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Universal newborn genetic screening for pediatric cancer
predisposition syndromes: model-based insights
Jennifer M. Yeh 1,2✉, Natasha K. Stout1,3, Aeysha Chaudhry2, Kurt D. Christensen1,3, Michael Gooch3, Pamela M. McMahon3,
Grace O’Brien2, Narmeen Rehman3, Carrie L. Blout Zawatsky4, Robert C. Green1,4, Christine Y. Lu1,3, Heidi L. Rehm1,5, Marc S. Williams6,
Lisa Diller1,7,8 and Ann Chen Wu1,3,8

PURPOSE: Genetic testing for pediatric cancer predisposition syndromes (CPS) could augment newborn screening programs, but
with uncertain benefits and costs.
METHODS: We developed a simulation model to evaluate universal screening for a CPS panel. Cohorts of US newborns were
simulated under universal screening versus usual care. Using data from clinical studies, ClinVar, and gnomAD, the presence of
pathogenic/likely pathogenic (P/LP) variants in RET, RB1, TP53, DICER1, SUFU, PTCH1, SMARCB1, WT1, APC, ALK, and PHOX2B were
assigned at birth. Newborns with identified variants underwent guideline surveillance. Survival benefit was modeled via reductions
in advanced disease, cancer deaths, and treatment-related late mortality, assuming 100% adherence.
RESULTS: Among 3.7 million newborns, under usual care, 1,803 developed a CPS malignancy before age 20. With universal
screening, 13.3% were identified at birth as at-risk due to P/LP variant detection and underwent surveillance, resulting in a 53.5%
decrease in cancer deaths in P/LP heterozygotes and a 7.8% decrease among the entire cohort before age 20. Given a test cost of
$55, universal screening cost $244,860 per life-year gained; with a $20 test, the cost fell to $99,430 per life-year gained.
CONCLUSION: Population-based genetic testing of newborns may reduce mortality associated with pediatric cancers and could be
cost-effective as sequencing costs decline.
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INTRODUCTION
Universal newborn screening (NBS) has successfully decreased the
morbidity and mortality of a wide range of severe pediatric-onset
diseases including phenylketonuria, cystic fibrosis, and sickle cell
disease.1 Genetic testing has the potential to augment universal NBS
programs, and research exploring the medical, technological, public
health, and ethical implications of universal newborn genetic
screening is ongoing.2,3 Detection of germline pathogenic variants
in genes associated with a high risk of early childhood tumors could
be incorporated into expanded NBS programs; variant detection
would prompt application of accepted clinical care recommenda-
tions currently utilized by pediatric oncologists for infants and
children with known cancer predisposition syndromes (CPS).4

Decision modeling can evaluate the potential of genetic testing
in NBS, as it can facilitate evidence synthesis, provide data to
inform clinical guidelines,5,6 and evaluate new diseases for
inclusion in NBS.7 This is especially useful in settings of rare
diseases, like pediatric cancer, where sufficiently powered
randomized clinical trials that test the clinical utility of NBS for
early onset disease would be difficult. Using a decision-analytic
framework, we asked: what are the potential clinical benefits,
harms, and cost-effectiveness of newborn genetic screening, using a
targeted next-generation sequencing (t-NGS) approach for a select
panel of genes associated with early onset childhood cancer?

MATERIALS AND METHODS
We developed the Precision Medicine Policy and Treatment (PreEMPT)
model to estimate the potential risks and benefits of population-based

genetic screening for pathogenic germline variants in RET, RB1, TP53,
DICER1, SUFU, PTCH1, SMARCB1, PHOX2B, ALK, WT1, or APC. These
autosomal dominant cancer predisposition genes were selected because
of their association with very early onset malignancy and the availability of
surveillance guidelines for early detection starting in infancy8–14 (Table 1).
Using data from clinical studies, ClinVar,15 the Genome Aggregation
Database (gnomAD),16 and the US Surveillance, Epidemiology and End
Results (SEER) Program,17 we assigned each newborn a probability of
carrying a pathogenic or likely pathogenic (P/LP) variant in each of the 11
genes (RET variants were restricted to those for multiple endocrine
neoplasia type 2B [MEN2B]18). We limited variants to high-quality P/LP
variants identified in ClinVar (i.e., 2-star) and confirmed the list via curation
by the Mass General Brigham Laboratory for Molecular Medicine
(Supplemental Tables 1, 2). The prevalence of P/LP variants was based
on best available data from clinical studies for cancer cases and gnomAD
data for noncancer cases (Supplemental Table 3). For genes without any P/
LP variants in gnomAD, we assumed an allele frequency of 0.5 among the
282,912 alleles in gnomAD. We assumed that the occurrence of P/LP
variants were independent and summed allele frequencies across all
variants for each gene. Using Bayes’ theorem to synthesize data on the
proportions of individuals with and without P/LP variants and who develop
each cancer before age 20, we estimated the penetrance for each gene,
defined as the probability an individual carrying a P/LP variant will develop
a condition before age 20. See Supplemental Materials for additional
details.
Cohorts of newborns representative of a modern US birth cohort were

simulated under the scenarios of usual care and t-NGS at birth and
followed throughout their lifetimes (Supplemental Fig. 1). Under t-NGS, we
assumed newborns with identified P/LP variants would undergo cancer
surveillance based on established guidelines (Table 1). As a best-case
estimate of program efficacy, we assumed 100% adherence with t-NGS
screening and surveillance recommendations.
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Utilizing SEER data and published literature to estimate incidence, stage
distribution, and outcomes, newborns were at risk for each cancer of
interest (those associated with the 11 CPS). Treatment by stage for each
diagnosis was based on standard care and included radiation and
chemotherapy when indicated (Supplemental Table 4). Individuals who
received chemotherapy and/or radiation as part of cancer treatment faced
excess late mortality risks as adults starting at age 20 based on the
Childhood Cancer Survivor Study.19,20 Newborns found to be hetero-
zygotes of P/LP variants underwent surveillance, which resulted in early
detection of malignancy, which, for specific cancers, resulted in reduced
use of radiation and/or chemotherapy and improved outcomes (Table 1).
Clinical benefit for t-NGS and associated surveillance was modeled as
reductions in advanced disease, cancer deaths, and treatment-related late
mortality.
Costs were estimated for direct medical costs, patient time costs, and

