal latent cognitive ability scores for each observation across 
studies using CFA. Tests or subtests in common across studies 
serve to anchor the metric across studies  [9, 10, 28] . We used max-
imum likelihood estimation with robust variance estimation in 
M plus  (version 7.11, Muthen & Muthen, Los Angeles Calif., 1998–
2008) to estimate the models. The model provides factor scores 
equivalent to those from a model with individual factors at each 
time point that more explicitly models longitudinal change.

General
cognitive

performance

Cognitive Cognitive Cognitive Cognitive

a  Standardize and average approach b  Confirmatory factor analysis with continuous
indicators 

General
cognitive

performance

Cognitive
1

Cognitive
2

Cognitive
3

Cognitive
k

1 2 3 k

c  Confirmatory factor analysis with categorical
indicators 

General
cognitive

performance

1 2 3 k

 of each item and the underlying trait     of each item and the underlying trait     of each item and the underlying trait    

k321

Cognitive
kj

k

Cognitive
3j

3

Cognitive
2j

2

Cognitive
1j

1

  Fig. 1.  Schematic representation of measurement models for dif-
ferent approaches to deriving summary cognitive scores. This fig-
ure compares and contrasts three measurement models for the ap-
proaches tested in this study that involve combining multiple tests. 
Observed cognitive test scores are in squares. Unmeasured con-
structs, which include the general component and residual vari-

ance terms ε, are in circles. Unmeasured general cognitive perfor-
mance constructs are related to observed tests by factor loadings 
or weights, λ. Tests have thresholds, τ, that characterize the loca-
tion along the latent trait where the test provides information. See 
Methods for details of each approach. 
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   CFA with Categorical Indicators Approach.  Prior to being used as 
indicators in a CFA model, we categorized each cognitive test score, 
using identical cutoffs across studies (online suppl. table 1; for all on-
line suppl. material, see www.karger.com/doi/ 10.1159/ 000367970). 
We used an equal interval approach to categorization to preserve 
the distribution of the original test. As in the continuous indicator 
CFA approach, tests or sub-tests in common serve to anchor the met-
ric across studies and we used a maximum likelihood estimator with 
robust standard error estimation in M plus . The model is consistent 
with an item response theory graded response model  [39–41] .

   External Scaling of the Factor Scores for Stability.  Using meth-
ods described in detail elsewhere  [30] , we externally scaled factors 
from the continuous and categorical indicator CFA models so that 
a mean of 50 and SD of 10 represented older adults aged 70 years 
and older in the United States by fixing model parameters in the 
pooled data to their counterparts from a CFA from the Aging, De-
mographics and Memory Study (ADAMS)  [42] .

   Missing Data Handling.  The common test and  s tandardize and 
average approaches use a complete case analysis, which assumes data 
are missing completely at random. The CFA approaches make less 
restrictive assumptions about missing data by assuming the missing 
nature of data in specific cognitive tests are missing at random con-
ditional on variables in the measurement model. This is handled 
using maximum likelihood methods, and is a reasonable approach 
for measuring the general cognitive performance because an im-
plicit assumption is that tests are exchangeable with each other.

   Simulation to Demonstrate Comparability of Summary Scores 
Across Datasets.  To demonstrate that derived scores from the stan-
dardize and average approach, CFA with continuous indicators 
and CFA with categorical indicators were comparable across dif-
ferent studies that administered different sets of cognitive tests, we 
conducted Monte Carlo simulations. Based on empirical correla-
tions among cognitive tests, we simulated 100,001 observations 
with complete cognitive data. We then calculated summary scores 
based on each of the approaches for each observation using tests 
from each study. We examined bias and precision in test-specific 
cognitive scores with respect to the true score (whether an average 
of standardized values, CFA of continuous items, or CFA of cate-
gorical items) that used all available items using Bland-Altman 
plots  [43] . Simulation is not needed to evaluate comparability of 
the MMSE because no equating was done on that measure.

