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INTRODUCTION
As the cost of sequencing decreases, the clinical utility of whole-
genome sequencing (WGS) is currently undergoing intensive 
investigation as a tool for precise diagnosis, risk prediction, 
and therapeutic guidance1; WGS is also undergoing evaluation 
from ethical and legal perspectives.2,3 The MedSeq Project is a 
randomized clinical trial studying the integration of WGS into 
clinical care in two specific contexts4: patients from a specialty 
clinic with a focus on Mendelian forms of inherited cardiomy-
opathy and patients from a primary-care practice. In each of 
these clinical settings, pathogenic variants in known Mendelian 
disease genes, loss-of-function variants in disease-associated 
genes across the genome, and other actionable variations, 
including alleles of pharmacogenetic importance, are the major 
focus of the whole-genome report. However, one of the advan-
tages of WGS over whole-exome sequencing is that the former 
provides genomic variants in intronic and other noncoding 
regions, where the majority of alleles associated with common 
diseases reside.5,6 As a result, WGS also has the potential, when 
interpreted in the context of rigorous population data, to enable 
the efficient estimation of genetic liability for common complex 

diseases as well as the discovery of possible modifier effects on 
rare alleles of larger effect size.

One of the most interesting and relevant questions for WGS 
reporting is in regard to how to define and present data on 
common alleles associated with increased or decreased risk for 
certain diseases,7 particularly those with potential therapeutic 
implications.8 Several approaches might be used to estimate the 
composite risk for a given trait and to allow its communication 
to general clinicians. Risk alleles are typically discovered using 
a case–control design in which the frequency of each allele in 
cases is compared with that in controls. An allele observed at a 
higher frequency in cases is considered to be a risk allele and 
represents a marker for all adjacent variants in linkage disequi-
librium.9 Conversely, an allele with a lower frequency in cases is 
sometimes reported as a “protective” allele. However, the very 
same allele in different populations may represent distinct risk 
haplotypes, whereas case and control definitions are also neces-
sarily imperfect. Thus, without longitudinal cohort studies, it 
may be difficult to establish the clinical validity and clinical util-
ity of common alleles. In this context, in the current study, we 
focused on the single-nucleotide polymorphisms (SNPs) more 
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Purpose: Disease-causing mutations and pharmacogenomic vari-
ants are of primary interest for clinical whole-genome sequencing. 
However, estimating genetic liability for common complex diseases 
using established risk alleles might one day prove clinically useful.

Methods: We compared polygenic scoring methods using a case–
control data set with independently discovered risk alleles in the 
MedSeq Project. For eight traits of clinical relevance in both the 
primary-care and cardiomyopathy study cohorts, we estimated mul-
tiplicative polygenic risk scores using 161 published risk alleles and 
then normalized them using the population median estimated from 
the 1000 Genomes Project.

Results: Our polygenic score approach identified the overrepresen-
tation of independently discovered risk alleles in cases as compared 
with controls using a large-scale genome-wide association study data 

set. In addition to normalized multiplicative polygenic risk scores 
and rank in a population, the disease prevalence and proportion 
of heritability explained by known common risk variants provide 
important context in the interpretation of modern multilocus disease 
risk models.

Conclusion: Our approach in the MedSeq Project demonstrates 
how complex trait risk variants from an individual genome can be 
summarized and reported for the general clinician and also high-
lights the need for definitive clinical studies to obtain reference data 
for such estimates and to establish clinical utility.
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frequently found in cases from genome-wide association stud-
ies (GWASs) as listed in the National Human Genome Research 
Institute GWAS catalog.10