genetic testing (for the t-NGS strategy) (Supplemental Table 5). For t-NGS,
we assumed a cost of $55 for the 11-gene panel test (i.e., $5 per gene)
based upon expert input, current cost of NBS, and commercial cost for a
panel test.21 We assumed that this cost reflected the incremental cost of
adding the panel to a NBS program with existing infrastructure for genetic
testing. Costs for surveillance and cancer treatment were based on
published estimates and national databases. To account for patient time
costs, we included parental time lost from work (see Supplemental
Materials). All costs were expressed in 2018 dollars.
To capture uncertainty, we conducted 1,000 simulations in which each

parameter was sampled from its underlying distribution and report the
mean and 95% uncertainty interval (UI) for all outcomes. Given the goals of
improving child health, the model did not include impact of early
detection of adult-onset malignancy, which is increased in some CPS (for
example, TP53), or impact on family member health/reflex genetic testing.
To assess the potential harms associated with t-NGS, most prominently

the burden of a genetic diagnosis in the absence of a pediatric cancer
occurrence, we defined individuals with P/LP variants who developed
cancer before age 20 (true positives) as having “penetrant variant status”
(PVS) and individuals with P/LP variants who did not develop cancer by age
20 as having “nonpenetrant variant status” (NPVS). This allowed us to
illustrate the harm–benefit tradeoffs associated with t-NGS by estimating
the number of NPVSs per PVS, cancer death averted, and life-year (LY)
gained in the cohort.
To assess the cost-effectiveness of genetic CPS screening, we calculated

an incremental cost-effectiveness ratio (ICER), defined as the additional
cost of t-NGS divided by its additional clinical benefit compared with usual
care, expressed as cost per LY gained. Although higher cost-effectiveness
thresholds have been suggested for rare diseases,22 we estimated the
threshold cost for the 11-gene panel test at which t-NGS would achieve an
ICER of <$100,000 per LY gained as changes in technology will likely
impact costs.
Sensitivity analyses examined the influence of assumptions on P/LP

variant prevalence among cancer and noncancer cases, adherence to
guideline surveillance, and surveillance and cancer treatment costs, as well
as stage-specific estimates of 5-year survival, the proportion of cancers
diagnosed as advanced disease, and excess mortality risks associated with
cancer treatment.

RESULTS
In a typical US birth cohort of 3.7 million newborns, the model
estimated 1,803 individuals would develop a CPS-associated
cancer before age 20 (95% UI, 1,756 to 1,850), 13.3% of whom
would have P/LP CPS variants (95% UI, 11.3% to 15.7%). Under t-
NGS, 1,584 individuals with P/LP CPS variants (95% UI, 1,230 to
2,026) would be identified, 232 (95% UI, 196 to 278) of whom
would develop cancer before age 20 (i.e., PVS) and 1,353 (95% UI,
991 to 1,788) would not (i.e., NPVS). This resulted in an estimated
positive predictive probability, or penetrance, of 14.8% (95% UI,
11.2% to 19.6%) for the 11-gene panel and a relative risk of
developing a cancer before the age of 20 of 351 (95% UI, 260 to
468) among individuals with P/LP variants. Penetrance and relative
risk estimates varied for individual genes (Table 2). In terms of
clinical benefit, the model estimated that compared with usual
care, t-NGS would reduce cancer deaths before age 20 overall by
7.8% (95% UI, 5.8% to 10.1%) and decrease the proportion of 5-
year survivors at risk for radiation-related excess mortality by 5.8%

(95% UI, 3.6% to 8.6%) (Table 2). Additionally, t-NGS would
increase the number of adult cancer survivors alive at age 45 by
2.1% (95% UI, 1.4 to 2.9%), and result in a gain of 2,937 (95% UI,
2,244 to 3,879) LY. The estimated benefit for all outcomes was
considerably higher among individuals with P/LP variants (Fig. 1).
For example, among P/LP heterozygotes, t-NGS would reduce
cancer deaths before age 20 by 53.5% (95% UI, 47.1% to 60.5%). In
terms of harm–benefit tradeoffs, for t-NGS, the number with NPVS
identified per PVS was 5.9 (95% UI, 4.1 to 7.9), the number of NPVS
per cancer death averted was 43.5 (95% UI, 29.1 to 61.5), and the
number of NPVS per LY gained was 0.5 (95% UI, 0.3 to 0.7).
Compared with usual care, t-NGS had an ICER of $244,860 per LY
gained (95% UI, $181,500/LY to $327,520/LY) assuming a 11-gene
panel cost of $55 per newborn. At a panel cost of $20, the ICER fell
to $99,430 per LY (95% UI, $72,510/LY to $137,330/LY).
Cost-effectiveness of t-NGS was most sensitive to P/LP variant

prevalence among cancer cases and differences in 5-year survival
rates for localized versus advanced disease, moderately sensitive
to the proportion of cancers diagnosed with advanced disease
and the P/LP variant prevalence among controls, and robust to
assumptions on surveillance and cancer treatment costs (Supple-
mental Fig. 2). With less than full adherence to surveillance
guidelines, the ICER for t-NGS increased to $270,260/LY with 90%
compliance (95% UI, $201,160/LY to $361,210/LY) and $321,000/
LY with 70% compliance (95% UI, $240,480/LY to $428,720/LY).

DISCUSSION
Leveraging data from ClinVar, gnomAD, SEER, and published
literature, we used a model-based approach to estimate the
potential clinical impact of universal genetic screening in new-
borns for pediatric CPS. Our findings suggest that under the best-
case assumption of full adherence to screening and surveillance
guidelines, t-NGS would identify approximately 1,580 individuals
with P/LP CPS variants among 3.7 million newborns each year in
the United States. If these newborns were evaluated, underwent
genetic counseling, and offered cancer surveillance, more than
half of cancer deaths among individuals with CPS variants would
be averted. Further, as the costs of genetic screening decline,
targeted newborn screening for pediatric cancer genes could be
cost-effective given benchmarks for “good value.”23

Newborn screening for any disorder requires balancing the
potential benefits (prevention or early detection of disease) and
harms (unnecessary surveillance costs and parental anxiety).
Inclusion of genetic testing for CPS risk as part of NBS programs
will present new uncertainties, most importantly with respect to
the “allowable” burden of tests detecting P/LP variants of
unknown or low penetrance (e.g., parents who are told that the
infant is at increased risk of cancer, but cancer may not manifest in
childhood or at all). While we modeled 11 CPS genes as a panel,
analyses on individual or subsets of genes can guide efforts to
reduce potential harm by identifying genes with higher pene-
trance (e.g., RB1) or where the benefit is well understood (RET). Of
importance, in our study, we assumed that the CPS test would be
included as part of state-wide NBS programs, after completion of
successful pilot testing. We recognize, however, that the process
of adding new tests is complex and varies by state. In an
alternative model, separate consent for this test (outside of usual
NBS) would create added burden and require additional resources
for implementation not reflected in our study.
While we provided estimates of the potential harm–benefit

tradeoffs, we did not account for the impact of this knowledge on
families, as well as other potential impacts of testing, such as risk
of adult-onset cancer, family reproductive planning, and detection
of cancer risk in family members; future studies should consider
these important factors. Available data from families with CPS
suggest that entering a child into a surveillance protocol based

J.M. Yeh et al.