   Comparison of Measurement Approaches.  We compared the 
approaches in three sets of analyses. First, we correlated the mea-
sures using baseline data in the pooled sample. Second, we mod-
eled the annual rate of change using the random effects models to 
compare the relative magnitudes of change detected by the ap-
proaches  [44] . The timescale was the time from the earliest onset 
of AD symptoms. We calculated the sample size needed to detect 
a 25% annual decline in cognitive performance with 80% power 
using each approach. We included terms for age, sex, and years of 
education in these models. We selected a magnitude of 25% be-
cause this is a common effect size in other genetic studies. We de-
termined sample size using this equation:

  (2 * SD_CHANGE 2  * (1.96 + 0.84) 2 ) /  (EFFECT_SIZE * MEAN_
CHANGE) 2        (1)

  There was a modest amount of missing data for demographic 
variables; so we used multiple imputation procedures with 22 ran-
dom draws to account for this  [45] . Third, using up to six years of 

data from ADNI, we examined associations of change in average 
cortical thickness and hippocampal volume with change in cogni-
tive performance, using joint process growth curve models  [46] .

  Results 

 The full sample included 10,875 older adults with AD 
( table 1 ). Longitudinal cognitive data were available from 
all studies, with up to 17 measurement occasions (median 
4) spanning up to 19 years (median 1.6 years). Partici-
pants were on average 77 years old (range 60, 110). The 
sample was 55% female, 86% white, and well educated: 
41% had a college education and 20% had a graduate lev-
el of education or higher.

  Neuropsychological Test Batteries 
 We identified 60 indicators from 28 cognitive tests ad-

ministered across all studies ( table 2 ). Cronbach’s α esti-
mates were above 0.84 for each study except for the 
Semagacestat trial (α = 0.67), for which only two tests 
were administered (MMSE and ADAS-Cog) ( table  2 ). 
The MMSE was administered in each study. Other com-
mon tests included Digit Span (6 studies), Trail Making 
Test (4 studies), ADAS-Cog (4 studies), Boston Naming 
Test (7 studies), and Logical Memory (5 studies) ( table 2 ). 
Parallel analysis with scree plots suggested that unidi-
mensionality was sufficiently met in each study.

  Simulation to Demonstrate Comparability of 
Summary Scores Across Datasets 
 Bland-Altman plots are provided in online supple-

mental figures 1–3. For the CFA with categorical indica-
tors approach (online suppl. fig. 1), we found high cor-
relations between study-specific factors and known true 
factors (r’s >0.90), minimal bias (e.g., in ADNI, 0.21 
points, or a 0.021 standard deviation difference), and lack 
of systematic deviation over the range of cognitive func-
tioning. An exception is the Semagacestat study, for 
which only two cognitive tests were administered. Scores 
from that dataset showed minimal bias (0.31 points), but 
less precision (r = 0.90). These characteristics suggest that 
factor scores in each dataset derived using CFA with cat-
egorical indicators are on the same metric. Although we 
did not specify a priori an acceptable range of bias that 
would cause concern, we note that the magnitude of the 
bias from our simulations is approximately 10 times 
smaller than the observed annual rate of change in the 
CFA with categorical indicators approach (2.57 points, or 
0.257 SD units) ( table 3 ).
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  Findings from the simulation were similar for the con-
tinuous indicator CFA approach (online suppl. fig. 2), al-
though the spread of the differences between true and 
study-specific estimates were 1.5 to 2 times wider than 
those for the categorical indicator CFA approach. Find-
ings from the simulation regarding the standardize and 
average approach (online suppl. fig. 3) yielded very dif-
ferent results that suggested large amounts of bias of up 
to 11 points (1.1 SD units) in some studies that were more 
extreme especially at the lower ends of the spectrum. The 
spread of the differences between true and study-specific 
estimates were comparable to the spread for the continu-
ous indicator CFA approach.

  Taken together, these results from simulation analyses 
suggest that CFA with categorical indicators approach 
provided less bias and more precision than other ap-
proaches. Although the CFA with continuous indicators 
approach demonstrated minimal bias, precision was 
worse than the CFA with categorical indicators approach. 
The standardize and average approach resulted in bias 
and low precision.