An intuitive approach to combine information from sev-
eral genetic tests is to multiply likelihood ratios with pretest 
odds of population-specific lifetime disease risk estimates.11,12 
However, for the majority of risk alleles, objective likelihood 
ratios are not available. Polygenic risk scores (PRSs) have been 
proposed by several investigators7,13–17 to combine multiple 
risk alleles, including those that fail to attain genome-wide 
significance in association studies, on the basis that there may 
be genetic epistasis, interaction with environmental factors, or 
aggregate effects that can be captured.18 To this end, a multipli-
cative model including seven risk alleles for breast cancer was 
proposed for risk stratification.17 Aggregating the information 
from a larger number of subthreshold risk alleles has also been 
used, testing the classic models of polygenic inheritance.13,16 
These studies highlighted the possibility of using polygenic 
scores in the context of conditioning nongenetic clinical infor-
mation, although the performances of such PRSs were incon-
sistent across different diseases.19,20

Although the prediction of disease risk based solely on geno-
type is not currently standard of care in medical practice, it may 
soon be useful for patients and clinicians to know whether a 
patient presents a high-risk genomic profile for a specific trait or 
disease as compared with the population norm.21,22 This may be 
the case even when there are no robust independent data regard-
ing the clinical utility of genetic predictors, given the known role 
of multiple subjective variables in situations of clinical equi-
poise. Here, we summarize multiple risk alleles by calculating a 
normalized PRS using a population-scale WGS data set from the 
1000 Genomes Project (1KGP).23 Our approach demonstrates 
how complex trait risk variants from individual genomes can be 
efficiently summarized and reported in a clinical context, high-
lighting the uncertainties of interpretation while facilitating the 
use of the available information in clinical decision making.

MATERIALS AND METHODS
Risk alleles
The National Human Genome Research Institute GWAS cat-
alog (http://www.genome.gov/admin/gwascatalog.txt) was 
downloaded on 12 March 2013.10 The catalog contained a total 
of 9,785 records corresponding to 8,384 risk alleles. We used 
a series of filtering steps to retain only informative SNPs for 
the PRS estimates as detailed in Supplementary Figure S1 
online. The excluded SNPs for each filtering step can be found 
at the second to the rightmost column—“Filtering Status”—of 
Supplementary Table S1 online. For the risk alleles with 
odds ratios (ORs) <1, we followed the GWAS catalog’s inver-
sion of ORs using the alternative alleles as risk alleles. A total 
of 1,565 risk alleles for 182 traits met our filtering criteria 
(Supplementary Table S1 online).

To test our approach to the reporting of common allele 
variations in the MedSeq Project, we selected eight binary 
phenotypes—abdominal aortic aneurysm, atrial fibrillation, 

coronary heart disease (CHD), type 2 diabetes (T2D), hyper-
tension, obesity/metabolic syndrome, platelet aggregation, and 
QT prolongation—that are factors frequently weighed in deci-
sion making in both primary-care and cardiology subspecialty 
settings. Quantitative phenotypes were not included because 
of the inconsistency in phenotype measures and descriptions 
between studies. A total of 161 risk alleles were then incorpo-
rated into PRS estimates for the eight selected phenotypes.

Calculating polygenic risk scores
Several approaches to polygenic risk scoring exist, the majority 
summing all risk alleles present in an individual genome and 
assigning allele-specific weighting. The simplest method is to 
treat all risk alleles equally, that is, an allele counting method 
in which the weight equals 1.20 Alternatively, observed effect 
sizes can be used to weight each risk allele differently.13,16 We 
calculated a multiplicative PRS (MPRS) as detailed in the 
Supplementary Materials and Methods online. Briefly, the 
MPRS for each phenotype was calculated as the product of ORs. 
Thus, log (MPRS) is equivalent to the OR-weighted sum of risk 
allele counts.20 The population attribution risk (PAR) method 
integrates population allele frequency (AF) and OR.15 A single 
SNP PAR was estimated as AFi (ORi − 1)/(AFi × (ORi − 1) + 
1), in which AFi is the prevalence of the risk allele at the ith 
locus in the control population, and ORi is the OR of the risk 
allele at the ith locus. The multi-SNP PAR was calculated on the 
basis of the single SNP PAR for each associated SNP: 1 − Π(1 
− PARi), in which PARi is the single SNP PAR for the ith locus. 
The raw scores from counting, and the MPRS and PAR meth-
ods were normalized using the median score of the European 
(EUR) genotypes (N = 392) in the 1KGP, and the ranks of the 
individual’s score are reported as deciles.

