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ABSTRACT: Whole-genome sequencing (WGS) studies
are uncovering disease-associated variants in both rare and
nonrare diseases. Utilizing the next-generation sequenc-
ing for WGS requires a series of computational meth-
ods for alignment, variant detection, and annotation, and
the accuracy and reproducibility of annotation results are
essential for clinical implementation. However, annotat-
ing WGS with up to date genomic information is still
challenging for biomedical researchers. Here, we present
one of the fastest and highly scalable annotation, filtering,
and analysis pipeline—gNOME—to prioritize phenotype-
associated variants while minimizing false-positive find-
ings. Intuitive graphical user interface of gNOME facili-
tates the selection of phenotype-associated variants, and
the result summaries are provided at variant, gene, and
genome levels. Moreover, the enrichment results of spe-
cific variants, genes, and gene sets between two groups
or compared with population scale WGS datasets that is
already integrated in the pipeline can help the interpre-
tation. We found a small number of discordant results
between annotation software tools in part due to differ-
ent reporting strategies for the variants with complex im-
pacts. Using two published whole-exome datasets of uveal
melanoma and bladder cancer, we demonstrated gNOME’s
accuracy of variant annotation and the enrichment of loss-
of-function variants in known cancer pathways. gNOME
Web server and source codes are freely available to the
academic community (http://gnome.tchlab.org).
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Introduction
The maturation of ultrahigh-throughput sequencing technology

has opened a new era of personal genome sequencing [Ashley et al.,
2010; Cirulli and Goldstein, 2010; Meyerson et al., 2010; Drmanac,
2011; Tabor et al., 2011; Chang and Wang, 2012; Kidd et al., 2012],
and has shifted the researcher’s burden from the identification of
genetic variants to the interpretation of large numbers of variants in
each individual. Although studies using whole-genome sequencing
(WGS) in a large disease population might still be a few years away,
proof-of-concept studies on WGS and whole-exome sequencing
(WES) have already proven the technology to be useful in identifying
disease-causing mutations in rare Mendelian disorders [Hoischen
et al., 2010; Lalonde et al., 2010; Lupski et al., 2010; Ng et al.,
2010a; Ng et al., 2010b; Roach et al., 2010; Bamshad et al., 2011;
Klassen et al., 2011]. Moreover, a few studies using the case-control
study design also demonstrated the utility of WGS and WES in
identifying disease-associated genomic variants for nonrare diseases
[Calvo et al., 2010; Pelak et al., 2010; Holm et al., 2011; Rivas et al.,
2011].

An individual human genome has 3–4 million variants, or loca-
tions that differ from the human reference genome. Because of the
large number of variants, it is essential to filter out those weakly as-
sociated with the researcher’s target phenotype and to reduce these
variants down to a manageable number. This can be done by means
of various heuristics such as allele frequencies (AFs) and their im-
pacts on protein functions [Cooper and Shendure, 2011; Goldstein
et al., 2013]. There is a tremendous need in the biomedical research
community for a tool that can filter these millions of variants based
on the most up-to-date annotations and utilize the growing arsenal
of genome analysis methods.

The number of bioinformatics pipelines for analyzing WGS and
WES is rapidly increasing. However, a majority of such tools fo-
cus on processing raw sequence data to detect high-confidence
genomic variants rather than focusing on downstream analyses
such as annotation-based variant filtering and statistical analysis
[McKenna et al., 2010; Lam et al., 2012; Pabinger et al., 2013]. Even
available downstream analysis tools are limited by their (1) static-
filtering methods, (2) insufficient annotation, and (3) absence of
multigenome comparison methods [Wang et al., 2010; Ge et al.,
2011; Yandell et al., 2011; Cingolani et al., 2012; MacArthur et al.,
2012; San Lucas et al., 2012]. Moreover, these tools are difficult to
use for most researchers and clinicians due to the lack of an in-
tuitive user interface. To overcome these limitations, we developed
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gNOME, an interactive downstream analysis pipeline that combines
comprehensive genomic annotation sources with statistical analy-
sis in an expandable framework. We demonstrated the accuracy of
annotation using the validated genomic variants from published
WES datasets. The pipeline is written in C++, Perl, and SQL, and
all source codes are freely available to the academic community
(http://gnome.tchlab.org).

Materials and Methods

Overview of gNOME Workflow

The goal of most WGS and WES studies is to find variants that
are possibly associated with a phenotype of interest. A common ap-
proach toward this goal is to prioritize variants that have deleterious
impact on protein function and/or are more frequently observed
in cases compared with controls and an ethnicity-matched healthy
population [Lim et al., 2013]. Following this strategy, gNOME’s
streamlined analysis workflow is as follows: (1) creating a project
and uploading variant files, (2) annotation, (3) filtering variants
using an interactive user interface, (4) statistical analysis, and (5)
summarizing the results (Fig. 1). We use a double colon (::) to indi-
cate a menu::submenu in the gNOME interface and single quotation
marks to denote selected values throughout the description.

