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ABSTRACT: As whole genome sequencing (WGS) uncov-
ers variants associated with rare and common diseases, an
immediate challenge is to minimize false-positive findings
due to sequencing and variant calling errors. False posi-
tives can be reduced by combining results from orthogonal
sequencing methods, but costly. Here, we present vari-
ant filtering approaches using logistic regression (LR) and
ensemble genotyping to minimize false positives without
sacrificing sensitivity. We evaluated the methods using
paired WGS datasets of an extended family prepared using
two sequencing platforms and a validated set of variants
in NA12878. Using LR or ensemble genotyping based fil-
tering, false-negative rates were significantly reduced by
1.1- to 17.8-fold at the same levels of false discovery rates
(5.4% for heterozygous and 4.5% for homozygous sin-
gle nucleotide variants (SNVs); 30.0% for heterozygous
and 18.7% for homozygous insertions; 25.2% for het-
erozygous and 16.6% for homozygous deletions) compared
to the filtering based on genotype quality scores. More-
over, ensemble genotyping excluded > 98% (105,080 of
107,167) of false positives while retaining > 95% (897
of 937) of true positives in de novo mutation (DNM)
discovery in NA12878, and performed better than a con-
sensus method using two sequencing platforms. Our pro-
posed methods were effective in prioritizing phenotype-
associated variants, and an ensemble genotyping would be
essential to minimize false-positive DNM candidates.
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Introduction
Whole genome and exome sequencings (WGS and WES) are ef-

fective in identifying disease-associated variants for both rare and
common diseases [Cirulli and Goldstein, 2010; Boycott et al., 2013;
Lohmueller et al., 2013] and are being deployed in clinical prac-
tice [Ley et al., 2010; Pleasance et al., 2010; Worthey et al., 2011;
Rehm, 2013; Yang et al., 2013]. Discovering disease-associated vari-
ants such as known Mendelian disease-causing and loss-of-function
(LoF) variants or de novo mutations (DNMs) using next-generation
sequencing (NGS) requires accuracy and precision in identifying ge-
nomic variants as well as sufficient coverage for the sequenceable
human genome [Gargis et al., 2012]; however, many sources of false
positives and false negatives have been identified. The comparison
of sequencing platforms and library preparation methods showed
significant bias [Fuentes Fajardo et al., 2012; Lam et al., 2012; Ross
et al., 2013], and alignment and variant calling procedures result in
false positives and false negatives as well [Bao et al., 2011; Yu et al.,
2012; O’Rawe et al., 2013; Pabinger et al., 2013]. The differences
due to sequencing platforms, alignment methods, and variant call-
ing procedures are more significant for insertions and deletions
(INDELs) compared to single nucleotide variants (SNVs) [Lam
et al., 2012; O’Rawe et al., 2013; Zook et al., 2014]. Moreover,
erroneous annotations, incorrect penetrance estimates, and multi-
ple hypothesis testing could result in additional incidental findings
[Kohane et al., 2012].

The current consensus is to validate a few selected variants using
an orthogonal method such as Sanger sequencing or to use two
or more sequencing platforms when a high level of specificity is
required [1000 Genomes Project Consortium, 2010; Lam et al., 2012;
Reumers et al., 2012; Ratan et al., 2013]. The latter approach has been
effective for DNM discovery [Conrad et al., 2011], but using multiple
platforms to sequence a family is not practical due in part to the cost
(> $4,000 per genome as of January 2014) [Wetterstrand, 2014].
O’Rawe and colleagues [2013] compared five different alignment
and variant calling pipelines using an Illumina WES dataset, and
found low concordance rates for both SNVs (57.4%) and INDELs
(26.8%). As pipeline-specific variants also present true positives,
they suggested using multiple pipelines to minimize false negatives
at the cost of increasing false positives [O’Rawe et al., 2013]. Various
measures such as genotype quality (GQ) score, read depth, and
strand bias help to prioritize the variants from a single platform
[DePristo et al., 2011; Reumers et al., 2012]. To reduce false positives
in DNM discovery using a single platform, joint variant calling of
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family members [Conrad et al., 2011; Iossifov et al., 2012; Neale et al.,
2012] and machine learning techniques such as random forest-based
filtering using genomic context [Michaelson et al., 2012; Jiang et al.,
2013] were developed; however, it is not clear whether one specific
tool or approach is more effective or efficient. Thus, challenges still
remain, including determining the optimal cut-off value in variant
filtering, estimating the impact of variant filtering on false negatives
and downstream functional analysis, and choosing the best way to
reduce the large number of false-positive DNMs.

To reduce false-positive genomic variants in WGS/WES, we de-
veloped two variant prioritization techniques: a logistic regression
(LR) based filtering method that can be applied to variant call files
and an ensemble genotyping approach that requires aligned short-
reads files. The LR filter calculates the probability of a variant being
true positive by fitting models with various variant quality mea-
sures. The ensemble genotyping aims to reduce the false positives
due to erroneous variant calling by integrating multiple variant
calling algorithms (VCAs). Both methods were developed to reduce
false positives while minimizing the increase in the number of false
negatives. To test the performance of proposed approaches, we used
two WGS datasets prepared with lymphoblastic cell lines from 17
members of CEPH/Utah Pedigree 1463. Each sample was sequenced
using two most widely used NGS-based WGS platforms: Illumina
and Complete Genomics (CG). The effect of false-positive filtering
on false negatives was investigated using gold standard variant calls
from the Genome in a Bottle Consortium [Zook et al., 2014]. We
then evaluated the downstream consequences of variant filtering
on discovering disease-associated variants for the ensemble geno-
typing approach. Finally, we demonstrated the performance of the
proposed methods and other approaches using validated DNMs
from a trio [Conrad et al., 2011]. Based on the comprehensive
evaluation of the proposed and other filtering approaches in di-
verse aspects, we provide insights into variant filtering for WGS and
WES.