Testing the performance of the MPRS with a GWAS 
data set
To compare the distribution of polygenic scores between 
cases and controls, we used the Wellcome Trust Case Control 
Consortium (WTCCC) phase I data set, which genotyped 
16,179 individuals with the Affymetrix GeneChip Human 
Mapping 500K arrays.24 The details of the WTCCC data set 
are described in the Supplementary Materials and Methods 
online. We selected the subset of risk alleles represented on the 
Affymetrix 500K arrays to calculate the MPRS and performed 
the analysis after excluding those risk alleles that were originally 
reported with the WTCCC data set.24 Genotype imputation 
was not performed because the estimated 5–6% imputation 
error rate25 might result in significant changes in the MPRS 
decile (see Results). The MPRS percentile for each individual 
was calculated for each trait against 2,938 controls. As noted, 
for SNPs in linkage disequilibrium (r2 > 0.5), we chose the 
allele with the largest effect size. The SNPs in the major his-
tocompatibility complex region of chromosome 6—rs6458307, 
rs9469220, rs615672, rs6457617, rs9272346, and rs9465871—
were excluded when calculating the MPRS for Crohn disease 
(CD), type 1 diabetes (T1D), and rheumatoid arthritis.
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RESULTS
Correlation between different polygenic scoring methods
The numbers of reported risk alleles per trait skewed to the 
right because a small number of traits were associated with a 
majority of risk alleles. Risk alleles for multiple sclerosis (n = 
105), CD (n = 95), T2D (n = 77), ulcerative colitis (n = 64), and 
CHD (n = 62) constituted 25.7% of 1,565 alleles. Forty-three 
traits were associated with a single reported risk allele. The 
median OR was 1.25 (interquartile range: 1.15–1.45), and 461 
risk alleles exhibited ORs of more than 1.45. The majority of 
risk alleles were found in non–protein coding regions (91.0% of 
1,565): 55.7% (872/1,565) lie within intergenic regions whereas 
553 (35.3%) are intronic. A total of 103 (6.6%) risk alleles were 
found in coding regions, and 14 and 23 were mapped to the 
5′-UTR and 3′-UTR regions, respectively. The AFs ranged from 
0.011 to 0.983, with an average of 0.422. Risk AFs were not 
listed for 265 loci in the original discovery studies.

We compared the three methods for combining risk alleles: 
counting, MPRS, and the multi-SNP PAR outlined in the 
Methods section. For each individual in the 1KGP EUR popu-
lation (N = 379), we calculated polygenic scores for eight car-
diac phenotypes: abdominal aortic aneurysm, atrial fibrillation, 
CHD, T2D, hypertension, obesity/metabolic syndrome, plate-
let aggregation, and QT prolongation. The scores from three 
methods showed significant positive correlations for all eight 
traits (Kendall’s tau, P < 2.2 × 10−16; Supplementary Table S2 
online); however, the counting method when used with small 
numbers of risk alleles yielded nonunique scores in 379 EUR 
individuals (Supplementary Figure S2 online).

To check whether the subgroups at highest genetic risk—i.e., 
those within the 10th decile—could be consistently defined by 
different summary methods, we selected two common complex 
traits—CHD and T2D, which had 62 and 77 risk alleles, respec-
tively, that met our filtering criteria. The percentile rank of each 
individual was calculated using all three methods, and decile 
ranks were compared between polygenic scoring approaches. 
The three methods showed significant positive correlations 
overall (Figure 1 and Supplementary Table S2 online), with 
the correlation between MPRS and PAR being the highest 
(Kendall’s tau = 0.7229 (Figure 1c) and 0.6928 (Figure 1g) for 
CHD and T2D, respectively). However, identifying subgroups 
within the 10th decile varied significantly by the summary 
method used. The concordance rate for the 10th decile in CHD 
PRS was 49% between the MPRS and PAR methods (Figure 1d). 
Among 38 individuals in the 10th decile as ascertained by count-
ing CHD risk alleles, 23 and 16 were in the 10th decile as ascer-
tained by the MPRS and PAR methods, respectively (Figure 
1d). Similarly, 25 individuals were in the 10th decile by as 
ascertained counting and PAR for T2D, and 22 were in the 10th 
decile as ascertained by MPRS and PAR (Figure 1h).