The first step is to define a project with a corresponding ex-
perimental design (i.e., “Case only” or “Case vs. Control”) and
to upload variant files (Step 1). The pipeline supports the variant
call format (VCF) [Danecek et al., 2011], genome variation format
(GVF) [Reese et al., 2010], and Complete Genomics’ VAR file for-
mat. Each variant file should be assigned to groups (either “case” or
“control”) in a project with a specific reference genome build (i.e.,
“hg18” and “hg19”). A set of samples in gNOME is distinguished

by the project name and group label. The uploaded variant files
are placed in the internal queuing system for annotating with 60
different sources of genomic information collected from 17 pub-
licly available databases (Step 2) (see Materials and Methods and
Supp. Table S1 for details). This step takes at most 30 min for an
individual WGS with 4–5 million variants. For efficient handling of
dataset with multiple genomes, it is recommended to upload them
as multiple sample VCF files, such that gNOME can speed up the
annotation step by processing the entire variants—union of vari-
ants found in any of genomes in the file—in a single step. Once the
annotation is completed, each genome in the multiindividual VCF
file is stored individually. For instance, the merged VCF file for 1,097
samples of the 1000 Genomes Project (1KGP) has only 39,706,715
variants, for which gNOME can complete the annotation in 50 min
(see Results). The resulting annotated variant files are stored in an
internal MySQL database. Once the annotation is completed, users
will receive a notification e-mail. The summary statistics for all up-
loaded variant call files are available on 3.Summary::Genome Level
(Supp. Fig. S1). This overview is available for a single genome at a
time or for multiple genomes. When a group of genomes is selected,
gNOME displays the average and range of summary statistics for
each variant type.

In Step 3, users can select multiple criteria for annotation-based
filtering through an interactive Web interface. For instance, one can
select rare or novel loss-of-function (LoF) variants at highly con-
served loci that are exclusively found among cases but neither in
controls nor in an ethnicity-matched population dataset. Also, dur-
ing this step, possible false positives are reduced by filtering out low-
quality variants and variants found in repetitive regions. We grouped
filtering options into four broad categories in the Web interface:
(1) Allele Frequency, (2) Functional Impact, (3) Knowledge Enrich-
ment, and (4) Others (Fig. 2A). The LoF variants at highly conserved

Figure 1. A schematic overview of gNOME. The analysis of whole-genome and whole-exome dataset starts with creating a project and uploading
it according to project type (Step 1). The uploaded files are annotated with 60 annotation tracks (Step 2), and annotation-based variant filtering
can be interactively performed (Step 3). gNOME supports variant-, gene-, and gene set-level association tests between two groups: case versus
ethnicity-matched population data from the 1KGP or cases versus controls (Step 4). Filtering and analysis results are dynamically reported on the
Web-based interface (Step 5). Steps 3–5 can be performed iteratively based on different variant-filtering criteria.
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Figure 2. Discovering somatic mutations in tumor–blood paired WESs. A: A screenshot for comparing variants from tumor tissue (as “case”)
and blood sample (as “control”), both of which come from a single patient (“MM56”) (see Finding Somatic Mutations in Uveal Melanoma and
Materials and Methods for detail). From both tumor tissue and blood sample, AFs were estimated with (1) European ancestry, and (2) rare or
novel (3) LoF variants at (4) highly conserved loci were selected. Low-quality variants were excluded by setting (5) “Variant call score � 20.” The
potential somatic mutations were selected by choosing variants that were present in tumor sample but not in blood sample (6). B: The result from
the comparison shown in (A). The table can be searched for gene symbol or sorted by the columns. A total of 11 genes including BAP1 (displayed)
met the criteria. gNOME performs a gene set enrichment analysis for five gene set categories with the genes that passed filtering criteria.

loci that are rare or novel in the European population are selected
by setting (1) Allele Frequency::Ancestry “European” (Fig. 2A-1),
(2) Allele Frequency::Allele Frequency “�1% (rare)” (Fig. 2A-2), (3)
Functional Impact::Gene impact “LoF” (Fig. 2A-3), and (4) Knowl-
edge Enrichment::GERP++ score � “2” (Fig. 2A-4). We can exclude
the variants with low calling quality scores by setting Other::Variant
call score (Fig. 2A-5). The selected variants or genes are displayed in
a table that can be sorted by column, and are available for download
as a tab-delimited text file, which can be used as an input for the
other protein–protein interaction network-based analysis tools such
as DAPPLE [Rossin et al., 2011]. 3.Summary::Variant Level lists the
detailed annotations for all variants that passed the filtering criteria,
whereas 3.Summary::Gene Level shows the number of variants that
met the criteria for each gene.