Materials and Methods

WGS Data of an Extended Family and Annotation

We used two WGS datasets prepared using the CG Standard Se-
quencing Service (Mountain View, CA) [Drmanac et al., 2010] and
the Illumina Clinical Service Laboratory (San Diego, CA). Each
dataset consisted of 17 WGSs from an extended family (Coriell ID:
NA12877–NA12893 from CEPH/Utah Pedigree 1463 of the Coriell
Institute, Camden, NJ), therefore we were able to compare CG and
Illumina WGS results for each of the 17 individuals and across the
family members. The CG dataset that was prepared using the CGA
Tools (version 2.0.0.26) was downloaded from the company’s pub-
lic ftp repository (ftp://ftp2.completegenomics.com). The Illumina
dataset was generated using a HiSeq 2000 system (Illumina, San
Diego, CA) with > 40×on average, and genotyped using the Illumina
CASAVA pipeline (version 1.9.0) [Ajay et al., 2011]. Both datasets
were prepared with the UCSC hg19 reference human genome.

We focused on autosomal variants because zygosity calling strate-
gies in sex chromosomes and reference mitochondrial genomes
differed for the two platforms. CG called all variants in chromo-
some Y (except pseudoautosomal regions) as homozygous while
Illumina called the variants in the same region as homozygous or
heterozygous. For the mitochondrial genome sequence, CG used the
Cambridge Reference Sequence (Public Genome Data Repository
Service Note, ftp://ftp2.completegenomics.com/Public_Genomes_

Dataset_Service_Note.pdf), whereas Illumina used the mitochon-
drial sequence included in UCSC hg19.

We converted the variant call files from CG and Illumina plat-
forms to genome variation format (GVF) files [Reese et al., 2010] and
then annotated variants using the dbSNP database (Build ID: 131)
[Sherry et al., 2001], RepeatMasker [Smit et al., 1996–2010], RefSeq
Genes, and the Human Gene Mutation Database (variants marked
as “disease-causing mutations (DM)” in HGMD Professional ver-
sion 2013.2) [Stenson et al., 2009]. Possible functional impacts of
variants were analyzed using snpEff version 3.2 [Cingolani et al.,
2012] according to the Ensembl transcript model version 37.70. We
classified nonsense, splice-site disrupting, and frameshift variants
as LoF.

LR-Based Variant Filtering

We developed an LR-based filtering method for variant call files
without the need for reprocessing raw short reads. The probability
of a variant being true positive was modeled using LR with genomic
context and GQ. Separate LR models were trained for different
variant types (i.e., SNVs, insertions, and deletions), zygosity, and
platform. For SNVs, we fitted a model using six factors: (1) GQ
reported by each platform (CG or Illumina), (2) reported in db-
SNP database (Build ID: 131), (3) overlap with the RepeatMasker,
(4) present in the other family members (parents and children),
(5) genic versus intergenic elements by RefSeq, and (6) substitution
type. We used GQ as a continuous variable, and the others as cat-
egorical variables. For INDELs, we excluded the substitution type
and added the INDEL lengths in base pairs (bps) as a continuous
variable.

An LR model was trained using the annotated variant call files
from the CEPH/Utah pedigree. We labeled variants that were con-
cordantly called by both CG and Illumina as true positives since
these variants had a higher validation rate of > 90% compared
to platform-specific ones (61.9% for CG-specific and 64.3% for
Illumina-specific SNVs) [Lam et al., 2012]. Alternatively, one can
use a different set of gold standard variants such as those from the
Genome in a Bottle Consortium to train LR models. We filtered
variants based on their probability of being true positive predicted
by trained LR models. All statistical analysis was performed using
glm function with binomial family and logit link in the R statistical
language and the model performances were evaluated using leave-
one-out cross-validations. The variant call file of a single individual
was used to evaluate the LR model that was trained using the variant
call files from the other 16 individuals as illustrated in Supp. Fig. S1.
The software package for training and application of LR filters is
available for download at http://ml.ssu.ac.kr/LRFilter.