3

Genetics in Medicine _#####################_



Ta
bl
e
2.

Es
ti
m
at
ed

cl
in
ic
al

va
lid

it
y
o
f
t-
N
G
S
fo
r
g
en

es
as
so
ci
at
ed

w
it
h
p
ed

ia
tr
ic

C
PS

a
in

a
3.
7
m
ill
io
n
n
ew

b
o
rn

co
h
o
rt

(U
S
b
ir
th

ra
te

an
n
u
al
).

G
en

e(
s)
b

C
lin

ic
al

va
lid

it
y,
m
ea
n
(9
5%

U
I)

C
lin

ic
al

u
ti
lit
y,
m
ea
n
(9
5%

U
I)

t-
N
G
S
re
su
lt
s

Pe
n
et
ra
n
ce

b
y

ag
e
20

,%
R
el
at
iv
e
ri
sk

(R
R
)
o
f

ca
n
ce
r
b
ef
o
re

ag
e
20

am
o
n
g
in
d
iv
id
u
al
s
w
it
h

P/
LP

va
ri
an

ts
c

C
an

ce
r
d
ea
th
s

5-
ye
ar

su
rv
iv
o
rs

at
ri
sk

fo
r

ra
d
ia
ti
o
n
-r
el
at
ed

la
te

m
o
rt
al
it
y

5-
ye
ar

su
rv
iv
o
rs

al
iv
e
at

ag
e
45

Pe
n
et
ra
n
t

va
ri
an

t
st
at
u
s,

n

N
o
n
p
en

et
ra
n
t

va
ri
an

t
st
at
u
s,
n

In
d
iv
id
u
al
s
w
it
h
o
u
t

P/
LP

va
ri
an

ts
w
h
o

d
ev
el
o
p
ca
n
ce
r

b
ef
o
re

ag
e
20

,n

U
su
al

ca
re

%
re
d
u
ct
io
n

w
it
h
t-
N
G
S

U
su
al

ca
re

%
re
d
u
ct
io
n

w
it
h
t-
N
G
S

U
su
al

ca
re

%
in
cr
ea
se

w
it
h
t-
N
G
S

11
-g
en

e
p
an

el
23

2
(1
96

–
27

8)
1,
35

3
(9
91

–
1,
78

8)
1,
56

3
(1
,5
01

–
1,
62

5)
14

.8
(1
1.
2–

19
.6
)

35
1
(2
60

–
46

8)
40

6
(3
83

–
42

8)
7.
8
(5
.8
–
10

.1
)

70
1
(6
73

–
72

9)
5.
8
(8
.6
–
3.
6)

1,
25

4
(1
,2
15

–
1,
29

2)
2.
1
(1
.4
–
2.
9)

Si
n
g
le

g
en

es

A
LK

12
(1
–
33

)
16

(1
–
66

)
46

7
(4
39

–
49

6)
48

.2
(7
.9
–
96

.0
)

3,
84

4
(5
97

–
7,
69

9)
93

(8
1–

10
4)

2.
8
(0
.5
–
6.
7)

28
8
(2
69

–
30

8)
3.
2
(7
.6
–
0.
7)

34
3
(3
22

–
36

5)
1.
0
(0
.2
–
2.
4)

PH
O
X2

B
4
(0
–
14

)
10

(0
–
62

)
47

5
(4
49

–
50

2)
47

.9
(5
.6
–
10

0.
0)

3,
73

1
(4
44

–
7,
78

5)

A
PC

11
(3
–
21

)
35

0
(1
87

–
56

5)
97

(8
4–

11
0)

3.
2
(0
.9
–
6.
8)

1,
24

7
(3
30

–
2,
81

7)
21

(1
6–

26
)

4.
9
(1
.2
–
10

.6
)

44
(3
8–

51
)

9.
5
(1
8.
5–

2.
8)

78
(6
9–

87
)

1.
5
(0
.4
–
3.
2)

D
IC
ER
1

6
(4
–
10

)
87

(1
7–

20
2)

2
(0
–
4)

9.
3
(2
.4
–
27

.9
)

33
6,
41

1
(3
4,
99

2–
1,
70

5,
66

9)
2
(1
–
4)

69
.9

(3
8.
5–

94
.4
)

3
(1
–
5)

70
.2

(9
2.
0–

41
.4
)

6
(3
–
9)

29
.5

(1
0.
3–

58
.0
)

RB
1

68
(5
9–

78
)

29
(1
–
11

3)
6
(3
–
10

)
75

.3
(3
7.
3–

98
.6
)

54
2,
02

4
(2
04

,7
29

–
1,
20

1,
83

5)
2
(1
–
3)

62
.2

(3
7.
5–

92
.9
)

20
(1
6–

24
)

90
.6

(9
6.
2–

83
.6
)

68
(6
0–

77
)

4.
1
(2
.5
–
5.
9)

SM
A
RC

B1
25

(1
7–

34
)

13
(0
–
67

)
47

(3
7–

57
)

74
.6

(2
7.
3–

99
.6
)

60
,0
81

(2
1,
64

4–
90

,5
87

)
45

(3
9–

51
)

13
.9

(7
.9
–
21

.7
)

27
(2
2–

32
)

23
.1

(1
3.
8–

34
.7
)

23
(1
9–

28
)

23
.1

(1
3.
5–

35
.6
)

SU
FU

17
(7
–
29

)
15

(2
–
56

)
79

(6
6–

93
)

60
.2

(2
4.
2–

89
.3
)

28
,2
23

(1
0,
81

2–
43

,1
35

)
34

(2
9–

40
)

15
.9

(1
0.
4–

22
.1
)

62
(5
3–

71
)

8.
8
(5
.7
–
12

.4
)

54
(4
7–

61
)

8.
8
(5
.6
–
12

.7
)

PT
CH

1
17

(7
–
28

)
15

(2
–
59

)
79

(6
6 –

94
)

60
.0

(2
4.
4–

88
.6
)

28
,1
68

(1
1,
54

5–
42

,9
71

)

TP
53

62
(3
6–

10
0)