Group comparison, Step 4, is one of the unique features that
distinguish gNOME from other WGS and WES annotation tools

[Wang et al., 2010; Ge et al., 2011; Cingolani et al., 2012]. Group
comparison helps to identify a set of variants, genes, and gene sets
that are significantly enriched in cases as described in Materials
and Methods, and is also useful to identify possible false-positive
incidental findings such as platform-specific sequencing errors and
hypervariable genes and gene sets [Kohane et al., 2012]. These genes
can be easily identified in gNOME and filtered out for further anal-
ysis if desired (Fig. 2A-6). 4.Analyze::Variants and 4.Analyze::Genes
(Fig. 2) identify interesting variants enriched in case genomes and
genes with such variants. Additionally, in 4.Analyze::Genes, gNOME
can test whether a set of genes with interesting variants are enriched
in precompiled gene sets from the Gene Ontology terms, the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) pathways, and
the other disease–gene association databases (Fig. 2B). We demon-
strated the performance, accuracy, and group comparison features
using three publicly available WGS and WES datasets.
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Ethnicity-Specific AFs of Known Variants

To calculate ethnicity-specific AFs, we used The NCBI
Short Genetic Variations database (dbSNP, http://www.ncbi.nlm.
nih.gov/SNP, version 137), the 1KGP [Genomes Project et al., 2012]
for European, Asian, and African populations, and the Exome
Sequencing Project (ESP, http://esp.gs.washington.edu) [Fu et al.,
2013] for European and African populations. The datasets with less
than 15 samples in dbSNP were not used due to the inaccuracy
in estimating AFs. We categorized AFs into four groups: common
(AF � 5%), less common (1% � AF < 5%), rare (AF < 1%), and
novel. The numerical codes –1 and –10 are used to represent a re-
ported variant without a known AF and a novel variant, respectively.
If AFs from different data sources were inconsistent, the highest
value was used to represent the ethnicity-specific AF. The same rule
was applied for mixed ancestries.

Possible Impact on Protein Function

Predicting the functional impact of amino acid changes result-
ing from nucleotide changes is an important step for prioritizing
disease-associated genes since most known disease-causing variants
are in protein-coding regions [Choi et al., 2009]. To provide possible
consequences of genomic variants in genic regions, we integrated
multiple gene models and prediction algorithms as part of gNOME.
The Reference Sequence database (RefSeq, http://www.ncbi.nlm.
nih.gov/refseq) [Pruitt et al., 2005], Consensus Coding Sequence
(CDS) project (CCDS, http://www.ncbi.nlm.nih.gov/CCDS) [Pruitt
et al., 2009], Ensembl (http://www.ensembl.org) [Hubbard et al.,
2002] and University of California Santa Cruz (UCSC) Known
Genes [Hsu et al., 2006] were all implemented in our gene an-
notation database. The use of multiple transcript models to esti-
mate the functional impact of a variant is essential since possible
consequences of a variant can be different across transcript mod-
els and an intronic variant in one transcript model can be in the
coding region of the other transcript model (see Supp. Fig. S2
for an example). Possible impacts of a variant on each tran-
script are categorized into synonymous, missense, in-frame inser-
tion, in-frame deletion, splice-site disruption, nonstop, misstart,
frameshift, and nonsense. LoF variants were defined to include
splice-site disruption, frameshift, and nonsense. A broader cate-
gory of LoF variants (adding nonstop and misstart) is also pro-
vided. We also annotate predicted impacts on protein function us-
ing the database for nonsynonymous SNPs’ functional predictions
(dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP) [Liu et al.,
2011] that comprises the predicted impacts estimated using the Sort-
ing Intolerant from Tolerant (SIFT) [Kumar et al., 2009], PolyPhen2
[Adzhubei et al., 2010], MutationTaster [Schwarz et al., 2010], and
a likelihood ratio test [Chun and Fay, 2009].

Conservation Scores, Noncoding Elements, and Biomedical
Knowledge Enrichment

Conservation scores according to the Genomic Evolution-
ary Rate Profiling (GERP++, http://mendel.stanford.org/Sidowlab/
downloads/gerp) [Davydov et al., 2010] are used to filter variants per
locus, and we used an average score of GERP++ for insertions and
deletions (indels). Genotyping errors are more frequently observed
in repetitive regions, thus excluding the variants in these regions can
reduce false-positive findings. We used the RepeatMasker database
(http://www.repeatmasker.org) to find any variants in these regions

[Smit et al., 1996–2010]. The default value for percent overlap with
RepeatMasker regions is set to 0%.

A variant on an important functioning protein domain could have
a significant impact on protein function. Known protein domains
were collected from the InterPro database [Hunter et al., 2012] and
mapped to the reference genome coordinates to facilitate variant
annotations. The regulatory regions from the Encyclopedia of DNA
Elements (ENCODE) project (http://encodeproject.org/ENCODE)
[Consortium, 2011], the conserved transcription factor binding
sites from UCSC Table Browser (http://genome.ucsc.edu), and mi-
croRNA host genes [Kozomara and Griffiths-Jones, 2011] were in-
cluded in the annotation database to provide further information
for noncoding functioning elements.