  Relationships between Approaches 
  Figure 2  shows score distributions and correlations 

among the approaches. Correlations were all above 0.84. 
The MMSE had the lowest correlations with other ap-
proaches, and was highly left-skewed. The standardize 
and average approach and CFA scores appeared to have 
fairly normal distributions ( fig.  2 ). The two CFA ap-
proaches were highly correlated (r = 0.94). In the scatter-
plots between the categorical indicator CFA and other 
 approaches (bottom row), overall bowing in the scatter-
plots and heteroskedasticity in the more cognitively im-
paired range  suggests nonlinearity in the component 

tests, which may not satisfy strict assumptions of linear-
ity made in the CFA model with continuous indicators. 
Further, diverging prongs in scatterplots against the stan-
dardize and average approach (second column) suggests 
that this approach does not provide scores on the same 
metric across datasets.

  Power to Detect Change 
 All approaches yielded comparable rates of cognitive 

decline, between 0.026 and 0.034 SD units per year, after 
scaling them to have a mean of 50 and SD of 10 ( table 3 ). 
While point estimates for change were comparable, mod-
el-estimated standard deviations were the largest for the 
single common test approach and smallest for the cate-
gorical indicator CFA ( table 3 ). These characteristics are 
also reflected in the power analyses because the minimum 
sample size required to have 80% power to detect a 25% 
cognitive decline was the smallest for the categorical in-
dicator CFA approach (n = 232) ( table 3 ).

  Criterion Validity Using Imaging Markers 
 We examined criterion validity against average corti-

cal thickness and hippocampal volume changes using up 
to six years of longitudinal data from ADNI. Changes in 
cognitive performance using each approach were strong-
ly associated with changes in both mean average cortical 
thickness and hippocampal volume ( table 4 ). The CFA 
with categorical indicators, however, provided the stron-
gest standardized effects (Z = 7.0 for average cortical 
thickness; Z = 5.2 for hippocampal volume), which were 
calculated as the quotient of the estimated covariance and 
its standard error. Although differences in effects be-
tween cognitive measures were not statistically signifi-
cant as indicated by comparisons in the lower part of  ta-

Table 3.  Annual rates of cognitive decline among persons with AD using different cognitive summary scores (n  = 10,875)

Summary score approach Average pace of cognitive 
decline (per 10 SD units)

Standard deviation 
of the random slope

Sample size needed to detect 
25% decline with 80% power*

Common item (MMSE) –3.38 3.56 277
Standardize and average –3.10 3.34 291
Continuous indicator CFA –2.96 3.32 315
Categorical indicator CFA –2.57 2.47 232

 Estimated means and standard errors were calculated from random effects models of each cognitive predictor regressed on time since 
a dementia diagnosis. Each summary cognitive score was standardized to a have a mean of 50 and SD of 10. Models were adjusted for 
age, sex, and years of education.* We selected a magnitude of 25% because this is a common effect size in other genetic studies. To determine the sample size needed 
to detect a smaller effect (e.g., 3%), see equation 1 in the Methods section.

SD = Standard deviation; MMSE = Mini-Mental State Examination; CFA = confirmatory factor analysis.
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ble 4 , corresponding standardized effects were lower us-
ing the common test (Z = 6.2; Z = 4.5), standardize and 
average (Z = 5.5; Z = 3.7), and CFA with continuous in-
dicators (Z = 6.1; Z = 4.1) approaches.

  Discussion 

 We evaluated the four approaches for calibrating lon-
gitudinal cognitive performance among people with 
AD across nine studies with different but overlapping 

sets of neuropsychological tests. Factor analysis with 
categorical versions of test indicators produced the most 
precise estimates of the rate of change, reflected by im-
proved power to detect differences in the rate of decline, 
and also had a stronger strength of association with 
changes in neuroimaging markers from ADNI. Missing 
data assumptions required for CFA with categorical in-
dicators are no more restrictive than those of the other 
approaches we tested. This approach has broad applica-
bility to directly compare cognitive performance in ex-
isting and future studies, making it a good choice for 

Single common item (MMSE)

r = 0.86

Standardize and average

r = 0.87 r = 0.92

Continuous indicator CFA

r = 0.83 r = 0.87 r = 0.95

Categorical indicator CFA

  Fig. 2.  Distributions and correlations for each summary cognitive score (n = 10,875). The on-diagonal figures show histograms for each 
approach in the pooled data. The off-diagonal figures show scatterplots of each approach against another. MMSE = Mini-Mental State 
Examination; GCP = general cognitive performance. 
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deriving a phenotype for genetic analyses of cognitive 
decline.