76
5
(4
96

–
1,
07

4)
50

1
(4
58

–
53

6)
7.
7
(4
.2
–
13

.0
)

57
2
(2
97

–
1,
01

3)
26

(1
6–

39
)

50
.5

(4
0.
9–

59
.9
)

16
(6
–
29

)
87

.3
(9
6.
0–

71
.8
)

37
7
(3
57

–
39

7)
3.
4
(1
.9
–
5.
7)

W
T1

9
(3
–
18

)
13

(0
–
65

)
38

6
(3
61

–
40

9)
56

.8
(8
.8
–
10

0.
0)

5,
45

2
(8
35

–
9,
77

1)
29

(2
2–

36
)

1.
1
(0
.0
–
2.
9)

20
0
(1
84

–
21

6)
1.
6
(3
.2
–
0.
5)

32
5
(3
04

–
34

4)
0.
1
(0
.0
–
0.
3)

CP
S
ca
n
ce
r
p
re
d
is
p
o
si
ti
o
n
sy
n
d
ro
m
es
,P

/L
P
p
at
h
o
g
en

ic
/l
ik
el
y
p
at
h
o
g
en

ic
,t
-N
G
S
ta
rg
et
ed

n
ex

t-
g
en

er
at
io
n
se
q
u
en

ci
n
g
,U

I
u
n
ce
rt
ai
n
ty

in
te
rv
al
.

a C
PS

-a
ss
o
ci
at
ed

ca
n
ce
rs

in
cl
u
d
e
m
ed

u
lla
ry

th
yr
o
id

ca
rc
in
o
m
a
(R
ET
),
b
ila
te
ra
l
re
ti
n
o
b
la
st
o
m
a
(R
B1
),
ad

re
n
o
co

rt
ic
al

ca
rc
in
o
m
a
(T
P5
3)
,
ch

o
ro
id

p
le
xu

s
(T
P5
3)
,
rh
ab

d
o
m
yo

sa
rc
o
m
a
(T
P5
3)
,
o
st
eo

sa
rc
o
m
a
(T
P5
3)
,

rh
ab

d
o
id

tu
m
o
rs

(S
M
A
RC

B1
),
p
le
u
ro
p
u
lm

o
n
ar
y
b
la
st
o
m
a
(D
IC
ER
1)
,m

ed
u
llo

b
la
st
o
m
a
(S
U
FU

,P
TC

H
1)
,n

eu
ro
b
la
st
o
m
a
(A
LK
,P

H
O
X2

B)
,W

ilm
s
tu
m
o
r
(W

T1
),
an

d
h
ep

at
o
b
la
st
o
m
a
(A
PC

).
b
RE
T
re
su
lt
s
ar
e
n
o
t
sh
o
w
n
as

P/
LP

va
ri
an

ts
w
er
e
as
so
ci
at
ed

w
it
h
p
re
ve

n
ti
o
n
o
f
ca
n
ce
r
ca
se
s
ve

rs
u
s
av
er
te
d
ca
n
ce
r
d
ea
th
s.

c C
o
m
p
ar
ed

w
it
h
in
d
iv
id
u
al
s
w
it
h
o
u
t
P/
LP

va
ri
an

ts
.

J.M. Yeh et al.

4

Genetics in Medicine _#####################_



upon genetic testing decreased anxiety and did not create an
excessive burden.24

We assumed full adherence to surveillance recommendations to
estimate the potential survival benefit of surveillance for CPS-
associated pediatric cancers. As the cost-effectiveness of screening
was less favorable with lower adherence, ensuring adherence will
be crucial to realize the projected benefits. Of note, other benefits
of early detection to avert toxicity (such as avoidance of blindness
after early detection of retinoblastoma) were not captured in
our model.
We assumed, in our cost estimates, that NBS will move forward

nationally to establish infrastructure that supports genetic screen-
ing in general. Additional resources will be needed to build this
capacity, as well as support for families after genetic information
disclosure. The benefits of surveillance, as modeled in our study,
are based upon scant data, but represent current recommenda-
tions for clinically detected children with CPS. The National Cancer
Institute (NCI) Childhood Cancer Data Initiative aims to collect data
on every child diagnosed with cancer in the United States and
may provide more precise data in the coming years. Our model
can readily incorporate these and other new data as they become
available to generate updated estimates.
While our findings are suggestive, using newborn genetic

screening for pediatric CPS as an example, our study demonstrates
how advances in genetics can be applied to populations, and
what the implications might be for public health. Prospective
clinical studies that investigate crucial factors—such as parental
uptake of testing, impact of a genetic CPS diagnosis on families,
adherence to surveillance, and effectiveness of surveillance in
preventing advanced disease—are necessary before this testing
can be proposed as a component of population-based newborn
screening.
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Supplemental Methods 
 
Overview 

We developed the Precision Medicine Prevention and Treatment (PreEMPT) Model to simulate 
the risk of 12 pediatric cancers associated with early onset pediatric malignancy in the setting of known 
autosomal dominant cancer predisposition syndromes (CPS).  These CPS are associated with increased 
early onset cancer in the setting of germline pathogenic or likely pathogenic (P/LP) variants in RET, RB1, 
TP53, DICER1, SUFU, PTCH1, SMARCB1, PHOX2B, ALK, WT1, or APC.  These CPS and genes were selected 
because they are associated with very high relative risks for the development of early childhood cancers 
for which cancer surveillance recommendations exist and are directed at early detection.  

Using Bayes’ theorem, in which a prior probability for developing a condition (pediatric 
malignancy in this case) is updated to a revised (posterior) probability that incorporates new genetic 
information,1 we simulated the risk of developing each cancer based on the following data: i) prevalence 
of reported P/LP variants identified from studies of germline variants among specific childhood cancer 
cases, ii) prevalence of variants among controls (i.e. individuals without a cancer history) using 
population allele frequency data reported in Genome Aggregation Database (gnomAD; v2.1.1),2 and iii) 
the risk of developing each CPS-associated cancer, based on data from the Surveillance, Epidemiology 
and End Results (SEER) Program3. This allowed us to estimate positive predictive probability (i.e., 
penetrance), negative predictive probability, and relative risk of disease given the presence of a variant. 
Pathogenic variants were determined using data from ClinVar,4 including only 2-star variants which were 
classified as pathogenic (P) or likely pathogenic (LP) (i.e. high-quality) and subsequently re-evaluated for 
pathogenicity by experts at a clinical genetics testing laboratory using American College of Medical 
Genetics and Genomics (ACMG) criteria5,6 modified for pediatric cancer genes (see additional details 
below).  
 