The pipeline includes gene sets for diseases, biological pro-
cesses, and canonical pathways. A total of 1,253 disease-associated
gene sets were compiled through the gene-to-disease mapping
using the literature abstracts annotated with Medical Subject
Heading (MeSH) terms and NCBI Genes [Mitchell et al., 2003].
The known disease-associated genes and variants from the cat-
alog of genome-wide association studies by National Human
Genome Research Institute (http://www.genome.gov/gwastudies/)
[Hindorff et al., 2012], Online Mendelian Inheritance in
Man (OMIM, http://www.omim.org) [McKusick, 2007], ClinVar
(http://www.ncbi.nlm.nih.gov/clinvar) [Riggs et al., 2013], and
DisGeNet (http://ibi.imim.es/DisGeNet/web/v02/home) [Bauer-
Mehren et al., 2010] were integrated to the annotation database; the
Human Gene Mutation Database (HGMD, http://www.hgmd.org)
can be used if a user has the license. In addition, we collected 828
biological process gene sets based on the Gene Ontology (GO) terms
and 186 KEGG pathways from the Molecular Signatures Database
(MSigDB, http://www.broadinstitute.org/gsea/msigdb, c5.bp.v3.0
and c2.cp.v3.0, respectively) [Subramanian et al., 2005]. The origi-
nal data sources and processing scripts are available on the gNOME
Website, and the annotation database will be updated with the latest
annotation information every 6 months.

Integration of Population-Scale Individual WGS Data

The purpose of using ethnicity-matched population datasets as
a comparison group is twofold. First, the false-positive inciden-
tal findings can be identified and reduced as previously described
[Kohane et al., 2012]. Second, the genetic burden due to a set of in-
teresting variants in the ethnicity-matched general population can
be estimated and compared with study individuals. The comparison
of uploaded data with population-scale data from the 1KGP is one
of the unique features of gNOME. Following the categorization of
the 1KGP, we included 18 different population categories: four by
ancestry—European, Asian, African, and admixed American—and
14 by geographical regions.

Statistical Comparison at Variant, Gene, and Gene Set
Levels

A set of variants that met a user’s annotation filtering criteria can
be tested for enrichment in a group. Given two groups of samples
(i.e., cases and controls), the interesting variants that are overrepre-
sented in cases can be identified as follows. Supposing the existence
of N individuals and a total of M LoF variants, we defined M as
the number of unique LoF variants across N individuals and set
two groups as G 0 (for instance, case group) and G 1 (for instance,
noncase group or ethnicity-matched population from the 1KGP).
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Figure 3. Association tests for variants, genes, and gene sets between two groups. The small number of variants that remain after the annotation-
based filtering can be associated with a phenotype in three ways. First, we can test whether a specific variant presents more frequently in cases
compared with controls or an ethnicity-matched population (A). Second, an association test can be performed at the gene level when each case
individual may have different variants on the same gene (B). Third, we can expand a gene-level aggregation to gene set level to find the gene set
overrepresented with interesting variants among cases (C). The rows marked by x (red) denote “hypervariable” variants, genes, or gene sets that
frequently have variants in both cases and controls (see Materials and Methods for details).

Then, an M-by-N matrix can be expressed as

V = {vi, j }1≤i≤M,1≤j≤N

where

vi, j =

{
1 i –th variant found in j –th individual
0 otherwise

The matrix V is illustrated as the colored grid box with five cases
and five noncases in Figure 3A. Row-wise hypergeometric tests
find the variants that are more frequently found in G0. Alterna-
tively, the number of individuals with interesting variants can be
set for each group as shown in Figure 2A-6. For instance, by setting
Ngroup A genomes � 1 and Ngroup B genomes � 0, a set of interesting variants
will be further filtered to a smaller set of variants that are exclusively
present in Group A.

With the exception of a few Mendelian disorders, the likelihood
of finding the same disease-linked variants across the patients is
low [McClellan and King, 2010]. Instead, multiple rare LoF and
missense variants in the same gene or the same pathway could al-
ter disease risks. Burden tests and kernel-based tests compare the
cumulative effects of such variants. In burden tests, each variant is
weighted differently according to AF, the impact on protein func-
tion, and conservation scores [Madsen and Browning, 2009; Han

and Pan, 2010; Morris and Zeggini, 2010; Price et al., 2010; Zawis-
towski et al., 2010]. The most burden tests assume that all variants of
interest contribute to the phenotype in the same direction, whereas
kernel-based tests such as sequence kernel association test (SKAT)
[Wu et al., 2011] and C-alpha [Neale et al., 2011] combine both
protective and deleterious effects as well as variant–variant inter-
actions. In our proposed pipeline, we implemented a burden test
with the equal weights for all variants selected for specific crite-
ria. The genes with compound heterozygous variants where each
variant met user-defined filtering criteria can be prioritized using
4.Analyze::Genes (Fig. 2). gNOME aggregates interesting variants by
counting the number of variants in each gene, and perform a gene-
level association test. Without loss of generality, we can assume that
the M variants are linked to the total of P genes and the membership
of each variant to genes can be represented as