Ensemble Approach Using Multiple Variant Calling
Algorithms

Several alignment methods and VCAs have been developed for
the Illumina sequencing data; however, CG raw sequence reads can
only be processed with the proprietary alignment method and VCA.
We used six independently developed VCAs for Illumina dataset. Bi-
nary sequence alignment/map (BAM) files were sorted, marked for
duplicated reads, locally realigned, and recalibrated for base quality
using the Picard tools (version 1.84), SAMtools (version 0.1.18),
and Genome Analysis Tool Kit (GATK, version 2.3-4) as described
in Supp. Methods. The processed BAM files were analyzed using
the GATK UnifiedGenotyper [McKenna et al., 2010], SAMtools [Li
et al., 2009], glfSingle (last accessed: March 15, 2013) [1000 Genomes

HUMAN MUTATION, Vol. 35, No. 8, 936–944, 2014 937



Project Consortium, 2010], FreeBayes (version 0.9.9) [Garrison
and Marth, 2013], Atlas2 (version 1.4.3) [Challis et al., 2012], and
VarScan2 (version 2.3.5) [Koboldt et al., 2009]. The parameters for
each VCA are described in Supp. Methods, and the whole analysis
script is available per request. We combined the results from six
VCAs by simply counting concordant calls matched for both geno-
type and zygosity. Then, we filtered the variants identified by the
Illumina CASAVA pipeline using the number of concordant calls
from six VCAs. For SNVs, the number of concordant calls can vary
from 0 (called only by Illumina CASAVA pipeline) to 6 (consis-
tently called by CASAVA and six VCAs). For INDELs, we used five
tools because glfSingle did not call INDELs. The variant filtering
by n or more concordant calls from multiple VCAs was depicted as
nVCA+.

Lastly, we combined LR filters with multiple VCAs for Illumina
dataset. GQs reported by each VCA were used as an additional
independent variable for LR in addition to the six independent
variables of the LR filter described above. We excluded VarScan2
since it did not report valid GQs for all variants. Thus, five additional
independent variables for SNVs and four additional independent
variables for INDELs were included in the LR models combined
with multiple VCAs (LR nVCA).

Discovering De Novo Mutations

We set up a mother and her parents, a father and his parents, and
each of 11 children with his or her parents as 13 trios, and performed
DNM analysis. For each trio, Mendelian inheritance errors (MIEs)
were identified by comparing the parents’ and offspring’s variant
call files using gSearch [Song et al., 2012]. Briefly, a heterozygous
variant of an offspring was designated as an MIE if none of its
parents’ genomes contained the same variant.

We filtered MIEs—DNM candidates—obtained using a single
sequencing platform by LR. Separate LR models for CG (LR CG)
and Illumina (LR ILL) platforms were constructed. We used six
quality measures for DNM candidates as independent variables of
LR for DNM candidate filtering: (1) GQ, (2) reported in dbSNP
(Build ID: 131) [Sherry et al., 2001], (3) overlap with RepeatMasker
[Smit et al., 1996–2010], (4) present as the same variant in offspring’s
children, (5) genic versus intergenic elements by RefSeq, and (6)
SNV type or INDEL length. To train LR models, DNM candidates
concordantly called by CG and Illumina (2CON) were labeled as
true positive, and the others as false positive. Thus, an LR model for
DNM candidate filtering was trained to calculate the probability of
a DNM candidate discovered by a single sequencing platform being
platform-concordant one.

We applied nVCA+ to DNM discovery by comparing DNM candi-
dates between VCAs. The number of VCAs (one to six) that identified
the same DNM candidate was assigned to each candidate and used
for prioritization. Furthermore, nVCA+ for DNM discovery was
combined with the Illumina CASAVA pipeline (ILL and nVCA+)
and consensus calls between CG and Illumina (2CON and nVCA+),
respectively. We also compared PolyMutt—a pedigree-aware geno-
typing and DNM discovery method [Li et al., 2012]—with our
proposed methods.

Performance Comparison of Filtering Approaches

As true-positive variants, we used the variants concordantly called
by CG and Illumina as well as the NIST-GIAB high-confidence
benchmark calls for NA12878 (GIAB12878) that were compiled by
the Genome in a Bottle Consortium [Zook et al., 2014]. The bench-

mark set was generated by integrating 14 datasets obtained using five
different sequencing platforms, and covered > 80% of the human
reference genome (hg19). To assess the performance of a variant
filter, we used false discovery rate (FDR = False positive (FP)/(True
positive (TP) + FP)) and false negative rate (FNR = False negative
(FN)/(TP + FN)), and the Matthew’s correlation coefficient (MCC).
We first compared FNRs of different filters at the same or similar
FDR levels. Then, the optimized performance of each filter was as-
sessed using MCC, which is calculated as (TP×TN)–(FP×FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(TN: True negative) and represents the correlation between bench-
mark and filtering results. MCC ranges from –1 (total disagreement)
to 0 (random) to 1 (perfect correlation).

For DNM, we used a validated set of 49 germline and 952
nongermline DNMs in NA12878 obtained from the study by Con-
rad and colleagues [2011] as gold standards after lifting-over to hg19
loci. We used positive predictive value (PPV = TP/(TP + FP)), sen-
sitivity ( = TP/(TP + FN)), and F1 score—harmonic mean of PPV
and sensitivity, ranging from 0 (worst) to 1 (best)—to assess the
performance of each DNM identification method. PPV of a DNM
identification method denotes the proportion of true DNMs out of
all DNMs identified by that method. Sensitivity of a DNM identi-
fication method means the proportion of true DNMs identified by
that method out of all true DNMs.