  We observed that the CFA with categorical indicators 
required the lowest sample size to detect a 25% decline 
with 80% power. Theoretically, using more tests should 
be less susceptible to random fluctuations and thus yield 
more precise estimates of cognitive performance. Al-
though the MMSE produced the next best sample size, it 
is notoriously unreliable in community-living samples 
 [28, 47] . Its precision in our study may be attributable to 
the fact that we restricted the analysis to participants with 
AD. MMSE scores in the more impaired range where 
people with AD performance tend to be more precise 
than at less impaired levels.

  One of the more surprising results of our analyses is 
the poor performance of the very commonly used stan-
dardize and average approach. Simulations suggested 
considerable bias in each study, which is confirmed by 
scatterplots of observed data ( fig. 2 ). In simulations, the 
range of differences between true and study-specific esti-
mates was between 1.5 and 2 times larger than that for the 
CFA with categorical indicators approach, suggesting im-
precision. These results strongly suggest that the field 
should reconsider the ubiquity with which this approach 
is employed. While it is always feasible to obtain a z-score 
for any particular set of tests, and average those z-scores 

for any battery of tests, the only advantage of that ap-
proach is that it is feasible. In the 21st century, widespread 
use of computational infrastructure permits us to use bet-
ter approaches to the problem. All of our analyses suggest 
that the categorical indicator CFA approach is superior to 
the standardize and average approach.

  In addition to the empirical challenges of the standard-
ize and average approach to calibrating cognitive perfor-
mance across datasets, it is not theoretically sound for two 
reasons. First, different combinations of cognitive tests, 
equally weighted within a study to construct the summa-
ry score, could reflect qualitatively different constructs 
across studies. For example, one study may include two 
tests of memory and four tests of attention, while another 
study might include four tests of memory, one test of at-
tention, and one test of visuospatial ability. Both studies 
administered six tests, but the second study’s composite 
score is more heavily laden with memory tests. Failure to 
address unequal weighting of the different cognitive tests 
can bias estimates of change in cognitive performance. 
This imbalance is likely responsible for the diverging 
prongs present in scatterplots of the standardize and av-
erage approach compared with other approaches in  fig-
ure 2 . Conceptual differences across studies are even larg-
er if the number of tests administered and the propor-
tions of cognitive domains represented vary. This is 

Table 4.  Associations between changes in each cognitive summary score and selected biomarkers: Results from ADNI (n = 431)

Biomarker (A) Common item (MMSE) (B) Standardize and average (C) Continuous indicator 
factor analysis

(D) Categorical indicator 
 factor analysis

Covariance of 
change (SE)

standardized
estimate (z)

Covariance of 
change (SE)

standardized
estimate (z)

Covariance of 
change (SE)

standardized
estimate (z)

Covariance of 
change (SE)

standardized
estimate (z)

Average cortical thickness 0.08±0.01 6.15 0.04±0.01 5.50 0.06 (0.01) 6.11 0.04 (0.01) 7.00
Hippocampal volume 1.84±0.41 4.46 1.02±0.28 3.72 1.31 (0.32) 4.09 0.96 (0.19) 5.21

Difference in z (p value)
Average cortical thickness
Difference with:

Standardize and average 0.65 (0.51)
Continuous indicator factor analysis 0.04 (0.97) –0.61 (0.54)
Categorical indicator factor analysis –0.85 (0.40) –1.50 (0.13) –0.89 (0.37)

Hippocampal volume
Difference with:

Standardize and average 0.74 (0.46)        
Continuous indicator factor analysis 0.37 (0.71) –0.37 (0.71)        
Categorical indicator factor analysis –0.75 (0.45) –1.49 (0.14)   –1.12 (0.26)    