P -by-M matrix G = {gk, i }1≤k≤P ,1≤i≤M ,

where

gk, i =

{
1 i –th variant is linked tok–th gene
0 otherwise

The matrix multiplication, B = GV = {bk, j }1≤k≤P ,1≤ j≤N , gives us the
number of variants in a gene for each individual (Fig. 3B). The
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Figure 4. Comparison of annotation results from four software tools. For SSD (A), nonsense (B), frameshift insertion and deletion (C), and
nonstop (D) variants, we compared the annotation results from four different software tools by comparing genomic coordinate, alternative allele,
and reported functional impact for each variant. The numbers next to tool names represent the total number of annotated variants in that category,
and four-way Venn diagrams show the concordant and discordant annotation results. Overall, the annotation results are comparable to each other
between tools; however, SSD has the most discordant results (A). ANNOVAR reports as frameshift even if such variants are found in canonical
splice sites; however, gNOME and SeattleSeq report them as SSD variants. Supp. Table S3 lists the details on the discordant results.

genes with a significantly different number of variants between two
groups are ranked by a row-wise two group comparison test of B. If
a gene is hypervariable [Kohane et al., 2012], it would consistently
have nonzero value (bk, j > 0 for all j) and be less significant in group
comparison test (marked with a red x in Fig. 3B).

A gene-level association test can be further expanded to a set
of genes that are functionally related or physically interacting with
each other. Even if an individual gene showed weak association in
genewise test, those genes can collectively contribute to a specific
phenotype. Our analysis pipeline provides several options for gene
set-level association tests. First, one can perform a gene-set en-
richment test for the genes with interesting variants in each case
(“Enriched Gene Sets in group A” function in Fig. 2B). Second, for
each individual in G0 and G1, we can prioritize the gene sets that
are more frequently observed as significantly enriched among the
individuals in G0. We construct a contingency table T = (t11, t12,
t21, t22) for each gene set per individual with the number of mem-
ber genes with the selected variants (t11), member genes without
the selected variants (t12), nonmember genes with the selected vari-
ants (t21), and nonmember genes without the selected variants (t22),
where the genes in a given gene set are defined as member genes.
The relationship between genes and gene sets is defined as

Q-by-P matrix S = {sl ,k}1≤l≤Q,1≤k≤P

where

sl ,k =

{
1 k–th gene belongs tol–th gene set
0 otherwise

Then, we can collapse the values in matrix B into 0 or 1 to in-
dicate whether an individual has interesting variants in the gene:
Ḃ = {ḃk, j }1≤k≤P ,1≤ j≤N where ḃk, j = 1 if and only if bk, j > 0. The four
values in T are defined as:

t11 =
∑

k
sl ,k ḃk, j

t12 =
∑

k
sl ,k(1 – ḃk, j )

t21 =
∑

k
(1 – sl ,k)ḃk, j

t22 = G – t11 – t12 – t21

(1)

with the total number of genes (G). The enrichment scores
from the contingency tables constitute the Q-by-N matrix C =

{cl , j }1≤l≤Q,1≤ j≤N (cl , j = the enrichment score of lth gene sets in jth
individual) (Fig. 4C). The rowwise two group comparison tests on
C are performed either by using a nonparametric test with odd ra-
tios or hypergeometric P values or by comparing the proportion
of individuals that passed a user-defined statistical threshold. Using
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the latter option, hypervariable gene sets with interesting variants
can be identified (marked with a red x in Fig. 3C).

Evaluation Datasets

We used three datasets to evaluate gNOME’s performance and
to compare with other programs. The first dataset consists of 97
patients with transitional cell carcinoma (TCC) [Gui et al., 2011].
For each patient, paired tumor–blood samples were sequenced us-
ing WES. We downloaded the raw sequence files from the Sequence
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra) [Leinonen
et al., 2011] (accession number SRA038181), and aligned them
to the reference human genome (hg19) using Burrows–Wheeler
Aligner (BWA) 0.6.2 [Li and Durbin, 2009]. The potential vari-
ants were called by the Genome Analysis Toolkit (GATK) 2.3–4
following the guidelines in Best Practice v4 from GATK’s Website
(http://www.broadinstitute.org/gatk). The second WES dataset con-
sisted of tumor–blood pairs from two patients with uveal melanoma
[Harbour et al., 2010]. The raw sequences (accession number
SRA062369) were processed with the same alignment and variant
calling procedure as described in the original paper. This dataset
was used to compare the accuracy and performance of gNOME’s
annotation procedure with the other software tools. Finally, we used
all variants from a single individual (NA12889) in 1KGP as well as
the entire Phase I integrated call set from the 1KGP to evaluate the
scalability with data size.