Strategies and Analysis 

Cohorts of newborns representative of a modern US birth cohort were simulated under Usual 
Care and t-NGS (Supplemental Figure 1). In the model, newborns are at risk for developing cancer 
before the age of 20 based on the presence (or absence) of P/LP variants. Once diagnosed, these 
individuals face stage-specific mortality risks with stage distribution based on SEER data. Under Usual 
Care, we assumed that a proportion of newborns would undergo genetic screening and surveillance due 
to family history and/or a known cancer predisposition syndrome, as reflected in SEER data. Under t-
NGS, all newborns undergo sequencing and those with P/LP variants identified undergo cancer 
surveillance based on established guidelines for each gene-related pediatric malignancy7-14 (Table 1). We 
assumed that under surveillance, all cancer cases would be diagnosed as localized (vs. advanced disease) 
with more favorable survival rates drawn from SEER outcomes for localized disease. Among P/LP 
heterozygotes for RET, cancer was preventable via prophylactic thyroidectomy. We assumed that 
diagnosis of localized disease would preclude the need for radiotherapy for all cancers except 
medulloblastoma and rhabdoid tumors (for which radiotherapy is standard therapy even at early stage). 
Clinical benefit for t-NGS was therefore modeled as a reduction in proportion of advanced disease, 
cancer deaths, and treatment-related late mortality risks. Supplemental Table 2 summarizes the cancer 
data used to inform the simulation model.   

Simulation model 
At the start of the simulation, newborns enter the model and, based on the presence (or 

absence) of specific genetic variants identified via t-NGS, face age-specific risks of developing pediatric 
cancer. Individuals face stage-specific mortality risks once diagnosed. All individuals are at risk of dying 
from other causes of death, and individuals who received chemotherapy and/or radiation as part of 
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cancer treatment face excess late mortality risks as adult cancer survivors. Individuals are followed 
throughout the course of their lifetimes.  
 
Estimating penetrance using Bayes’ Theorem 

The penetrance, defined as the probability an individual carrying a pathogenic (P)/likely 
pathogenic (LP) variant will develop a condition before age 20, was based on the following equation:  

 

𝑝𝑝(𝐷𝐷 + |𝑀𝑀 +) =
[𝑝𝑝(𝑀𝑀 + |𝐷𝐷 +) ∗ 𝑝𝑝(𝐷𝐷 +)]

𝑝𝑝(𝑀𝑀 +)  

 
where 𝑝𝑝(𝑀𝑀 + |𝐷𝐷 +) = proportion of individuals with the condition with a P/LP variant, 

𝑝𝑝(𝐷𝐷 +) = proportion of newborns who will develop the condition before age 20, and 
𝑝𝑝(𝑀𝑀 +) = prevalence of the P/LP variants in newborns (defined as the weighted average 
of 𝑝𝑝(𝑀𝑀 + |𝐷𝐷 +) and 𝑝𝑝(𝑀𝑀 + |𝐷𝐷 −), the proportion of individuals without the condition 
with a P/LP variant) 
 

Prevalence of P/LP variants 
Supplemental Table 1 summarizes the number of 2-star P/LP variants identified in ClinVar for 

each gene. The pathogenicity of the variants was confirmed by the Laboratory of Molecular Medicine at 
Partners HealthCare using criteria established by the ACMG5,6 modified for pediatric cancer genes. 
Additional details on these variants are described in Supplemental Table 2. Among 477 P/LP variants 
identified in ClinVar, only 14 variants were reclassified as variants of uncertain significance.  

The gnomAD database were queried for all 463 P/LP variants, with entries identified for 30 
variants. For these variants, the reported allele frequencies were used to inform variant prevalence 
among non-cancer cases (i.e. controls) in the simulation model. RET variants were limited to those in 
exon 17 (M918T) and exon 15 (A883F) identified specifically for multiple endocrine neoplasia type 2B 
(MEN2B).15 For genes without any P/LP variants identified in gnomAD, we assumed an allele frequency 
of 0.5 among the 282,912 alleles in gnomAD. We assumed that the occurrence of P/LP variants were 
independent and summed allele frequencies across all variants for each gene.  

Supplemental Table 3 summarizes model inputs on the prevalence of pathogenic variants. For 
pediatric cancer cases, prevalence estimates were based on clinical studies.16-28 For controls, defined as 
individuals who do not develop cancer before age 20, prevalence estimates were based on allele 
frequencies from gnomAD as described above.2  
 
Cancer data  

 Supplemental Table 4 provides a summary of the cancer data used in the simulation model.  
For each cancer, age-specific incidence was based on the U.S. Surveillance, Epidemiology, and End 
Results (SEER) Program.3 Stage distribution at diagnosis was categorized as localized or advanced 
disease (defined as regional, distant and unstaged tumors). Due to limited data among variant 
heterozygotes, we assumed that stage distribution was similar between variant and non-variant 
heterozygotes. For diagnoses for which stage distribution was unavailable in SEER, we used the 
proportion with resectable disease for choroid plexus (based on expert opinion) or low/intermediate 
disease medulloblastoma as a proxy for disease extent.29 Treatment by stage for each diagnosis was 
based on expert opinion and standard care. Except for osteosarcoma, all cancers diagnosed as advanced 
disease were assumed to require radiation; in addition, all medulloblastoma and rhabdoid tumors 
received radiotherapy as frontline therapy (in addition to chemotherapy).  
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Mortality data 
 Cancer-specific mortality risks were based on 5-year cause-specific estimates in SEER3. We 
assumed that at 5-years post-diagnosis, cancer mortality risk was negligible. Background mortality rates 
were based on US cohort life tables.30,31 Individuals who received chemotherapy and/or radiation as part 
of cancer treatment faced excess late mortality risks as adults starting at age 20.32,33 Excess mortality 
rates were based on the Childhood Cancer Survivors Study participants diagnosed between 1970 and 
1999.34 As estimates beyond the initial decades following cancer diagnosis are not yet available, we 
assumed rates beyond age 65 remained constant at levels observed between ages 55 and 64.  
 