Results

Comparison of Two WGS Platforms

The fraction of the hg19 reference genome covered by � 10 reads
exceeded 95% in both platforms. Table 1 and Supp. Table S1 summa-
rize the WGS results on CEPH/Utah Pedigree 1463 obtained using
CG and Illumina platforms. The mean concordance rates between
the two platforms were significantly lower for heterozygous variants
than homozygous variants: 78.9% versus 87.3% for SNVs; 42.4%
versus 56.0% for insertions; 45.0% versus 58.0% for deletions (P <

1.4 × 10–18; paired t-tests) (Supp. Fig. S2).
To compare the qualities of platform-concordant and platform-

specific variants, we compared Ti/Tv ratio, proportion of known
variants, and overlap with repetitive DNA elements (Supp. Table S2).
The Ti/Tv ratios of CG-specific (1.72) and Illumina-specific SNVs
(1.47) were slightly lower than the generally observed value of �2
[DePristo et al., 2011] and that of platform-concordant variants
(2.15). The proportions of known SNVs and INDELs in dbSNP
(Build ID: 131) were significantly higher in platform-concordant
variants (84% for SNVs and > 47% for INDELs) than platform-
specific ones (< 67% for SNVs and < 29% for INDELs). The overlap
of platform-concordant variants with repetitive DNA elements—
51.5% for SNVs, 51.6% for insertions, and 56.4% for deletions—
was not different from the genome-wide average (51.3% in hg19).
However, significantly higher proportions (> 62%) of platform-
specific variants were found in the RepeatMasker regions.

In both platforms, the GQs of platform-concordant SNVs were
significantly higher compared to those of platform-specific SNVs
(Supp. Fig. S3A and B and Supp. Tables S3 and S4). We observed the
same trend for INDELs; however, the difference between platform-
concordant and platform-specific ones was not as significant as that
of SNVs (Supp. Fig. S3C–F). In summary, the platform-concordant
variants had higher quality than platform-specific variants as indi-
cated by Ti/Tv ratios closer to the generally observed value, higher
proportions of known variants in dbSNP, less overlap with repetitive
DNA elements, and higher GQs.
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Table 1. Summary of Genomic Variants Found by Complete Genomics and Illumina Next-Generation Sequencing Platforms

Platform
Total bases

(Gb) Coverage
Covered genome fraction

(%) with � 10× SNV Insertion Deletion
Complex

substitution Total

Complete
Genomics

226.7 (9.6) ×79.6 (3.4) 98.8 (0.003) 3,369,107 (15,631) 239,354 (11,107) 254,614 (11,351) 84,033 (1,970) 3,947,107 (33,621)

Illumina 112.2 (9.4) ×39.4 (3.3) 95.2 (0.7) 3,718,282 (12,604) 304,114 (8,765) 310,359 (7,515) 1,791 (52) 4,334,546 (24,913)

Mean and standard deviation—mean (standard deviation)—of the 17 individuals of CEPH/Utah Pedigree 1463 are shown for each variant type. Autosomal variants are listed
in the table. Overall, more variants were found by Illumina (P = 2.9 × 10–21, 5.4 × 10–12, and 3.7 × 10–11 for SNV, insertion, and deletion, respectively; paired t-tests) except for
complex substitutions (P = 7.6 × 10–28; paired t-test).

Table 2. Performance Comparison of Variant Prioritization in WGS
Results from the Illumina Platform.

Variant
type Zygosity Filter Reduced (%) FDR (%) FNR (%) MCC

SNV Het GQ 51.0 5.4 45.1 0.573
LR 47.9 5.4 41.6 0.587
nVCA+ 17.2 5.4 7.1 0.624
LR 5VCA 14.8 5.4 4.5 0.679

Hom GQ 55.1 4.5 51.5 0.534
LR 40.4 4.5 35.7 0.546
nVCA+ 10.1 4.5 2.9 0.661
LR 5VCA 10.7 4.5 3.6 0.657

Insertion Het GQ 79.0 30.1 74.1 0.158
LR 43.6 30.0 30.2 0.334
nVCA+ 29.5 30.0 12.5 0.425
LR 4VCA 27.4 30.0 10.0 0.465

Hom GQ 55.6 18.7 38.0 0.492
LR 43.6 18.7 21.3 0.545
nVCA+ 38.6 18.7 14.2 0.591
LR 4VCA 40.0 18.7 16.3 0.591

Deletion Het GQ 71.4 25.2 63.8 0.224
LR 46.7 25.2 32.4 0.352
nVCA+ 31.2 25.2 12.5 0.482
LR 4VCA 29.6 25.2 10.6 0.544

Hom GQ 86.3 17.2 81.5 0.301
LR 56.4 16.6 40.9 0.412
nVCA+ 40.5 16.6 19.1 0.513
LR 4VCA 41.4 16.6 20.6 0.543

Variants called in both Complete Genomics and Illumina platforms were considered as
“probable true positives.”
GQ, filtering by genotype quality score reported by Illumina. LR, filtering by logistic
regression. nVCA+, filtering by ensemble genotyping. LR_nVCA, logistic regression
with multiple VCAs (n = 5 for SNVs and 4 for INDELs). Reduced (%), proportion of
variants removed by filtering. FDR, false discovery rate. FNR, false negative rate. MCC,
Matthew’s correlation coefficient, of which values range from –1 (total disagreement)
to 0 (random) to 1 (perfect correlation). Mean for the 17 individuals is shown. Best
performance in each variant type and zygosity is shown in boldface.