PAR provides more intuitive interpretation of genetic risk by 
combining AF and effect size. However, the prevalence of some 
risk alleles varies widely across ethnic groups, as indeed may 
the risk associated with individual alleles. If the AF in the dis-
covery population deviates from the population mean or if the 

data are from individuals of different ethnic background than 
those in the original study, then there may be large effects on 
the estimated PAR. Thus, at present, the validity of PAR is lim-
ited for many traits. The validity of a counting method is also 
limited due to nonunique scores for the traits with fewer risk 
alleles (Supplementary Figure S2a,c,e,f online). Therefore, we 
chose the normalized MPRS for further evaluation.

There were also significant differences in MPRS distributions 
among the four ethnic groups. We compared the distribution 
of the MPRS for each phenotype between ethnic groups using 
one-way analysis of variance followed by post hoc tests. With 
the reported risk alleles, 168 of 182 traits analyzed showed sig-
nificant differences between ethnic groups (Bonferroni cor-
rected analysis of variance P < 0.01; Supplementary Table S3 
online), reinforcing the widely held notion that an individual’s 
polygenic scores can be rigorously interpreted only in the con-
text of the matched ethnic background.

Performance of polygenic scores with a case–control 
data set
To check the distribution of the MPRS in cases as compared 
with that of controls, we used the WTCCC phase I data set.24 We 
calculated an MPRS for each individual for seven diseases and 
two control groups, excluding the risk alleles originally reported 
for the WTCCC data set (Table 1). The five hypertension risk 
alleles in the GWAS catalog were not sufficient to rank all cases 
and controls because of tied scores; otherwise, the distributions 
of the MPRS for six diseases showed significant differences 
between cases and controls (Tukey’s honestly significant differ-
ence (HSD), all P < 0.001 for cases as compared with controls). 
For all phenotypes, there was no significant difference of MPRS 
distributions between the 1958 British Birth Cohort and the 
UK Blood Services cohort (Figure 2). Validating a single risk 
allele with an independently collected data set often produces 
inconsistent results26; however, our polygenic score approach 
successfully identified the overrepresentation of independently 
discovered risk alleles in cases.

Polygenic scores for each phenotype were sorted into 10 
bins in the control group, and the score decile of each case was 
then determined using the score range of 1st to 10th decile in 
controls. Each bin had ~294 control individuals and differ-
ent numbers of cases according to the MPRS. As expected, 
we observed a significant overrepresentation of cases as com-
pared with controls in upper deciles (Supplementary Figure 
S3 online). For the patients with CD, 27.3% were in the 10th 
decile as compared with 2.35% in the 1st decile, which resulted 
in the relative risk of 1.91 in this data set. However, the positive 
predictive value for those individuals in the 10th decile was 
0.044% using the upper-bound CD prevalence of 16/100,000.27 
Positive predictive value increased with the prevalence of the 
trait, as summarized in Table 1, and was as high as 12.4% for 
T2D. Given the relatively low narrow-sense heritability of 
0.05–0.10 for T2D,28 the clinical validity of analyzing com-
mon risk alleles for unsegmented common diseases is likely to 
be limited.29 We also measured the performance of polygenic 
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Figure 1  Comparison of polygenic score calculation methods. Using the risk alleles and allele frequencies reported in the GWAS catalog, we 
calculated polygenic scores for 379 individuals of the 1000 Genomes Project European cohort. We counted the number of risk alleles in an individual—
counting method—and compared with the multiplicative polygenic risk score (MPRS) and multiple single-nucleotide polymorphism (SNP) population 
attribution risk (PAR) using odd ratios (ORs) and ORs with risk allele frequency, respectively. Red circles represent the individuals in the same decile 
according to MPRS and PAR. The resulting decile of the counting method was different from those from MPRS and PAR, although they were significantly 
correlated (c and g). The results for coronary heart disease (60 risk alleles, a–c) and type 2 diabetes (70 risk alleles, e–g) showed the same trend. Venn 
diagrams show the agreement between polygenic scoring methods for the individuals in the 10th deciles by three methods (d and h). GWAS, genome-
wide association study.
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scores using the area under the receiver operating character-
istics curve (AUC). Except for CD (AUC 0.704), overall per-
formance of polygenic scores for diseases was poor (AUCs 
0.592 (bipolar disorder), 0.622 (coronary artery disease), 
0.595 (T2D), 0.604 (T1D), and 0.614 (rheumatoid arthritis); 
Supplementary Figure S4 online).

