A randomized noninferiority trial of condensed protocols for genetic risk disclosure of Alzheimer’s disease

Robert C. Green a,b,*, Kurt D. Christensen a, L. Adrienne Cupples c, Norman R. Relkin d, Peter J. Whitehouse e, Charmaine D. M. Royal f, Thomas O. Obisesan g, Robert Cook-Deegan h, Erin Linnenbringer i, Melissa Barber Butson e, Grace-Ann Fasaye j, Elana Levinson k, J. Scott Roberts l, for the REVEAL Study Group 1

aDivision of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
bPartners Personalized Medicine, Boston, MA, USA
cDepartments of Biostatistics and Epidemiology, Boston University School of Public Health, Boston, MA, USA
dDepartment of Neurology, Weill Medical College of Cornell University, New York, NY, USA
eDepartment of Neurology, Case Western Reserve University, Cleveland, OH, USA
fDepartment of African and African American Studies, Duke University, Durham, NC, USA
gDepartment of Medicine, Howard University School of Medicine, Washington, DC, USA
hSanford School of Public Policy, Duke University, Durham, NC, USA
iDivision of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
jWalter Reed National Military Medical Center, Bethesda, MD, USA
kDepartment of Surgery, Columbia University, New York, NY, USA
lDepartment of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA

Abstract

Background: Conventional multisession genetic counseling is currently recommended when disclosing APOE genotype for the risk of Alzheimer’s disease (AD) in cognitively normal individuals.

Objective: To evaluate the safety of brief disclosure protocols for disclosing APOE genotype for the risk of AD.

Methods: A randomized, multicenter noninferiority trial was conducted at four sites. Participants were asymptomatic adults having a first-degree relative with AD. A standard disclosure protocol by genetic counselors (SP-GC) was compared with condensed protocols, with disclosures by genetic counselors (CP-GC) and by physicians (CP-MD). Preplanned co-primary outcomes were anxiety and depression scales 12 months after disclosure.

Results: Three hundred and forty-three adults (mean age 58.3, range 33–86 years, 71% female, 23% African American) were randomly assigned to the SP-GC protocol (n = 115), CP-GC protocol (n = 116), or CP-MD protocol (n = 112). Mean postdisclosure scores on all outcomes were well below cut-offs for clinical concern across protocols. Comparing CP-GC with SP-GC, the 97.5% upper confidence limits at 12 months after disclosure on co-primary outcomes of anxiety and depression ranged from a difference of 1.2 to 2.0 in means (all P < .001 on noninferiority tests), establishing noninferiority for condensed protocols. Results were similar between European Americans and African Americans.

Conclusions: These data support the safety of condensed protocols for APOE disclosure for those free of severe anxiety or depression who are actively seeking such information.

© 2014 The Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
1. Introduction

The ε4 allele of APOE is a common and robust risk factor for Alzheimer’s disease (AD), carried by approximately 25% of the population. In the Risk Evaluation and Education for Alzheimer’s Disease (REVEAL) Study, we have utilized the model of disclosing APOE genotype for the risk of AD to explore translational questions associated with genetic risk disclosure. In a previous randomized controlled trial, we demonstrated that disclosing APOE genotypes with an extended counseling protocol was not associated with increased anxiety, depression, or distress [1]. The predisclosure counseling in that trial followed what were later published as official recommendations for the genetic risk assessment of AD, and that were based on Huntington Disease (HD) Society of America’s Guidelines for Genetic Testing for Huntington Disease [2], a protocol that the recommendations called the “gold standard for genetic testing for adult onset conditions” [3]. Briefly, this protocol includes two pretest and one or more posttest genetic counseling sessions conducted in person and incorporates both neurologic and psychiatric evaluations. Sessions address the physical, psychological, social, and family history factors that may influence the decision-making process to ensure informed decision making about testing while minimizing the risks of adverse psychological outcomes [3].

In this report, we describe a separate trial in which all subjects received APOE disclosure, but were randomized into one protocol that followed the gold standard above, or into one of two protocols with highly condensed pretesting education and counseling. We hypothesized that subjects receiving the condensed protocols with disclosure from a genetic counselor (CP-GC) would show no greater anxiety or depression than subjects receiving the standard protocol 1 year after disclosure.