Reducing False Positives with a Single WGS Platform

The performance of false-positive filtering methods on the
CEPH/Utah pedigree was evaluated using the platform-concordant
variants. The evaluation results on the Illumina dataset are summa-
rized in Table 2. We compared each method by FNR at the same
or similar FDR levels: 5.4% for heterozygous SNVs and 4.5% for
homozygous SNVs; 30.0% for heterozygous insertions and 18.7%
for homozygous insertions; 25.2% for heterozygous deletions and
16.6% for homozygous deletions. Overall, nVCA+ and LR nVCA
performed better than LR- and GQ-based filtering for all vari-
ant types and zygosities, suggesting that the use of multiple VCAs
could be effective for removing false positives while minimizing the
increase in the number of false negatives. Interestingly, the perfor-
mances of nVCA+ and LR nVCA were different according to zygos-
ity. nVCA+ performed better than LR nVCA for homozygous vari-
ants, and we observed the opposite for heterozygous ones. LR nVCA
reduced FNR by 6.0- to 10.0-fold compared to GQ for heterozygous

variants. For homozygous variants, nVCA+ showed 2.7- to 17.8-
fold lower FNRs than GQ. When multiple VCAs were not applied,
LR performed better than GQ for all variant types and zygosities
on the Illumina dataset (1.1- to 2.5-fold decrease in FNR) as well
as on the CG dataset (1.1- to 2.4-fold decrease in FNR; see Supp.
Table S5).

Since FDR and FNR changed with varying cut-off thresholds for
filtering, we also compared the optimized performance of each fil-
tering method using MCC (see Materials and Methods). For the
Illumina dataset, LR nVCA was the best for all heterozygous vari-
ants and homozygous deletions, followed by nVCA+, LR, and GQ
(Table 2). For homozygous SNVs and insertions, nVCA+ showed
slightly higher or similar MCCs compared to LR nVCA (0.661 ver-
sus 0.657 for SNVs; 0.591 versus 0.591 for insertions), followed by
LR and GQ. For the CG dataset, MCCs of LR-based filtering meth-
ods were always higher than those of GQ (Supp. Table S5). Our
results demonstrated that both ensemble genotyping and LR were
effective in reducing false positives in WGS datasets from a single
platform.

To investigate the effect of each independent variable in LR mod-
els, we checked the degree of contribution of each factor on the final
models (Supp. Tables S6 and S7). For all variant types and zygosities
except for homozygous deletions, “reported in dbSNP,” “present in
parents/children,” and “in genic elements” had significant positive
effects on the probability of a variant being true positive (P < 10–5;
Wald tests). For SNVs, “reported in dbSNP” had the largest positive
effect (odds ratios (ORs) 3.6 for heterozygous and 5.3 for homozy-
gous SNVs). For INDELs, “present in parents/children” showed the
largest effect (ORs 2.2 for heterozygous and 10.8 for homozygous
insertions; 2.2 for heterozygous and 3.8 for homozygous deletions).
“Overlap with RepeatMasker” had negative coefficients for all vari-
ant types. For “SNV type,” transitions except for homozygous G>A
and C>T had positive coefficients and transversions had negative
coefficients. INDEL length—“length in bps”—had negative coeffi-
cients, suggesting that longer INDELs are more difficult to detect.
The utility of GQ seemed to be limited since the GQs reported by
multiple VCAs had either positive or negative coefficients accord-
ing to different variant types and zygosities. The performance of
nVCA+ measured by MCC varied according to cut-off thresholds
(Supp. Fig. S4). For SNVs, 6VCA+ had the highest performance
compared to 4VCA+ and 5VCA+ for homozygous insertions and
deletions, respectively. Heterozygous INDEL detection was less con-
cordant between VCAs since the MCC decreased when n was greater
than 3.

Impact of Variant Filtering on False Negatives

When identifying disease-associated variants in WGS or WES
data, the highest sensitivity is required while minimizing false
positives [Gargis et al., 2012]. To investigate impacts of the pro-
posed variant filtering methods on false negatives, we used a set of
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Figure 1. Changes in false discovery rate (FDR) and false negative rate (FNR) of four variant filtering methods for Illumina—genotype quality
(GQ) score, logistic regression (LR), ensemble genotyping (nVCA+), and LR combined with multiple VCAs (LR_5VCA for SNVs and LR_4VCA for
INDELs)—according to cut-off values. The performance of each method was evaluated using a set of benchmark variants in NA12878 compiled by
the Genome in a Bottle Consortium. Results are separately shown for (A) heterozygous SNVs, (B) homozygous SNVs, (C) heterozygous insertions,
(D) homozygous insertions, (E) heterozygous deletions, and (F) homozygous deletions.

validated variants in NA12878 (GIAB12878; see Materials and Meth-
ods). We trained LR and LR nVCA using 16 individual’s WGSs
excluding NA12878 in our dataset, and compared the filtered list
of NA12878 variants to the high-quality variants of GIAB12878.
Among 1,597,857 heterozygous and 1,064,964 homozygous SNVs
in GIAB12878, 98.6% (1,574,846) and 98.9% (1,053,563) were accu-
rately genotyped by the Illumina CASAVA pipeline. CASAVA found
72.5% (14,622/20,164) of heterozygous and 89.2% (57,226/64,168)
of homozygous insertions, and 74.2% (13,506/18,209) of heterozy-

gous and 86.9% (57,823/66,531) of homozygous deletions in the
benchmark dataset. These variants were used as true positives for
further analysis.