Stability of summary method with fewer risk alleles
In light of potential inaccuracy in genotyping, we checked 
the stability of the MPRS rank of an individual in a popula-
tion by comparing the original decile using all reported risk 
alleles with the deciles recalculated using smaller numbers 
of randomly selected risk alleles. A total of 111 risk alleles 
were reported for T2D (Table 1), and we randomly selected 
n risk alleles to recalculate the MPRS and the relevant decile. 
For the individuals in the 10th decile with all 111 alleles, we 
traced the change of decile ranks with random exclusion of n 
risk alleles from 1 to 56 (Supplementary Figure S5 online). 
This procedure was repeated 100 times for each n, and the 
mean decile was plotted. Excluding 20% of risk alleles (blue 
dotted line in Supplementary Figure S5 online) did not 
result in a change of classification by more than two deciles 
on average; however, 25% of instances were equal to or less 
than the 9th decile (Table 2). With 50% of risk alleles, only 
56.8% were in the 10th decile. For other phenotypes with 
small numbers of risk alleles, excluding a single risk allele 
could change scores from the highest decile to lower deciles 
or vice versa.

Summarizing cardiac risk alleles in the clinical context
To summarize polygenic relative risks from known risk alleles 
for general clinicians and patients, we prepared a report on 
cardiovascular disease risk from common genetic variation 

as a part of a Cardiac Supplement to our Genome Report in 
the MedSeq Project.4 The reports include the disease preva-
lence and narrow-sense heritability in conjunction with an 
estimated MPRS for a limited number of common cardiac 
traits of relevance for decision support in primary preven-
tion and in specialist care of inherited heart disease. For eight 
traits (abdominal aortic aneurysm, atrial fibrillation, CHD, 
T2D, hypertension, obesity/metabolic syndrome, platelet 
aggregation, and QT prolongation) implicated in cardiac dis-
eases with qualitative outcome measures, the effect sizes of 
risk alleles selected for these cardiac phenotypes were small to 
moderate (average OR 1.23, range: 1.06–3.57) (Table 3). We 
normalized MPRS to the 1KGP data set, including four eth-
nic groups, to calculate relative risks as compared with esti-
mated population norms. Across the four ethnic groups, the 
number of risk alleles per individual was significantly differ-
ent (one-way analysis of variance P < 0.0001). The East Asian 
individuals had more risk alleles (mean ± SD 105.5 ± 4.82) 
as compared with the other ethnic groups (Tukey’s HSD P < 
0.0001 for all three comparisons). The average number of risk 
alleles in Admixed American individuals (102.5 ± 5.05) was 
not significantly different from those of EUR (102.0 ± 4.79) 
and African (103.6 ± 4.37) (Tukey’s HSD P = 0.0853 and 
0.745, respectively) individuals, but the difference between 
African and EUR individuals was significant (Tukey’s HSD 
P = 0.0005). The differences were partly attributable to biases 
in discovery cohorts (Supplementary Table S4 online). More 
than two-thirds of risk alleles (70.8%) were reported from 
studies with EUR populations. East Asian (20.5%) and African 
(6.8%) populations were underrepresented in previous stud-
ies. For instance, seven risk alleles associated with obesity 
were discovered from two independent studies of EUR pop-
ulations. Of these, five risk alleles—rs10508503, rs2116830, 