Cost data 
 Costs, shown in Supplemental Table 5, were based on published literature and national 
databases. For cancer treatment, we based costs from a population-based analysis of cancer resource 
use;35 we assumed that all cancers incurred initial/continuing care costs at diagnosis, while only cancers 
that resulted in death incurred final care costs. For thyroidectomy, primary prevention for RET 
heterozygotes, cost was based on a cross-sectional analysis of Healthcare Cost and Utilization Project 
Nationwide Inpatient data.36 For surveillance care, we assumed that all variant heterozygotes would 
have an annual physician visit, and undergo recommended procedures as summarized in Table 1. We 
used 2018 Medicare reimbursement rates as a proxy for costs.37 For t-NGS, we assumed a cost of $55 for 
the 11-gene panel test (i.e. $5 per gene) based upon expert input, current cost of newborn screening 
(NBS) and commercial cost for a panel test (Invitae Pediatric Solid Tumors Panel).38 We assumed that 
this cost reflected the incremental cost of adding the panel to a newborn screening program with 
established infrastructure for genetic screening. Patient time costs were based on parental time lost 
from work and the 2018 median hourly wage.39 We assumed that 1) parents would miss half a day of 
work for each surveillance test or physician visit and 2 weeks for thyroidectomy and 2) approximately 
one-third of children diagnosed with cancer would have one parent who would stop working during 
cancer treatment (2 months for surgery, 6 months for chemotherapy and 1 year for radiotherapy).40-42 
Costs reported in Canadian dollars were converted to US dollars using the CAD-US exchange rate as of 
07/01/2018. All costs were inflated to 2018 U.S. dollars using the Consumer Price Index. 
 
Cost-effectiveness analysis 

The economic evaluation of t-NGS compared to Usual Care was conducted from a modified 
societal perspective following established recommendations.43,44 All costs and life years were discounted 
at 3% per year. We calculated an incremental cost-effectiveness ratio (ICER), defined as the additional 
cost of t-NGS divided by its additional clinical benefit compared to Usual Care, and expressed as cost per 
life year (LY) gained. ICERs were calculated as the ratio of the mean-costs divided by the mean-effects 
among the 1000 simulations. 

Compared to Usual Care, the ICER for t-NGS was $244,860 per LY gained (95% UI, $181,500 to 
$327,520). Results were most sensitive to P/LP variant prevalence among cancer cases and 5-year 
survival rates for localized and advanced disease, moderately sensitive to the proportion of cancers 
diagnosed as advanced disease and the P/LP variant prevalence among controls, and robust to 
assumptions on surveillance and cancer treatment costs and excess mortality risks associated with 
cancer treatment (Supplemental Figure 2).  

The study’s Impact Inventory List is provided in Supplemental Table 6. 
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Supplemental Table 1. Model parameters: Counts of 2-stara pathogenic (P)/likely pathogenic (LP) 
variants by source 

Gene Variants identified in 
ClinVar  

Variants confirmed by 
LMM 

Variants confirmed by 
LMM with entries in 

gnomADb 

ALK 0 0 0 
PHOX2B 0 0 0 
APC 195 191 7 
DICER1 68 67 4 
RB1 35 35 2 
RET 30 30 1c 
SMARCB1 5 4 0 
SUFU 2 2 0 
PTCH1 21 18 0 
TP53 116 111 16 
WT1 5 5 0 
Total 477 463 30 

a At least 2-star submitter in ClinVar. 
b For genes without any P/LP variants reported in gnomAD, we assumed an allele frequency of 0.5 
among the 282,912 alleles in gnomAD. 
c Excludes 12 RET P/LP variants not located in exon 17 (codon M918T) and exon 15 (codon A883F). 



 
 

 
 

Supplemental Table 2. Additional details on variants in Supplemental Table 1 

Variant Name (Transcript and DNA 
change) 

Chromo
some 

Genomic 
Position Start 

Genomic 
Position End 

Reference 
Allele 

Altern-
ative 
Allele Gene 

Exon 
Num-
ber 

Intron 
Number 

Amino Acid 
Change 

Amino Acid 
Change Type Classification 

Allele 
Frequency 

NM_000038.4:c.70C>T 5 112090657 112090657 C T APC 2  p.Arg24X 
Nonsense/ 
stop gain Pathogenic 2.38815E-05 

NM_000038.4:c.221-2A>G 5 112102884 112102884 A G APC 4 3 NA NA 
Likely 
Pathogenic 3.98222E-06 

NM_000038.4:c.288T>A 5 112102953 112102953 T A APC 4  p.Tyr96X 
Nonsense/ 
stop gain Pathogenic 3.97665E-06 

NM_000038.4:c.646C>T 5 112128143 112128143 C T APC 7  p.Arg216X 
Nonsense/ 
stop gain Pathogenic 3.9976E-06 

NM_000038.4:c.3183_3187delACAAA 5 112174471 112174475 TAAAAC T APC 16  p.Gln1062X 
Nonsense/ 
stop gain Pathogenic 3.99218E-06 

NM_000038.4:c.3927_3931delAAAGA 5 112175212 112175216 TAAAAG T APC 16  
p.Glu1309As
pfsX4 

Frameshift/ 
frameshift, Pathogenic 7.96686E-06 

NM_000038.4:c.4669_4670delAT 5 112175959 112175960 CTA C APC 16  p.Ile1557X 
Nonsense/ 
stop gain Pathogenic 3.99869E-06 

NM_030621.3:c.3007C>T 14 95572101 95572101 G A DICER1 21  p.Arg1003X 
Nonsense/ 
stop gain 

Likely 
Pathogenic 3.97975E-06 

NM_030621.3:c.2888_2889delCT 14 95572476 95572477 CAG C DICER1 20  
p.Pro963Arg
fsX3 

Frameshift/ 
frameshift Pathogenic 3.9781E-06 

NM_030621.3:c.1966C>T 14 95579503 95579503 G A DICER1 14  p.Arg656X 
Nonsense/ 
stop gain Pathogenic 3.9781E-06 

NM_030621.3:c.1870C>T 14 95582041 95582041 G A DICER1 13  p.Arg624X 
Nonsense/ 
stop gain Pathogenic 3.97678E-06 

NM_000321.2:c.1333C>T 13 48953730 48953730 C T RB1 14  p.Arg445X 
Nonsense/ 
stop gain Pathogenic 4.01745E-06 

NM_000321.2:c.1981C>T 13 49033844 49033844 C T RB1 20  p.Arg661Trp 
Missense/ 
missense Pathogenic 1.59157E-05 

NM_020630.4:c.2753T>C 10 43617416 43617416 T C RET 16  
p.Met918Th
r 

Missense/ 
missense Pathogenic 3.97649E-06 

NM_000546.5:c.1010G>A 17 7574017 7574017 C T TP53 10  p.Arg337His 
Missense/ 
missense Pathogenic 1.19595E-05 

NM_000546.5:c.844C>T 17 7577094 7577094 G A TP53 8  p.Arg282Trp 
Missense/ 
missense Pathogenic 3.97757E-06 