2. Methods

2.1. Study population and instruments

We recruited cognitively normal adult first-degree relatives (FDRs) of patients with AD through mailings to research registries, referrals from collaborating physicians, advertisements in local newspapers, and community outreach at senior centers and nursing homes. We excluded individuals with two or more affected FDRs and individuals from families where the average AD onset age was under 60 years. We screened out individuals who demonstrated potential memory problems by scoring lower than an education-adjusted 87 on the Modified Mini-Mental State Examination [4] and individuals with very severe anxiety and depression, as defined below. We selected European Americans or African Americans for enrollment because we had sufficient data to create ethnicity-specific risk models for these groups that incorporated APOE genotype [5]. Given ambiguous data about the relationship between APOE and AD for other ethnicities [6,7], however, we excluded other populations.

The co-primary outcomes were validated self-report scales of anxiety and depression at 12 months after disclosure. We measured anxiety using the 21-item Beck Anxiety Inventory (BAI) [8] and depression using the 20-item Center for Epidemiological Studies-Depression Scale (CES-D) [9]. BAI scores can range from 0 to 63, with scores greater than 15 indicating moderate anxiety and scores greater than 25 indicating severe anxiety. CES-D scores can range from 0 to 60, with scores 16 or greater indicating moderate depression and scores greater than 26 indicating severe depression [10]. Test-related distress at 12 months after disclosure served as a secondary outcome, measured using the Impact of Event Scale (IES) [11], a 15-item self-report instrument commonly used in genetic disclosure research [12]. The IES assessed the frequency of intrusive and avoidance thoughts related to the genetic risk assessment over the past week, with scores of 0–5 on individual items summed to create an overall score (range 0–75, scores 20 or above indicating significant distress). Because the IES measures distress specific to genetic risk disclosure, it was administered only after testing. We also evaluated secondary outcomes of BAI, CES-D, and IES scores at 6 weeks and 6 months after the disclosure of genetic risk information.

2.2. Study design

As described more fully in prior publications [1,13], the multidisciplinary REVEAL Study group designed the study protocol and risk disclosure procedures, including, for this trial, specific risk curves for African American subjects [5]. The study was designed as a noninferiority trial, despite inherent limitations of this approach [14], because the goal of the study was to develop a protocol that markedly reduced clinical service demands rather than one that improved outcomes that had already been shown to be safe [1]. The study was conducted at sites in academic medical centers in Boston, Cleveland, New York, and Washington, DC. An independent external Ethics and Safety Board (ESB), and institutional review boards at each study site, oversaw the protocol and consent development. Subjects provided informed consent by telephone at the time of study enrollment, then again in writing before the blood draw for genotyping. The overall design of the study is shown in Fig. 1.

Following an initial phone interview, subjects were block randomized equally into one of three treatment arms, within strata defined by site, age (<60 vs ≥60), race, and gender. In
the reference protocol, pretest education and counseling took place with a genetic counselor (the SP-GC arm) [2]. Participants attended a semistructured 35 minute in-person education session with a genetic counselor that included: a formal definition of AD, an overview of risk factors for AD (e.g., age, family history), and the level of risk in the general population; an explanation of APOE and its implications for risk of AD; a description of procedures involved in APOE testing; a preview of what would be provided in their risk assessment (e.g., risk figures and their format); and a summary of known benefits, risks, and limitations of APOE testing. At the blood-draw visit, a genetic counselor collected and reviewed the subject’s family history of dementia and personal medical information, and proactively addressed psychosocial aspects of testing. In the two condensed protocols the in-person education session was replaced with a mailed brochure (see Supplemental Fig. 1), and subjects provided family history and medical information on mailed forms. When blood was drawn in the condensed protocols, genetic counselors reviewed the family history and medical information subjects mailed back and responded to participant questions rather than proactively addressing the psychosocial aspects of testing. The two condensed protocols differed only in who was doing the disclosure. APOE was genotyped at Athena Diagnostics, a facility certified by the Clinical Laboratory Improvement Amendments (CLIA). Approximately 1 month after the blood draw, subjects received their APOE genotypes and numerical AD risk assessments as previously described [1,5,15]. In brief, all subjects were shown a single graph with gender and
race-specific risk curves and were told their APOE genotype and numeric estimates of their cumulative lifetime (potential range: 13%–77%) and remaining risk for AD (cumulative incidence from current age to the age of 85 years). A genetic counselor disclosed results to subjects in the SP-GC arm and in one condensed protocol arm (CP-GC), while a study physician disclosed results in the other condensed protocol arm (CP-MD). The four physicians doing the disclosure were specialists in dementia, but had received no formal training in genetic counseling.