Figure 1 shows the change of FDR and FNR according to varying
cut-off values for variant filtering. For all variant types and zygosities
except for heterozygous SNVs, nVCA+ showed lower FNRs than the
other filtering methods at the same FDR regardless of cut-off values.
Both LR and LR 5VCA performed better than nVCA+ in detecting
true-positive heterozygous SNVs when n of nVCA+ changed from
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Figure 2. Changes in proportion of variants retained after filtering by ensemble genotyping (nVCA+) according to cut-off values (1 to 6VCA+
for SNVs; 1 to 5VCA+ for INDELs). In the x-axis, “Illumina” means no filtering. HGMD_DM: disease-causing mutations based on the Human
Gene Mutation Database. Disrupt: splice-site disrupting. LoF: loss-of-function variants including nonsense, splice-site disrupting, and frameshift
variants. Results are separately shown for (A) heterozygous SNVs, (B) homozygous SNVs, (C) heterozygous insertions, (D) homozygous insertions,
(E) heterozygous deletions, and (F) homozygous deletions. In (B), HGMD_DM for homozygous SNVs is not shown because the number of such
variants was too low (only 1.65 per individual).

1 to 5. However, the FNR for heterozygous SNVs was the lowest
with 6VCA+ at the FDR of 0.0004. Our results suggest that nVCA+

is especially effective when high level of PPV (see Materials and
Methods) is required. For SNVs, the increase in FNR by nVCA+ was
the largest when n changed from 5 to 6. For heterozygous INDELs,
change from 3VCA+ to 4VCA+ resulted in the largest FNR increase.
FNRs for homozygous INDELs increased the most when 4VCA+

changed to 5VCA+.

Impact of Variant Filtering on Downstream Interpretation

It is important to retain variants with functional impacts when
filtering false positives for disease-associated variant discovery. We
checked the consequence of nVCA+ on downstream interpretation
by examining the proportion of remaining functional variants after
filtering. Increasing n by 1 resulted in 1–8% decrease in the SNVs
that were identified by CASAVA with the largest change from 5 to 6
(Fig. 2A and B). A total of 82.8% heterozygous and 89.9% homozy-
gous SNVs were concordantly called by six VCAs compared to the
ones detected by CASAVA. The numbers of known disease-causing,
LoF (see Materials and Methods), misstart, and nonstop SNVs de-
creased with filtering; however, the preserved proportions of these
SNVs were always larger than the proportion of total SNVs. The pro-
portion of retained SNVs after filtering by 6VCA+ was the highest
for misstart (93.2% for heterozygous SNVs and 93.8% for homozy-

gous SNVs). For heterozygous SNVs, 87.1% of LoF and 92.4% of
disease-causing mutations remained after filtering by 6VCA+ when
> 17% of heterozygous SNVs were excluded overall. Heterozygous
splice-site disrupting and homozygous nonsense variants were less
preserved compared to the other functional categories; however, the
retained proportions (84.7% for heterozygous splice-site disrupt-
ing and 90.5% for homozygous nonsense SNVs) were significantly
higher than the total retained (82.8% for heterozygous SNVs (P =

0.00035; paired t-test) and 89.9% for homozygous SNVs (P = 0.012;
paired t-test)).

INDEL detection was less consistent between different VCAs as
previously reported [O’Rawe et al., 2013]. For heterozygous IN-
DELs, we observed the biggest drop in the proportion of retained
variants after 3VCA+ (Fig. 2C and E). Until 3VCA+, 70.5% (in-
sertions) and 68.8% (deletions) of Illumina calls were retained,
but 24.9% (insertions) and 29.0% (deletions) of Illumina calls
remained after 5VCA+. The proportion of concordant homozy-
gous INDELs to all retained INDELs, on the other hand, de-
creased gradually. On average, 48.5% (insertions) and 59.5% (dele-
tions) of CASAVA calls were also found by 5VCA+ (Fig. 2D and
F). Importantly, for heterozygous INDELs, 73.5% (insertions) and
74.4% (deletions) of LoF variants were retained while �30% of
INDELs were filtered by 3VCA+ (Fig. 2C and E). We observed the
same trend for homozygous INDELs. Overall, > 40% of INDELs
were filtered by 5VCA+; but 62.1% (insertions) and 69.7% (dele-
tions) of homozygous LoF INDELs remained.
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Reducing False-Positive DNM Candidates