Associations between changes in selected biomarkers and rate of change in cognitive performance measured by four approaches to harmonization. Stan-
dardized estimates (z-scores) were calculated as the quotient of the estimated covariance and its standard error. Pairwise comparisons in the lower part of 
the table show z-scores and p-values for the difference in standardized estimates between each approach; none were statistically significantly different from 
each other at the α < 0.05 level. MMSE = Mini-Mental State Examination; SE = standard error.
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precisely the situation we face with the data available to 
us ( table  2 ). Using standardized and averaged scores 
makes sense within a single study or when precisely the 
same measures are available across studies. Factor analy-
sis approaches address these concerns by allowing cogni-
tive tests to be weighted differently within a study and also 
by accommodating over-represented cognitive domains 
using a bifactor approach as we did for memory tests. A 
second reason why the standardize and average approach 
is not theoretically sound for cognitive change among 
persons with AD is that it assumes that test difficulty is 
evenly distributed over the latent cognitive ability trait. 
This is clearly not the case for individual tests such as the 
MMSE  [28, 47, 48] , and likely not true for the combina-
tions of multiple tests in a neuropsychological battery. 
The categorical indicator CFA approach does not make 
this assumption.

  Although our goal was to identify a high-quality ap-
proach to use to generate inter-study genetic phenotypes 
for longitudinal cognitive performance in AD, this work 
may have applicability for other applications in epidemi-
ology and cognitive aging. The need to calibrate previ-
ously collected cognitive phenotypes across studies is a 
well-recognized challenge in neuropsychology and cog-
nitive aging  [49, 50] . Over 500 cognitive tests are available 
for use epidemiologically and clinically, complicating ef-
forts to synthesize information  [12] . High-quality har-
monization requires maximizing comparability and pre-
cision of phenotypes across datasets and minimizing mis-
classification  [5] . Harmonization is not necessary to 
address a scientific question if a single study can be used. 
However, the sample size from any single study may be 
too small to draw reliable conclusions, especially in ge-
netic studies where needed sample sizes may be large. 
Properties of the categorical indicator CFA approach 
make it an appropriate method for calibrating longitudi-
nal cognitive performance across studies and batteries as 
long as some tests overlap.

  Strengths of this study include the large number of 
prospectively collected datasets with a rich diversity of 
sample characteristics and sampling strategies. This study 
was possible through collaborative efforts with investiga-
tors from studies across multiple institutions willing to 
share their data with us. Further, our approach is scalable 
with more data. The quality of the links that hold datasets 
together improve as more data are added. Methods for 
obtaining a general cognitive factor based in generalized 
item response models are robust to the inclusion of other 
neuropsychological tests from different batteries and so 
more data should only strengthen the approach. For ex-

ample, the approach could be used to take advantage of 
the wealth of historical data from Alzheimer’s Disease Re-
search Centers before the development of the UDS bat-
tery.

  An important limitation is that calibrating cognitive 
performance across studies using CFA relies on cogni-
tive tests in common across datasets. Although one sim-
ulation reported that at least five items in a calibration 
exercise such as ours is enough to provide a link  [51] , at 
least one previous study used just a single indicator to 
combine samples  [52] . All datasets had at least one indi-
cator in common (MMSE), and eight datasets had at least 
six test indicators in common ( table 2 ). Another limita-
tion is that the global measure of cognitive performance 
we evaluated is not a substitute for individual cognitive 
domains such as memory or executive functioning. A fi-
nal limitation is that, while the categorical indicator 
CFA approach is scalable to other datasets, when con-
ducting integrative data analysis, it is important to pay 
attention to the sampling frame and study designs. We 
restricted our sample to persons with AD because that 
was relevant to a scientific question. Other studies should 
carefully review exclusion and inclusion criteria, as 
well as retention procedures, for each study in a pooled 
sample.

  Future developments in AD research are likely to come 
from research in biology and genetics and ‘big data’ ap-
proaches  [7] . Availability of genome-wide data techniques 
has created the need for large sample sizes to detect ge-
netic associations. Calibration of cognitive performance 
across studies can contribute to physiological research 
that may reveal biological mechanisms to help researchers 
determine the etiology underlying heterogeneity in rates 
of clinical progression of AD. This knowledge may be 
translated into novel therapeutic targets. Our results sug-
gest that the CFA with categorical indicators approach 
produces operational phenotypes with greater precision 
than the other approaches we considered, enabling us to 
better define the cognitive phenotypes used in genetic 
studies that combine multiple datasets.
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