Table 1 Predictive value of high-risk group defined by the 10th decile of the polygenic score

Disease

Number of 
risk alleles in 

GWAS catalog

Number of risk alleles after 
excluding the ones discovered 

in the original study

Lifetime 
prevalence 
in general 
population

Relative risk for 10th 
decile polygenic score 

in WTCCC data set

Positive predictive 
value for 10th decile 

polygenic score

Risk to 
first-

degree 
relatives

Bipolar 
disorder

66 60 2.10% 1.88 5.58% 7–10

Coronary 
heart disease

71 68 6% 1.43 10.15% 1.60–1.82

Crohn 
disease

116 107 0.1–16/100,000 1.91 0.04% 30

Hypertension 5 3 28.6% (adults 
20 and over)

NA NA 2.5–3.5

Rheumatoid 
arthritis

59 56 0.5–1.0% 1.43 1.74% 2–5

Type 1 
diabetes

43 38 0.42% 2.22 1.51% 15

Type 2 
diabetes

116 111 7.90% 1.38 12.40% 2–4

Using the Wellcome Trust Case Control Consortium (WTCCC) case–control data set, we compared the distribution of multiplicative polygenic risk scores (MPRSs). A small 
proportion of risk alleles that were originally reported with the WTCCC data were excluded. Lifetime prevalence and sibling relative risk were retrieved from literature, and 
positive predictive value (PPV) was calculated for the individuals in the 10th decile for each disease. As compared with the sibling relative risks, PPV was small for the high-risk 
group according to MPRS, suggesting limited clinical validity.

GWAS, genome-wide association study; NA, not available.
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rs988712, rs1805081, and rs1421085—are rare (AF ≤ 0.05) 
in the African group, and two risk alleles—rs10508503 and 
rs2116830—are not present in any East Asian individuals in 
the 1KGP. The average MPRS in EUR individuals was higher 
as compared with those of the other ethnic groups (one-way 
analysis of variance with Dunnett’s post hoc tests with EUR 
as control, P < 0.001). Thus, an individual in the interquartile 
range of MPRS in the EUR population might be placed in the 
9th and 10th deciles in the other ethnic groups.

Table 3 demonstrates our current format for reporting the 
MPRS and the other contextual information outlined above. 
Age-specific prevalence is also reported, with the proportion of 
variation in phenotype liability explained by common genetic 
variants based on the extant literature. The number of risk loci 
and total risk alleles identified, normalized MPRS truncated 
at 10 and 90 percentiles for the outlier values, and percentile 
rank are reported. The clinical application of this result sum-
mary (albeit in the absence of objective clinical utility) will 

be investigated in the MedSeq Project and other longitudinal 
studies. As such, it will be important to emphasize the chang-
ing context and evolving limitations of genetic risk assessment 
attributable to common variants. For instance, the estimated 
heritability of T2D from family studies ranges from 0.3 to 0.6, 
as compared with the more modest proportion of variation 
in phenotype liability explained by common genetic variants 
(0.05–0.1). Although much more rigorous data will be required 
for the demonstration of formal clinical utility, the combination 
of a detailed family history, with even current risk predictions 
for common diseases attributable to common genetic variants, 
may be informative for clinicians and patients to promote spe-
cific health behaviors.

DISCUSSION
Predicting the genetic liability for a particular disease based on 
the reported risk alleles is currently not useful in medical prac-
tice. Indeed, even alleles with large effect sizes are of little utility 