Comparison with the Existing Software Tools

We compared the performance and annotation results of gNOME
with published software tools. The list of software tools included
ANNOVAR (http://www.openbioinformatics.org/annovar, latest
downloaded on May 27, 2013) [Wang et al., 2010], SnpEff (http://
snpeff.sourceforge.net, version 3.2) [Cingolani et al., 2012],
and SeattleSeq annotation server (http://snp.gs.washington.edu/
SeattleSeqAnnotation137, version 137). We downloaded the lat-
est version and installed on the same workstation if source codes
were available, or uploaded the same VCF file to the Web server. We
used the same RefSeq gene model (downloaded on May 20, 2013
from UCSC Table Browser) for ANNOVAR, SnpEff, and gNOME.
However, SeattleSeq annotation server was running with a slightly
different version of RefSeq model at the time of experiment. We
measured the wall clock time to complete annotation for functional
consequences of variants using a WGS variant file and 39.7 million
variants from 1KGP.

Results

Comparison of Performance and Annotation Results from
the Other Software Tools

The annotation speed of gNOME was compared with those
of ANNOVAR [Wang et al., 2010] and SnpEff [Cingolani et al.,
2012] using variants from a single genome (NA12889) and the in-
tegrated variants from 1,092 individuals of the 1KGP [Genomes
Project et al., 2012]. The annotation for functional consequences of
variants based on the RefSeq gene model [Pruitt et al., 2005] was
performed 10 times for each tool. All three tools finished the anno-
tation procedure in a reasonably short amount of time. For a single
genome, SnpEff showed the best performance (192.2 ± 4.47 sec;
mean ± standard deviation); however, with 39.7 million variants

Table 1. Comparison of Annotation Performance

Variant file ANNOVAR gNOME SnpEff

A single genomea 395.2 (4.78) 351.4 (3.53) 192.2 (4.47)
1,092 genomesb 3,263.0 (65.94) 484.2 (0.92) 1,606.8 (43.28)

aAll variants found in one individual (NA12889) from CEPH/Utah family (4,581,619
variants).
bAll variants in the Phase 1 integrated call set from the 1KGP (39,706,715 variants).
We used the variant files from a WGS and all concatenated variants of 1,092 individuals
from the 1KGP. For each tool, we repeated the annotation procedure 10 times to calculate
the average time required to complete the annotation of variant consequences using
RefSeq gene model (the standard deviations are shown in parentheses). All three tools
perform reasonably quickly. The annotation time of ANNOVAR and SnpEff linearly
increases with the number of variants; however, only 37.8% more processing time is
required to complete the annotation of 8.7× larger variant file using gNOME.

of 1KGP, gNOME completed the annotation in 484.2 ± 0.92 sec
compared with 3,263.0 ± 65.94 and 1,606.8 ± 43.28 sec for ANNO-
VAR and SnpEff (Table 1). The annotation engine of gNOME—
gSearch [Song et al., 2012]—was optimized to handle a larger
dataset, whereas the processing time for ANNOVAR and SnpEff
increased linearly with the number of variants. It should also be
noted that genomes uploaded to gNOME’s Web interface will be
annotated using four popular gene models, taking four to five times
longer than reported in Table 1; at most 30 min for a single genome
and 50 min for 1,092 genomes from 1KGP.

For the comparison of annotated functional impacts of vari-
ants, we included SeattleSeq, a Web-based annotation server, as
well as ANNOVAR and SnpEff. For this comparison, we concate-
nated four variant files from two tumor–blood pairs in the uveal
melanoma dataset using the same gene model—RefSeq gene model
(downloaded on May 20, 2013 from UCSC Table Browser)—for
most tools to preclude discordant annotations due to different gene
models (see Materials and Methods). Since each tool uses a differ-
ent set of terminology to describe functional impacts, we mapped
the various description terminologies used by separate tools, as
listed in Supp. Table S2. Overall, the annotation results from dif-
ferent tools were similar. However, there were categories of func-
tional impacts that were not reported by ANNOVAR and SeattleSeq
(Table 2). For instance, a loss of start codon—categorized as misstart
in gNOME—was not reported in ANNOVAR and SeattleSeq, and
in-frame insertion and deletions were not listed in SeattleSeq.

We found differences in the sets of variants for each functional
impact category across four tools (Fig. 4 shows Venn diagrams
for splice-site disrupting [SSD], frameshift, nonsense, and nonstop
variants). The differences can be explained partly by the differ-
ences in RefSeq versions between SeattleSeq and the other three
tools (SeattleSeq used genes in September 2012 version from Na-
tional Center for Biotechnology Information [NCBI], whereas we
used genes in May 2013 version from UCSC Table Browser), by
annotation errors in all programs, and by a discrepancy between
tools in describing the same variants. Of 92–137 SSD variants that
were found by four tools, 69 were discovered in common. Seattle-
Seq missed 37 SSD variants that were found by three other tools,
most of which were suspected from differences in gene models. AN-
NOVAR and gNOME took different approaches in describing the
SSD variants due to indels. In gNOME, SSD has priority over other
functional consequences if indels were found in canonical splice
sites, and vice versa in ANNOVAR. In 21 cases of ambiguous SSD
variants, for example, insertions at exon–intron junctions, gNOME
classified all ambiguous cases as SSD, whereas other programs re-
port only part of them. The proportion of discordant annotations
among programs was the smallest for nonsense variants. Among
the nonsense variants that were not reported by gNOME, we found
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Table 2. Comparison of Annotation Results from Various Programs