Study staff administered the BAI and CES-D before the blood draw (baseline) and at all follow-up time points. The IES was administered only at follow-up time points. The ESB reviewed the protocol, monitored study progress, and established criteria for adverse event reporting. An immediate interview was planned for any subjects whose BAI or CES-D scores exceeded 26 or increased by more than 15 points from baseline at any point in the study. Cases of concern to the clinical teams were discussed in monthly phone calls. The chair of the ESB reviewed aggregated results annually. This trial was registered with clinicaltrials.gov identifier NCT00089882.

2.3. Statistical analysis

We used analysis of variance (ANOVA) and chi-square testing to compare demographic features of the randomized groups. We compared discontinuation rates and subject variables associated with discontinuation across protocols using t-tests and chi-square tests. ANOVA was used to compare session lengths across protocols.

In estimating the power for the primary analysis, we followed recommendations [16] for defining noninferiority as occurring if the upper limits of one-sided 97.5% confidence intervals (equivalent to upper bounds of two-sided 95% CIs) for mean differences between protocols were less than a prespecified margin of 5 points on each of the outcome scales, the same intervals used in analyses for the initial REVEAL Study trial [1]. In comparing co-primary outcomes of BAI and CES-D scores in the SP-GC vs CP-GC arms at 12 months, we estimated that we had more than 90% power at $\alpha = 0.05/2$ (for the two co-primary outcomes) = 0.025 to confirm noninferiority within this margin.

To test the primary hypothesis of noninferiority between SP-GC and CP-GC, postdisclosure levels of the two co-primary outcomes (BAI and CES-D) were evaluated at 12 months for noninferiority first using linear models, with no adjustment for potential confounders; and second using linear models adjusting for age, gender, education, baseline scores, and APOE genotype. Because these measures were skewed with a floor effect at zero, we also conducted pairwise Wilcoxon Rank Sum tests with no adjustment for covariates, and with Tobit models adjusting for the same covariates as the linear regression models. Secondary analyses comparing the noninferiority of the CP-MD protocol to the SP-GC and CP-MD protocols mirrored these analyses.

P values for these analyses were calculated from one-sided noninferiority tests assuming that scores on a condensed protocol were not more than 5 points higher than the comparison protocol.

In addition to assessing co-primary outcomes at 12 months, we conducted secondary analyses to examine the outcomes at the baseline visit (posteducation predisclosure) and at the 6-week and 6-month postdisclosure visits. Both condensed protocols were identical through the baseline visit, so data in these two arms were combined on multiple linear regression analyses of predisclosure outcomes, adjusting for age, gender, race, and education. We conducted both intention-to-treat (ITT) and per-protocol analyses on predisclosure data because ITT analyses can bias interpretation in noninferiority studies [16,17]. Only per-protocol analyses were conducted and reported on postdisclosure data because we could not reliably impute APOE genotypes, which were needed for adjusted analyses. P values for comparisons of baseline, predisclosure scores were calculated from tests that mean scores for the condensed protocols were not equivalent to mean scores for the standard protocol. P values for secondary postdisclosure analyses were calculated from one-sided noninferiority tests that scores on a condensed protocol were not more than 5 points higher than a comparison protocol.

Interactions between randomization arm and APOE genotype were omitted from final models because they failed to reach significance at $P \leq .05$. For both pre- and postdisclosure analyses, missing values were imputed with the Markov chain Monte Carlo method of multiple imputation using PROC MI statistical software, version 9.3 (SAS Institute). Variables to calculate joint probabilities for multiple imputation were selected using an inclusive strategy, and included all variables used in analyses and additional variables whose sole purpose in these analyses were to improve the performance of the imputation models [18]. These additional variables were collected through self-report in the phone interview, pre-education, and follow-up questionnaires, and included income, AD risk perceptions, and less proven measures of test-related affect [19]. We also evaluated the CP-MD protocol and the CP-GC protocol on all outcomes using the procedures described above and controlling for baseline scores where applicable.