Figure 2 Distribution of polygenic scores in a case–control data set. The Wellcome Trust Case Control Consortium (WTCCC) phase I data set  
(N = 16,179 individuals) consisted of two control groups—the 1958 British Birth Cohort (58BC) and common controls recruited from the UK Blood Services 
(NBS)—and six disease groups: Crohn disease (CD), bipolar disorder (BD), coronary heart disease (CHD), type 1 diabetes (T1D), type 2 diabetes (T2D), and 
rheumatoid arthritis (RA). We compared the multiplicative polygenic risk score (MPRS) distributions between cases and controls, except for the hypertension 
group because of the small number of risk alleles (see Table 1). For all phenotypes, no significant difference was found between 58BC and NBS, and the 
mean MPRS of case groups was significantly higher as compared with the two control groups (Tukey’s honestly significant difference P values < 0.001 for 
all case versus control groups).
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for predicting clinically meaningful outcomes. In most com-
mon disorders, the contribution of acquired or environmen-
tal risk factors is considered to be of much greater importance 
than the inherited contribution. These limitations of genetic 
prediction are also a function of the context in which the extant 
genetic data have been collected; for common phenotypes, the 
context is usually case–control studies that are not designed or 
powered to derive the trait’s genetic architecture. For most dis-
eases, rigorous heritability estimates are scant, genetic studies 
have used low-resolution phenotypes, and outcomes data are 
incomplete. For all but a few genotypes there are no robust data 
regarding clinical utility. If genome sequencing and common 
genetic variation are to play a substantial role in precision med-
icine (it is expected that they will), then there will have to be 

considerable investment in rigorous large-scale studies in clini-
cal cohorts for which validity, clinical utility, and cost-effective-
ness can be demonstrated.12,30,31

One of the prerequisites for the studies that will be necessary 
to establish the role of WGS in the clinic is standardized report-
ing strategies for genome-scale data. These will be required not 
only to communicate the primary genetic results but also to 
inform the clinician of additional nongenomic data and to sup-
ply the nuanced context necessary for secondary interpretation. 
In the current study, we have proposed summarizing polygenic 
risks using the ranks in a population instead of providing abso-
lute disease risk estimates attributable to known risk alleles.17 
Clinicians and patients can review the genetic information in 
the context of the medical and family histories, lifestyle, and 
laboratory test results. These are all important elements that can 
condition interpretation of any genotype and frame the doctor–
patient relationship for a range of health-promoting behaviors. 
Thus, an individual with the highest polygenic disease risk may 
have a modest overall risk once nongenetic factors are consid-
ered. Importantly, the reproducibility and stability of risk pre-
diction in such a complex context are likely to limit the clinical 
utility of genetics.32 Kalf and colleagues compared the three 
polygenic relative risk prediction methods of current direct-to-
consumer genotyping companies33 and found significant dis-
cordance. For six multifactorial diseases, the personal genome 
tests marketed by the three companies had limited predictive 
ability (atrial fibrillation, T2D, and prostate cancer), a consid-
erable probability (20–27%) of predicting effects in the “oppo-
site” direction (age-related macular degeneration and CD), or 
substantial differences in absolute risks at the individual level 
(celiac disease).

There are some significant limitations to our approach. First, 
we restricted our model to narrow-sense heritability, aggregat-
ing the additive contributions of each risk allele to the pheno-
type and ignoring potential dependencies between risk alleles 

Table 2 Stability of polygenic risk scores with fewer risk 
alleles

−1 −10% −20% −30% −40% −50%

10th decile 98.9 84.6 75.0 71.9 64.1 56.8

9th decile 2.0 13.2 18.3 17.2 18.5 19.9

8th decile — 2.3 4.8 6.5 8.7 10.5

7th decile — 0.5 1.8 2.9 4.5 6.1

6th decile — 0.2 0.6 1.3 2.5 3.6

5th decile — — 0.3 0.7 1.3 2.1

4th decile — — 0.1 0.2 0.7 1.1

3rd decile — — 0.1 0.1 0.3 0.6

2nd decile — — — — 0.2 0.2

1st decile — — — — 0.1 0.1

We tested whether the subgroup in the 10th decile remained as the highest risk 
group with random exclusion of n risk alleles from 1 to 50% because a few risk 
alleles may have genotyping errors or a proportion of risk alleles can be associated 
with an increased risk in a specific ethnic group. For each n, we sampled 100 times, 
and average change of decile was listed. The greener shades represent higher 
concordance with the original decile using all type 2 diabetes risk alleles (n = 111) 
as compared to yellow shades. Blank cells represent no observation, and numeric 
values are mean percentage concordant with the original ranks, i.e., 10th decile.