NM_000546.5:c.818G>T 17 7577120 7577120 C A TP53 8  p.Arg273Leu 
Missense/ 
missense Pathogenic 3.98321E-06 

NM_000546.4:c.818G>A 17 7577120 7577120 C T TP53 8  p.Arg273His 
Missense/ 
missense Pathogenic 1.59328E-05 

NM_000546.5:c.817C>T 17 7577121 7577121 G A TP53 8  p.Arg273Cys 
Missense/ 
missense Pathogenic 1.19593E-05 

NM_000546.5:c.743G>A 17 7577538 7577538 C T TP53 7  p.Arg248Gln 
Missense/ 
missense Pathogenic 1.19297E-05 

NM_000546.5:c.742C>T 17 7577539 7577539 G A TP53 7  p.Arg248Trp 
Missense/ 
missense Pathogenic 3.97652E-06 



 
 

 
 

NM_000546.5:c.734G>A 17 7577547 7577547 C T TP53 7  p.Gly245Asp 
Missense/ 
missense Pathogenic 3.97671E-06 

NM_000546.5:c.722C>T 17 7577559 7577559 G A TP53 7  p.Ser241Phe 
Missense/ 
missense Pathogenic 3.97652E-06 

NM_000546.5:c.659A>G 17 7578190 7578190 T C TP53 6  p.Tyr220Cys 
Missense/ 
missense Pathogenic 7.9552E-06 

NM_000546.5:c.638G>A 17 7578211 7578211 C T TP53 6  p.Arg213Gln 
Missense/ 
missense Pathogenic 3.97674E-06 

NM_000546.5:c.586C>T 17 7578263 7578263 G A TP53 6  p.Arg196X 
Nonsense/ 
stop gain Pathogenic 3.97655E-06 

NM_000546.5:c.542G>A 17 7578388 7578388 C T TP53 5  p.Arg181His 
Missense/ 
missense 

Likely 
Pathogenic 1.19368E-05 

NM_000546.5:c.524G>A 17 7578406 7578406 C T TP53 5  p.Arg175His 
Missense/ 
missense Pathogenic 3.97969E-06 

NM_000546.5:c.473G>A 17 7578457 7578457 C T TP53 5  p.Arg158His 
Missense/ 
missense Pathogenic 3.97981E-06 

NM_000546.5:c.455C>T 17 7578475 7578475 G A TP53 5  p.Pro152Leu 
Missense/ 
missense Pathogenic 7.95944E-06 

 

 

 

 



 
 

 
 

Supplemental Table 3. Model parameters: Prevalence of P/LP variants among cancer cases and 
controls 

 

  Gene  Cancer 

Prevalence of P/LP variants,  
mean (range) 

Among pediatric 
cancer cases16-28 Among controls2  

ALK 
 Neuroblastoma 

0.033 
(0.010-0.143) 

0.000004 
(0-0.000037) 

PHOX2B 0.001 
(0-0.005) 

0.000003 
(0-0.000029) 

APC Hepatoblastoma 0.101 
(0.002-0.354) 

0.000095 
(0.000036-0.000179) 

DICER1 Pleuropulmonary 
blastoma 

0.778 
(0.403-0.981) 

0.000024 
(0.000001-0.000080) 

RB1  Retinoblastoma 0.921 
(0.813-0.975) 

0.000008 
(0-0.000069) 

RET Medullary thyroid 
carcinoma 

0.948 
(0.829-0.996) 

0.000008 
(0-0.000068) 

SMARCB1  Rhabdoid tumor 0.350 
(0.216-0.511) 

0.000004 
(0-0.000038) 

SUFU 
Medulloblastoma 
 

0.199 
(0.105-0. 312) 

0.000003 
(0-0.000045) 

PTCH1 0.198 
(0.101-0.310) 

0.000003 
(0-0.000039) 

TP53  

Adrenocortical 
carcinoma 

0.501 
(0.346-0.661) 

0.000206 
(0.000087-0.000353) 

Choroid Plexus 0.441 
(0.126-0.805) 

Osteosarcoma 0.040 
(0.141-0.075) 

Rhabdomyosarco
ma 

0.238 
(0.112-0.671) 

WT1 
 

Wilms tumor 0.022 
(0.004-0.056) 

0.000004 
(0-0.000038) 



 
 

 
 

Supplemental Table 4. Model parameters: Cancer data 

Cancer (ICD-O-3 code) 

Cancer cases 
before age 20 
among a 3.7M 
birth cohorta,  
mean (range) 

Proportion 
diagnosed at 

advanced 
diseaseb, 

mean (range) 

Proportion 5-year survival ratec Cancer treatment regimend 

Localized, 
mean (range) 

Advanced,  
mean (range) Localized Advanced disease 

Neuroblastoma 
(9490, 9500) 

481.9 
(446.5-517.3) 

0.792 
(0.759-0.824) 

0.977 
(0.953-1) 

0.758 
(0.732-0.786) 

Observation, Surgery 
or Chemotherapy 

Surgery, RT, 
Chemotherapy 

Hepatoblastoma 
(8970) 

109.0 
(95.6-126.1) 

0.557 
(0.488-0.617) 

0.904 
(0.858-0.956) 

0.728 
(0.678-0.785) 

Surgery, 
Chemotherapy 

Surgery, RT, 
Chemotherapy 

Pleuropulmonary blastoma 
(8973) 

8.3 
(4.6-16.1) 

0.583 
(0.305-0.784) 

1  
(1-1) 

0.561 
(0.396-0.766) Surgery Surgery, RT, 

Chemotherapy 
Bilateral retinoblastoma 
(9510-9514) 

74.5 
(62.6-89.0) 

0.283 
(0.244-0.325) 

0.9930 
(0.983-1) 

0.942 
(0.898-0.997) 

Local chemotherapy 
or Surgery 

Surgery, RT, 
Chemotherapy 

Medullary thyroid carcinoma 
(8345, 8510) 

8.8 
(5.9-14.5) 

0.375 
(0.222-0.522) 

1  
(1-1) 

0.734 
(0.570-0.941) Surgery Surgery, RT, 

Chemotherapy 
Rhabdoid tumors 
(8963, 9508) 

72.0 
(59.9-86.7) 

0.925 
(0.876-0.962) 

0.677 
(0.509-0.870) 

0.347 
(0.319-0.374) 

Surgery, RT, 
Chemotherapy 

Surgery, RT, 
Chemotherapy 

Medulloblastomae 
(9470-9471) 

97.4 
(83.2-119.8) 

0.321 
(0.259-0.395) 

0.801 
(0.745-0.882) 

0.304 
(0.283-0.334) 