Screening whole genomes to find DNMs implicated in rare
Mendelian and common disorders is one of the important appli-
cations of NGS [Veltman and Brunner, 2012; Ku et al., 2013]. A
large number of DNM candidates might present due to sequenc-
ing and variant calling errors and incomplete coverage compared
to the expected germline mutation rates [Conrad et al., 2011; Kong
et al., 2012]. For all 13 trios (see Materials and Methods), 167,056
(CG) and 155,977 (Illumina) heterozygous variants not attributable
to Mendelian inheritance, including 92,282 (CG) and 99,703
(Illumina) SNVs per trio, were found on average. A majority of
those MIEs were not true DNMs as the concordance rates of MIEs
between CG and Illumina ranged from 1.8% to 5.3% (1.9% for het-
erozygous SNVs), and the mean of platform-concordant de novo
SNV candidates was 3,565 (Supp. Fig. S5). Thus, the use of multiple
sequencing platforms seemed to reduce the number of false-positive
DNM candidates significantly. We explored whether our filtering ap-
proaches could reduce false positives in DNM discovery using the
validated set of 1,001 DNMs (including 937 autosomal variations)
in NA12878 from the study by Conrad and colleagues [2011]. The
concordance rate between these validated DNMs and GIAB12878
was > 99.4% (750 of 754 DNMs in the genomic region covered by
GIAB12878), ascertaining the validity of the two benchmark sets.

Without any filtering, MIEs in NA12878 contained 86,869 and
108,095 heterozygous SNVs in CG and Illumina CASAVA variant
call files, respectively. Considering the per-generation mutation rate
in human and the fact that the number of validated DNMs in
autosomal regions of that individual’s genome was 937, more than
98.8% (CG) and 99.1% (Illumina) of these MIEs were possible
false-positive DNM candidates without further filtering. In fact,
the MIEs found by comparing trio variant call files from CG and
Illumina platforms contained 892 and 928 true DNMs, respectively.

Figure 3 summarizes the performance of the proposed DNM
discovery methods measured by PPV and sensitivity with the con-
tours representing iso-F1 scores (see Materials and Methods). The
sensitivities of all proposed approaches were greater than 0.9 ex-
cept for LR-based filtering methods: LR CG (0.35) and LR ILL
(0.60). These sensitivity values were obtained at the maximum F1

scores of the LR filters. Therefore, LR CG could remove �65% of
true-positive DNMs. Among the filters with high sensitivity values
(> 0.9), “2CON and 6VCA+” achieved the highest PPV (0.44). For a
single platform, “ILL and 6VCA+” achieved the highest PPV (0.30).
Interestingly, PolyMutt did not perform well (PPV 0.09) compared
to our proposed methods. It should be noted that “ILL and 6VCA+”
showed higher PPV and sensitivity than those of 2CON (0.30 ver-
sus 0.24 and 0.96 versus 0.95, respectively). Our results suggest that
DNMs could be more effectively identified by ensemble genotyping
with a single sequencing platform compared to simply intersecting
the results from two sequencing platforms.

Discussion
The ability to characterize genome sequence and structural vari-

ations accurately and reliably using NGS technology has been im-
proved greatly over the last decade, and WGS/WES is being inte-
grated into clinical settings. Clinical utility and validity will be tested
in coming years; however, reducing false-positive and false-negative
findings is an immediate concern. In the current study, we explored
the options to reduce false positives due to algorithmic differences
in variant calling methods and platform-specific sequencing errors.
Although the proportion of those false positives might be small,

Figure 3. Performance comparison of DNM discovery methods: com-
parison of trio variant call files from the CG platform (CG); comparison
of trio variant call files from the Illumina platform (ILL); consensus calls
between CG and Illumina (2CON); a pedigree-aware DNM caller (Poly-
Mutt); logistic regression (LR) based filtering of DNM candidates in
CG (LR_CG); LR-based filtering of DNM candidates in Illumina (LR_ILL);
ensemble genotyping using six variant calling algorithms (6VCA+); con-
sensus calls between 6VCA+ and ILL (ILL and 6VCA+); consensus calls
between 2CON and 6VCA+ (2CON and 6VCA+). The performance of each
method was evaluated on a set of validated DNMs in NA12878, using
positive predictive value (PPV) and sensitivity. Contours represent iso-F1
scores.

the absolute number could be substantial considering the size of
sequenceable human genome. Using paired WGS datasets of 17 in-
dividuals prepared with CG and Illumina sequencing platforms,
we developed an LR model to predict platform-concordant vari-
ants from variant call files, and an ensemble genotyping approach
for Illumina BAM files. The proposed LR-based filtering approach
outperformed the simple GQ-based filtering in terms of identi-
fying platform-concordant variants, though the best performance
was achieved by the use of ensemble genotyping and LR nVCA.
We found that filtering based on GQ was not sufficient in reduc-
ing false positives since other genomic contexts such as repetitive
DNA elements and dbSNP annotation were also important clues
for identifying possible false positives. A variant in training data for
LR filtering was labeled as true positive if it was called by the two
sequencing platforms. Thus, two sequencing platforms or highly
confident variants are required for building an LR model. Once an
LR model is trained, it can be applied to any number of genomes
obtained using a single sequencing platform. The main modules of
the software application developed for LR modeling and filtering
were written in the C and R languages. Once trained, the scoring of
all 3–5 millions of variants takes no more than 2 min. Therefore,
LR model-based filtering approach is highly scalable to thousands
of WGS. For the ensemble genotyping approach, computational
cost can be prohibitive for a large dataset. The ensemble genotyp-
ing filter integrates multiple VCAs to reduce false positives due to
variant calling errors, differing from joint variant calling for DNM
prioritization that depends on a specific variant calling strategy
[Conrad et al., 2011; Iossifov et al., 2012; Neale et al., 2012]. It also
differs from existing variant filtering methods based on the use of
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various variant quality measures [DePristo et al., 2011; Reumers
et al., 2012] and machine learning techniques [Michaelson et al.,
2012; Jiang et al., 2013] in that it does not need a set of gold stan-
dard variants for optimizing the filtering performance.