Category Variant consequences ANNOVAR gNOME SnpEff SeattleSeq

Single nucleotide changes in coding sequence Disrupt 125 137 119 92
Missense 11,687 11,729 11,825 12,042
Misstart NA 22 22 NA
Nonsense 120 118 119 121
Nonstop 14 15 28 22
Synonymous 12,970 13,051 13,105 13,206

Short insertions and deletions in coding sequence Frameshift 113 126 131 148
In-frame insertion 78 78 79 NA
In-frame deletion 127 127 126 NA

Variants outside of coding sequence 5′-UTR 3,677 3,941 3,941 3,879
3′-UTR 8,659 9,008 9,010 8,931
Intron 262,678 267,803 267,867 253,821
Intergenic 255,085 265,926 265,941 264,470

The functional consequences for all variants found from two tumor–blood pairs of WES of uveal melanoma samples are compared (see Materials and Methods). The functional
impacts are based on RefSeq gene definitions, and description terms are compared according to the Supp. Table S2.
NA, not available.

four erroneous annotations (two from SnpEff, one from ANNOVAR
and SeattleSeq each). There were three frameshift indels annotated
as nonsense by ANNOVAR but as frameshift by the others. The four
nonsense variants found only by SeattleSeq were due to an outdated
gene model. For nonstop variants, 11 out of 15 discordant annota-
tions between gNOME and other tools resulted from the annotation
for possible selenocysteine, which was recognized only in gNOME.
The other four were annotation errors from SnpEff and ANNOVAR.
Discordant annotations for frameshift variants were more complex
(see Supp. Table S3 for details); however, a majority of discordant
annotations was due to the different approaches in classifying func-
tional impacts. The details on discordant annotations between pro-
grams are summarized in Supp. Table S3. The functional impact
of each variant must be evaluated by experts; however, there is a
tremendous need for a standard method to describe variants with
complex consequences.

Finding Somatic Mutations in Uveal Melanoma

To ensure the annotation accuracy of gNOME, we analyzed a
published WES dataset from patients with uveal melanoma (MIM
#155720). Harbour et al. (2010) sequenced two cases of matched
tumor and peripheral blood samples using WES to find tumor-
specific somatic mutations on chromosome 3. They found an in-
activating mutation in each tumor sample on BAP1. One patient
(MM56) had a nonsense mutation (p.W196X), whereas the other
(MM70) had an 11-bp deletion (p.Q322fsX100) on the same gene.
We processed the downloaded data as described in Materials and
Methods, and uploaded the variant files from tumor tissues as
cases and those from blood as controls to our pipeline and ana-
lyzed as depicted in Figure 2. The variant-level analysis of gNOME
for MM56 revealed 670 possible somatic mutation candidates in
protein-coding regions including p.W196X in BAP1. After filtering
out nonrare (AF > 1% in European population, the same ethnic
group as the patients) or synonymous variants, 171 candidate vari-
ants were found. Of these, four nonsynonymous variants—three
missense and one nonsense (p.W196X in BAP1)—were found on
chromosome 3. Similarly, in MM70, the 11-bp frameshift dele-
tion in BAP1 was the only high-impact tumor-specific nonsynony-
mous variant on chromosome 3. Interestingly, gene-level analysis
of gNOME found 11 genes—CEP89, FAM135A, GNAQ, HECTD4,
HEXA, KCTD20, RAD17, TAS2R31, THBS3, TTLL1, and WSCD1—
that contain possible somatic mutations in both MM56 and MM70.
Of these genes, frequent somatic mutations in GNAQ from patients

with uveal melanoma were previously reported [Van Raamsdonk
et al., 2009], and the increased protein expression of HEXA was
found in metastatic uveal melanoma [Linge et al., 2012].

Discovering Somatic Mutations and Enriched
Pathways in TCC

Gui et al. (2011) sequenced nine tumor–blood pairs from the pa-
tients with TCC (MIM #109800), and found 465 predicted somatic
mutations. Several genes such as ARID1A and CREBBP had differ-
ent somatic mutations in tumor samples of different patients. Ad-
ditionally, tumor–blood sample pairs from 88 patients with TCC—
37 nonmuscle invasive (NMI) TCC and 51 muscle invasive (MI)
TCC—were sequenced to find frequently mutated genes in MI TCC
and NMI TCC. The downloaded data were processed using hg19
(see Materials and Methods). First, all nine tumor samples were up-
loaded onto gNOME as cases, and nine blood samples as controls.
We compared the somatic mutation candidates that were identi-
fied in gNOME using 4.Analyze::Variants (Ngroup A genomes � 1 and
Ngroup B genomes � 0) with the list from the original paper (Supple-
mentary Table 3 in the original paper). Of the 208 somatic sub-
stitutions that were validated by genotyping or Sanger sequencing,
195 variants were accurately called and annotated using gNOME,
except for 13 variants that were not called by our variant calling ap-
proach with hg19. One variant (g.chr1:22186113T>G on hg19) was
found in the blood sample of B17 individual, but not in B17’s tumor
sample. Next, we tested whether the somatic mutation candidates
were enriched for any gene sets using 97 tumor–blood pairs. For
this analysis, we selected the LoF variants with AF � 1% in Asian
population, and P value threshold �0.05, Ngroup A genomes � 1, and
Ngroup B genomes � 97 in Statistical test parameters in 4.Analyze::Genes.
Ninety six genes with the variants that met the criteria were enriched
for the cancer-related KEGG pathways such as cell cycle (adjusted P
value 0.0014), prostate cancer (adjusted P value 0.0017), pathways
in cancer (adjusted P value 0.010), arrythmogenic right ventricu-
lar cardiomyopathy (adjusted P value 0.008), and bladder cancer
(adjusted P value 0.013) (Supp. Table S4).