Table 3 A summary of risk alleles for the cardiac supplement in the MedSeq Project

Phenotype

Contextual data Patient results

Population 
prevalence of 
phenotype for age 56

Proportion of variation in 
phenotype liability explained 
by common genetic variants

Number 
of risk loci 
evaluated

Number of 
total risk alleles 

identified
Polygenic 

relative risk

Percentile 
rank of 

relative risk

Abdominal aortic 
aneurysm

6% Unknown 3 3/6 1.1 60–70th

Atrial fibrillation 2% 0.1 11 7/22 1.2 60–70th

Coronary heart 
disease

6% <10% 60 55/120 1.2 50–60th

Type 2 diabetes 13% 5–10% 70 71/140 ≥3.0 90–100th

Hypertension 52% < 10% 3 3/6 0.9 30–40th

Obesity 37% 1–2% 7 8/14 1.6 80–90th

Venous 
thromboembolism

Unknown 5–10% 4 4/8 ≥3.0 90–100th

QT prolongation Unknown 0.07 3 4/6 ≤0.8 0–10th

The table summarizes the risk alleles conferring small to moderate risk modification for eight cardiac phenotypes. As the data utilized in the analysis were derived from 
nonlongitudinal association studies, “Relative Risk from Common Genetic Variation” and “Percentile Rank of Relative Risk from Common Genetic Variation” values have 
been estimated using the 1000 Genomes Project European cohort. The contextual data provide the relative contribution of risk alleles to phenotype. Because the “Proportion 
of Variation in Phenotype Liability Explained by Common Genetic Variants” is less than 10% of total genetic liability, the clinical validity of “Percentile Rank of Relative Risk” is 
limited and should be interpreted with detailed family and medical history, and lab test results.
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for the same phenotype. As a consequence, estimating genetic 
risks from multiple risk alleles may overestimate the total heri-
tability or genetic risk. Second, we chose the 1KGP cohort to 
calculate the background distribution of MPRS, but this cohort 
contains only a few hundred individuals of each major eth-
nic group, so the samples were not large enough to accurately 
match genetic background or to estimate population norms. 
Third, the original GWAS discovery and replication cohorts 
undoubtedly have biases in population structure and cryp-
tic relatedness34 because the observed levels of MPRS in the 
1KGP population were considerably smaller than the expected 
3N levels with n risk alleles in our analysis. Indeed, even small 
numbers of genotyping errors result in significant changes in 
polygenic risk, as shown in our simulation analysis. Fourth, 
we also found significant errors throughout the current GWAS 
catalog. For instance, in some cases risk of AF was replaced by 
the OR, or minor alleles were reported as major, with down-
stream errors in the direction and magnitude of effect. Much 
more stringent data sets will be necessary for clinical interpreta-
tion and decision support. Finally, we did not undertake analy-
sis for detection of copy number or other structural variations 
in the current study, given the limits of current analytic tools, 
and the phenotypic associations of such variants are not well 
established, except for specific oncogenic driver mutations.35 As 
analytic techniques improve and associations are defined, WGS 
data sets can be reanalyzed for such structural variants.

Family history remains the most commonly used genetic 
information in clinical practice. Because collecting family 
history is an important part of the standard medical assess-
ment and can contribute independent genetic information 
beyond any measured risk alleles, future prospective studies 
should seek to combine family history and allelic risk pre-
dictions. Some such population-scale data sets have accu-
mulated in direct-to-consumer companies over several years 
and would provide an invaluable resource to the biomedical 
research community if shared with appropriate privacy pro-
tection. The successful implementation of genomic medicine 
will require the systematic collection of phenotypic data and 
environmental risk factors, drug responses, and quantitative 
outcomes. The deconvolution even of the limited genotypic 
data interpretable at present will require vast data sets that can 
be mustered only by collaborative projects on a global scale. 
The unstated inference is that for genomic medicine to be rig-
orously evaluated, it must first be incorporated into general 
clinical practice, overturning the “evidence-first” strategy of 
modern medicine.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim.
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