We found that our methods could greatly improve PPV without
loss of sensitivity for DNM discovery. PPV of DNM discovery using
a single platform can be as low as 1% given the low per-generation
mutation rate [Conrad et al., 2011; Kong et al., 2012]. Because the
cost and effort entailed in validating a single DNM candidate are
substantial, a measure for filtering false positives and prioritizing
candidates is critically needed. Our ensemble genotyping approach
using a single WGS platform was able to remove > 98% (105,080 of
107,167) of false positives while retaining > 95% (897 of 937) of true
positives. This method, therefore, increased PPV in DNM identifi-
cation more than a 30-fold (0.30 versus 0.01), and produced better
results than simply focusing on the concordant variants between two
sequencing platforms. It is interesting to note that a pedigree-aware
joint calling method showed the highest sensitivity with a low PPV.
Therefore, the ensemble genotyping approach seems to be more
efficient in DNM discovery than machine learning-based filtering,
using multiple sequencing platforms, or pedigree-aware genotyp-
ing methods. In the current study, we limited the DNM analysis for
trio; however, DNM candidates across family members can be easily
compared to reduce false positives significantly. In the supplemen-
tary website (http://ml.ssu.ac.kr/LRFilter), we provide the script for
comparing multiple variant call files with different conditions.

There were several limitations in our analysis. Although platform-
specific variants generally have lower qualities than platform-
concordant ones, they can nevertheless be true positives [Lam et al.,
2012; Ratan et al., 2013]. For instance, read depth of a specific re-
gion in one platform could be too low to reliably call variants. Also,
platform-concordant variants could be false positives due to the
same systematic bias of different WGS platforms [Fuentes Fajardo
et al., 2012; Lam et al., 2012; Ross et al., 2013]. Those phenomena
should have influenced training of the LR filter and validation of
the proposed filtering methods in variant prioritization. Thus, the
filtering criteria that maximize the performance in our experiments
should serve as a guideline and be adapted according to a given situ-
ation. To evaluate the filters for DNM detection, we used a validated
set of DNMs from a study that was carried out on DNA derived from
lymphoblastoid cell lines [Conrad et al., 2011]. Although we used the
same CEPH/Utah pedigree for our comparative analyses, the paired
WGS datasets of the 17 individuals may have been generated from
different passage numbers of the cell lines. If our WGS dataset was
generated from the cell lines with more passages than the ones used
in Conrad and colleagues’ study [2011], the actual PPV values would
have been higher than reported here. Lastly, we did not systemati-
cally evaluate the discordant calls due to different short-read map-
ping algorithms [Dohm et al., 2008; Li and Homer, 2010; Yu et al.,
2012]. Bao and colleagues [2011] comprehensively evaluated avail-
able short-read mapping tools, and found that most of the Burrows–
Wheeler transform based algorithms performed comparably well.
However, complex variants including short INDELs can be differ-
ently represented according to mapping policy of each alignment
algorithm as demonstrated in Figure 2 from Zook and colleagues’
work [2014]. We checked the effect of mapping algorithms on vari-
ant calling using two different methods—BWA-MEM [Li, 2013] and
ELAND (version 2e) included in the Illumina CASAVA pipeline—
while using exactly the same variant calling pipeline using GATK.
The concordance rate between the variants detected with two map-
ping methods was 92.1% for heterozygous SNVs, 98.7% for homozy-
gous SNVs, 80.1% for heterozygous insertions, 88.2% for homozy-
gous insertions, 84.9% for heterozygous deletions, and 93.2% for

homozygous deletions (Supp. Fig. S6). Compared to previous results
on the concordance rate between two different VCAs (GATK versus
SAMtools) with a same alignment algorithm (bwa-short [Li and
Durbin, 2009]): 77% for SNVs [Altmann et al., 2012; O’Rawe et al.,
2013] and 44% for INDELs [O’Rawe et al., 2013], the choice of map-
ping algorithm did not change the variant calls significantly. Further
studies are required to determine the best practice of the combina-
tions of different aligners and VCAs for each sequencing platform.

To summarize, we successfully reduced false-positive variants us-
ing an LR-based variant prioritization and ensemble genotyping
approaches. The ensemble genotyping approach, which showed
better performance for most cases, can only be used when raw
alignment files are available in standard BAM format, which is sup-
ported by most widely used sequencing platforms: SOLiD and Ion
Torrent from Life Technologies; HiSeq, MiSeq, and GAIIx from Il-
lumina; GS from 454 Life Sciences; and PacBio RS. For CG WGS
data, for instance, no alternative alignment and variant calling
methods are available, making it impractical to use the ensem-
ble genotyping approach. In those cases, our LR-based prioritiza-
tion method, which requires only final variant calls annotated with
various genomic contexts, can be use (available for download at
http://ml.ssu.ac.kr/LRFilter).

Disclosure statement: The authors declare no conflict of interest.
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