Surgery, RT, 
Chemotherapy 

Surgery, RT, 
Chemotherapy 

Adrenocortical carcinoma 
(8370-8375) 

17.3 
(12.9-23.7) 

0.631 
(0.327-0.903) 

1 
(1-1) 

0.291 
(0.200-0.417) Surgery Surgery, RT, 

Chemotherapy 
Choroid Plexus 
(9390) 

16.7 
(12.0-22.9) 

0.250 
(0.108-0.402) 

0.701 
(0.579-0.849) 

0.304 
(0.251-0.367) Surgery Surgery, RT, 

Chemotherapy 
Osteosarcoma 
(9180-9187, 9191-9195, 9200) 

400.6 
(375.1-431.8) 

0.667 
(0.635-0.707) 

0.840 
(0.799-0.882) 

0.617 
(0.589-0.647) 

Surgery, 
Chemotherapy 

Surgery, 
Chemotherapy 

Rhabdomyosarcomae 
(8900-8905, 8910, 8912, 8920, 8991) 

134.5 
(119.8-156.2) 

0.679 
(0.639-0.715) 

0.885 
(0.845-0.944) 

0.551 
(0.525-0.590) 

Surgery, 
Chemotherapy 

Surgery, RT, 
Chemotherapy 

Wilms tumor 
(8959, 8960) 

397.2 
(361.4-430) 

0.570 
(0.535-0.606) 

0.974 
(0.955-0.993) 

0.889 
(0.860-0.918) 

Surgery, 
Chemotherapy 

Surgery, RT, 
Chemotherapy 

RT, radiotherapy 
a Based on age-specific SEER incidence rates between ages 0 and 19 for all cancers, except for medulloblastoma and rhabdomyosarcoma 
(between ages 0 and 5) and medullary thyroid carcinoma (between ages 0 and 10). Assumed 40% of retinoblastoma was bilateral.  



 
 

 
 

b Advanced disease defined as regional, distant and unstaged tumors. Choroid plexus based on expert opinion. Medulloblastoma advanced 
disease defined as non-resectable. 
c Based on SEER, except for choroid plexus and medulloblastoma which were based on expert opinion. 
d Based on expert opinion. Assumed localized tumors treated with surgery faced negligible excess late mortality risks. Non-late effect 
chemotherapy for localized retinoblastoma and neuroblastoma. 
e P/LP variants associated with cancer cases diagnosed before age 5 only.   



 
 

 
 

Supplemental Table 5. Model parameters: Cancer treatment and surveillance costs  

Type Description Costs (2018$) Reference 
Cancer treatment costs 
 Initial/continuing phasea $170,000 35  Final phaseb $365,000 
Prophylactic treatment 
 Thyroidectomy $16,620 36 
Surveillance visits and procedures (CPT code) 
 Physician visit (99213) $188 37 
 Eye exam (92014) $195  
 Brain MRI (70553) $842  
 Abdominal US (76700) $240  
 Chest x-ray (71048) $157  
 Chest CT (71270) $493  
 Moderate sedation (99155) $99  

CPT, Current Procedural Terminology  
a Incurred at cancer diagnosis  
b Incurred at cancer death 

  



 
 

 
 

Supplemental Table 6. Recommendations from the Second Panel on Cost-Effectiveness in Health and 
Medicine – Impact Inventory List  

Sector Type of Impact  Included in This 
Reference Case 
Analysis From … 

Perspective 

Notes on Sources of 
Evidence 

Health 
Care 

Sector 

Societal 

Formal Health Care Sector 
Health Health outcomes (effects) 

   Longevity effects  √ Simulation models, 
published studies, expert 
opinion 

   Health-related quality-of-life 
   Effects 

   

   Other health effects 
 

 √ Childhood Cancer 
Survivor Study data, 
expert opinion 

Medical costs 
   Paid for by third-party-payers  √ Medicare reimbursement 

rates, published studies 
   Paid for by patients out-of-pocket    
   Future related medical costs     
   (payers and patients)    

   Future unrelated medical costs    
   (payers and patients)    

Informal Health Care Sector 
Health Patient-time costs N/A √ Published studies, 

Bureau of Labor Statistics  
Unpaid caregiver-time costs N/A   
Transportation costs N/A   

Non-Health Care Sectors (with examples of possible items) 
Productivity Labor market earnings lost N/A   

Cost of unpaid lost productivity due 
to illness N/A   

Cost of uncompensated household 
production N/A   

Consumption Future consumption unrelated to 
health N/A   

Social Services Cost of social services as part of 
interventions N/A   

Legal or 
Criminal Justice 

Number of crimes related to 
interventions N/A   

Cost of crimes related to 
interventions N/A   



 
 

 
 

Education Impact of intervention on education 
al achievement of population N/A   

Housing Cost of intervention on home 
improvements  
(e.g., removing lead paint) 

N/A   

Environment Production of toxic waste pollution 
by intervention N/A   

Other (specify) Other impacts N/A   
  



 
 

 
 

Supplemental Figure 1. Model overview: Comparison of t-NGS and Usual care. Given the goals of 
newborn screening (NBS), which is focused on improving child health, the model focuses on early onset 
of pediatric malignancies.  All newborns are at risk for developing cancer before age 20. Upon diagnosis 
of a cancer, survival is based on stage at diagnosis. Individuals who survive cancer face treatment-
related late mortality risks as adults. Under Usual Care, the presence of a pathogenic (P)/likely 
pathogenic (LP) variant is unknown. Under t-NGS, all newborns undergo genetic screening with the 11-
gene panel. Newborns with P/LP variants identified via genetic screening undergo recommended cancer 
surveillance for the variant identified. In this scenario, we assumed that cancer cases are detected 
earlier and diagnosed as localized disease, with more favorable survival rates and lower treatment-
related late mortality risks.   
 

 
 
 
 

 

  



 
 

 
 

Supplemental Figure 2. Sensitivity analysis on ICER for t-NGS: Tornado diagram (with cost of 11-gene 
panel = $55). Based on one-way sensitivity analyses, this figure depicts the relative influence of select 
model parameters on results for t-NGS. The x-axis shows the effect of changes in selected variables on 
the ICER for t-NGS (compared to Usual Care). The y-axis shows selected model parameters, with the 
base case value and range used in the sensitivity analysis shown in parentheses. The shaded bars 
indicate the variation in the ICER associated with changes in the value of the indicated variable while all 
other variables were held constant. The dotted vertical black line indicates the ICER for the base case. 
ICERs were calculated as the ratio of the mean-costs divided by the mean-effects among the 1000 
simulations.
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