Discussion
gNOME (http://gnome.tchlab.org) enables users to interactively

filter a large number of variants down to a small number of
disease/phenotype-linked variants dynamically reported at three
different levels—variants, genes, and gene sets—simultaneously.
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Additionally, gNOME applies nonparametric statistical tests to
variant- and gene-level counts of filtered variants between two
groups, as well as to gene set enrichment analysis for biolog-
ical pathways and known disease-linked genes. With the Web
interface for interactive annotation-based filtering and statistical
tests, we demonstrated our streamlined analysis procedure using
two tumor–blood paired datasets—uveal melanoma and TCC. All
validated genomic variants in the uveal melanoma dataset and
93% of 208 validated variants in the TCC dataset were accurately
identified with gNOME, and new candidate variants and genes were
found. Additionally, the cancer-related pathways were found to be
enriched with LoF variants that were exclusively found in tumor
samples.

Precise identification of genomic variants with high accuracy and
the transparent annotation and filtering procedure are essential for
clinical sequencing [Gargis et al., 2012]. A combination of the ver-
sion control system for annotation database and graphical user inter-
face allows gNOME to successfully reproduce results. Furthermore,
gNOME can be installed locally as a stand-alone analysis pipeline
with a secure storage device behind a firewall since the genome
sequence information is confidential. Communications with other
servers are not necessary once variant files are transferred. More-
over, enabling the other encryption and security features on MySQL
database will make gNOME compatible with the Clinical Laboratory
Improvement Amendments.

To further evaluate the annotation accuracy of our proposed
pipeline compared with the other genome annotation software tools,
we analyzed the same VCF file from the uveal melanoma dataset
using ANNOVAR, SnpEff, and SeattleSeq. The results were simi-
lar in general, but the number of discordant results varied across
functional categories. Aside from cases due to differences in gene
models or programming errors, a majority of discordant cases came
from variants whose functional consequences can be classified into
multiple categories. For instance, the frameshift variants overlap-
ping with canonical splice sites were reported either as frameshift
in ANNOVAR or as SSD in gNOME and SeattleSeq. The ontol-
ogy for describing the functional consequences of sequence variants
and a consensus approach to describe the variants with multiple
functional consequences should reduce the number of discordant
annotations between tools [Eilbeck et al., 2005].

There are a few limitations of gNOME. First, due to the licens-
ing issue, known disease-associated variants in the HGMD were not
integrated into gNOME, although the integration itself was straight-
forward. Second, only a limited set of statistical tests were imple-
mented. Adding diverse genetic burden tests such as the methods
implemented in PLINK-SEQ [Neale et al., 2011], Efficient and Par-
allelizable Association Container Toolbox (EPACTS) [Kang et al.,
2010], and SKAT [Wu et al., 2011] will improve the flexibility of
gNOME. Finally, the scalability of gNOME would be much im-
proved if run on a computing cloud. The current Web-based version
can process medium-sized datasets of up to 1,000 individuals, and
a local stand-alone version can be set up to accommodate with a
larger dataset or to preserve the confidentiality. However, to analyze
a larger dataset (tens of thousands individuals), the gNOME pipeline
must be run on a computing cloud. A few WES/WGS tools do sup-
port cloud environment as backend: VAT [Habegger et al., 2012] for
variant annotation and visualization, Crossbow [Langmead et al.,
2009] for variant calling, SIMPLEX [Fischer et al., 2012] for WES
analysis, and Galaxy [Goecks et al., 2010] and Taverna [Hull et al.,
2006] as general workflow framework. However, these are either
difficult to use or do not cover all streamlined process provided by
gNOME.

To summarize, we have developed a downstream analysis pipeline
for WGS/WES datasets that can perform accurate and repro-
ducible annotation with a graphical user interface for annotation-
based filtering. A group comparison is one of the unique features
that help to reduce possible false-positive findings. We have pro-
vided a population scale WGS dataset as a part of the pipeline,
which enables users to identify variants specific to cases com-
pared with ethnicity-matched generally healthy population. With
these strengths, gNOME will be of use to the biomedical research
community.
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