3. Results

Of the 356 subjects who completed the introductory telephone interview, five subjects were screened out because on further review, their family history of AD did not meet eligibility requirements and eight were excluded because they self-identified as other than European American or African American and were told their numeric risk estimates could not be estimated accurately. Ultimately, 96% were randomized and analyzed (Fig. 1). Of 343 subjects who were randomized, 20 (5.8%) subjects declined to continue in the study for the following nonexclusive reasons: study demands (9), concerns about anticipated emotional
responses to test results (7), or potential discrimination (3), limitations of test information (3), lack of interest (2), lack of AD prevention options (1), and personal health problems (1). Thirty-five (10.2%) others discontinued without explanation (were lost to follow-up) before disclosure. We also screened out the following during the trial, but before genetic risk disclosure: two individuals whose family history of AD did not meet eligibility requirements after further review by genetic counselors; one participant who suggested that testing might influence a future decision to pursue suicide; three subjects with cognitive scores below eligibility criteria; and six subjects with depression scores above our prespecified threshold. Demographic characteristics for participants included in the ITT analysis did not vary by randomization arm (Table 1) and were similar to those of the prior trial [1] except for the higher percentage of African Americans in this trial. Ultimately, 276 (80.5%) of the subjects initially randomized received AD risk assessments with APOE genotype disclosure.

Whether a subject received their pretest education through a genetic counselor (SP-GC arm) or through a brochure (CP-GC and CP-MD arms) did not affect the likelihood that the subject would drop out of the protocol ($P = .88$). However, African American ethnicity ($P < .01$) and lower education ($P < .01$) were significantly associated with a greater likelihood of dropout before disclosure. At the predisclosure assessment, subjects in all arms scored well below cut-offs for clinical concern on the three outcomes.

Predisclosure education sessions were structured to last approximately 35 minutes in length within the SP-GC arm and did not occur in the CP arms where a brochure was sent instead. In the SP-GC arm the blood-draw visit, including counseling, averaged 20.3 minutes in length, while the blood-draw visits with question-and-answer only averaged 13.2 minutes across the CP arms ($P < .001$). Genetic risk disclosure sessions averaged 22.4 minutes in the SP-GC arm, 23.2 minutes in the CP-GC arm, and 18.7 minutes in length in the CP-MD arm ($P < .001$). At the predisclosure (blood draw) visit where anxiety and depression scales were administered for the first time, the ITT analysis of difference in means between subjects in the standard and condensed protocols was 0.1 (95% CI -1.2 to $1.0, P = .87$) on the BAI and 0.7 (95% CI -0.9 to $2.3, P = .40$) on the CES-D. Non-ITT analyses were similar (see Supplementary Table 1).

Table 2 summarizes the unadjusted analysis of primary and secondary study outcomes (adjusted analyses are presented in Supplementary Table 2). All scores were well below standard cut-offs for clinical concern, regardless of disclosure protocol. Two-sided 95% CIs for the mean difference between the SP-GC and both the CP-GC and CP-MD arms at 12 months after risk estimation and APOE genotype disclosure were below the predefined 5-point margin of noninferiority for all scales. Secondary analyses also showed noninferiority of both condensed protocols at earlier time points on anxiety and depression, and for the CP-GC protocol on test-related distress 12 months postdisclosure compared with the SP-GC. However, noninferiority could not be demonstrated on test-related distress 6 weeks and 6 months postdisclosure for the CP-MD protocol. Similarly subanalyses supported noninferiority of the CP-MD protocol compared with the CP-GC protocol on anxiety and depression measures, but higher test-related distress scores were noted in the CP-MD protocol at the 6-week ($\Delta = 2.8, 95\% CI = 0.4$ to 5.1, noninferiority $P = .03$) and 6-month ($\Delta = 3.0, 95\% CI = 0.5$ to 5.4, noninferiority $P = .05$) post-disclosure time points (see Supplementary Table 2).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Standard protocol, GC disclosure (n = 115)</th>
<th>Condensed protocol, GC disclosure (n = 116)</th>
<th>Condensed protocol, MD disclosure (n = 112)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: yrs</td>
<td>Mean 58.1 ± 10.1</td>
<td>Mean 58.2 ± 10.9</td>
<td>Mean 58.6 ± 11.0</td>
<td>.94</td>
</tr>
<tr>
<td></td>
<td>Range $36–78$</td>
<td>Range $33–86$</td>
<td>Range $36–86$</td>
<td></td>
</tr>
<tr>
<td>Female sex: n (%)</td>
<td>79 (69)</td>
<td>84 (72)</td>
<td>82 (73)</td>
<td>.72</td>
</tr>
<tr>
<td>African American race: n (%)¹</td>
<td>27 (23)</td>
<td>28 (24)</td>
<td>24 (21)</td>
<td>.88</td>
</tr>
<tr>
<td>Education: yrs</td>
<td>Mean 16.1 ± 2.6</td>
<td>Mean 16.2 ± 2.7</td>
<td>Mean 15.5 ± 2.8</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>Range $9–20$</td>
<td>Range $3–20$</td>
<td>Range $5–20$</td>
<td></td>
</tr>
<tr>
<td>Currently married: n (%)</td>
<td>65 (57)</td>
<td>62 (53)</td>
<td>68 (61)</td>
<td>.54</td>
</tr>
<tr>
<td>Site: n (%)</td>
<td>Boston 38 (33)</td>
<td>38 (33)</td>
<td>37 (33)</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Cleveland 25 (22)</td>
<td>25 (22)</td>
<td>22 (20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, DC 23 (20)</td>
<td>24 (21)</td>
<td>21 (19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New York 29 (25)</td>
<td>29 (25)</td>
<td>32 (29)</td>
<td></td>
</tr>
<tr>
<td>Self-referred to study: n (%)</td>
<td>81 (70)</td>
<td>69 (59)</td>
<td>70 (63)</td>
<td>.20</td>
</tr>
<tr>
<td>More than one relative with AD: n (%)¹</td>
<td>48 (42)</td>
<td>57 (49)</td>
<td>49 (44)</td>
<td>.50</td>
</tr>
</tbody>
</table>

Abbreviations: ITT, intent-to-treat; CP, condensed protocol; GC, genetic counseling; MD, physician.

¹Race was self-reported.

¹Including nonfirst degree relatives (e.g., grandparent or cousin).
than the control standard protocol.

6 week outcomes

A post hoc test, using linear models, that scores differ by APOE ε4 status, or randomization arms on BAI and CES-D scores at 6 weeks, 3.0 at 6 months, and 2.4 at 12 months, all P < .01).

Differences on study outcomes between APOE ε4-positive and ε4-negative subjects, stratified by outcome and time after APOE genotype disclosure [20], add weight to suggestions that genetic susceptibility test providers may be able to streamline protocols for persons volunteering for such information without compromising their well-being, at least when results are disclosed by a genetic counselor. The condensed protocols we used required one less in-person appointment and saved considerable clinician time, substantially reducing the demands of testing on

Table 2
Unadjusted anxiety, depression, and test-related distress scores by randomization arm, stratified by outcome and time after APOE genotype disclosure

<table>
<thead>
<tr>
<th></th>
<th>Anxiety (BAI)</th>
<th>Depression (CES-D)</th>
<th>Test-related distress (IES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ (95% CI)</td>
<td>Δ (95% CI)</td>
<td>Δ (95% CI)</td>
</tr>
<tr>
<td>12 mo</td>
<td>.69</td>
<td>.74</td>
<td>2.4 (0.6 to 4.2)</td>
</tr>
<tr>
<td>6 mo</td>
<td>.32</td>
<td>.89</td>
<td>3.0 (0.9 to 5.1)</td>
</tr>
<tr>
<td>6 wk</td>
<td>.55</td>
<td>.55</td>
<td>4.9 (2.9 to 6.9)</td>
</tr>
</tbody>
</table>

Abbreviations: BAI, Beck Anxiety Inventory; CES-D, Center for Epidemiological Studies Depression Scale; IES, Impact of Event Scale.
NOTE. Positive numbers indicate greater anxiety, depression, or test-related distress among ε4-positive subjects than ε4-negative subjects. P values represent a post hoc test, using linear models, that scores differ by APOE result after adjusting for randomization, age, sex, race, and education. NOTE. CIs are confidence intervals. Scores were adjusted for age, sex, race, and education.

4. Discussion

This trial compares the impact of different disclosure protocols for APOE genotype. In comparisons between the standard and condensed protocols where both were delivered by genetic counselors, volunteer subjects randomized to receive a condensed protocol did not experience greater anxiety or depression symptoms, nor greater test-related distress, 12 months after disclosure. Noninferiority could not be demonstrated for the secondary outcome of test-related distress at earlier time points, but these differences were still minor. Our findings, in conjunction with prior analyses showing no decreases in knowledge or information recall after receiving the condensed protocols [20], add weight to suggestions that genetic susceptibility test providers may be able to streamline protocols for persons volunteering for such information without compromising their well-being, at least when results are disclosed by a genetic counselor. The condensed protocols we used required one less in-person appointment and saved considerable clinician time, substantially reducing the demands of testing on
providers and test-recipients alike. In fact, blood-draw sessions were shorter in the condensed protocols despite the omission of an opportunity for subjects to address concerns during an in-person education session. The time savings was attributable primarily to having subjects mail family history and personal medical information in advance rather providing this information for the first time during the blood-draw session. These findings are encouraging, given how medical providers may expect escalating requests for genetic testing in the near future. Findings of noninferiority may be explained by prior work showing that motivations for genetic testing in the near future. Findings of noninferiority were shorter in the condensed protocols despite the omission of an opportunity for subjects to address concerns during an in-person education session. The time savings was attributable primarily to having subjects mail family history and personal medical information in advance rather than in-person counseling.

This study also compares disclosure protocols administered by genetic counselors to those administered by nongeneticist physicians. While none of the outcomes in this comparison suggested that genetic information was harmful, scores on scales of test-related distress were not consistently within the margin for noninferiority when results were disclosed through a nongeneticist physician rather than a genetic counselor. Inferences from this comparison are limited because there was such a small number of genetic counselors and nongeneticist physicians. Moreover, the genetic counselors were female, had each served as study coordinators at their respective sites and spent more time on average in the disclosure session, whereas the physicians were all male and spent less time on average in the disclosure session. Nevertheless, the differences observed between the CP-GC and CP-MD protocols suggest that GCs might be more effective in relieving short-term emotional distress than physicians providing disclosure through the same protocol. Analyses of cases where genetic testing was ordered without a genetics specialist and surveys of genetic counselors suggest that nonspecialists often provide insufficient genetic counseling before testing.

Other randomized trials of genetic testing disclosure have shown no incremental risk to psychological well-being through group education or telephone disclosure, but minor increases in anxiety using computer education rather than in-person counseling.

This work was supported by National Institutes of Health (NIH) grants HG002213, HG006500, HD077671, AG013846, HG006993, AG042437, HG005092, AG027841, RR000533, and RR010284. None of the authors report conflicts of interest relevant to this manuscript.

Additional members of the REVEAL Study group are as follows: G. Annas, Boston University School of Medicine, Boston; D. Bhatt, VA Boston Healthcare System, Brigham and Women’s Hospital, and Harvard Medical School, Boston; T. Marteau, Kings College, London; E. McCarty, Howard University, Washington, DC; J. Karlawish, Perelman School of Medicine, Philadelphia; S. Hiraki, Albert Einstein College of Medicine, Bronx; M. Johnson, Howard University, Washington, DC; S. Johnson, Howard University, Washington, DC; E. Juengst, University of North Carolina School of Medicine, Chapel Hill; J. Harkins, Perelman School of Medicine, Philadelphia; L. Le, University of Michigan School of Public Health, Ann Arbor; T. Marteau, Kings College, London; E. McCarty Wood, Perelman School of Medicine, Philadelphia; T. Obisesan, Howard University, Washington, DC; R. Petersen,
Mayo Alzheimer’s Disease Research Center, Rochester, MN; S. Post, Stony Brook University, Stony Brook; K. Quaid, Indiana University School of Medicine, Indianapolis; L. Ravdin, Weill Cornell Medical College, New York; D. Roter, Johns Hopkins Bloomberg School of Public Health, Baltimore; R. Stern, Boston University School of Medicine, Boston; A. Sadovnick, University of British Columbia, Vancouver; S. Sami, Case Western Reserve University, Cleveland; P. Sankar, Perelman School of Medicine, Philadelphia; E. Topol, Scripps Research Institute, La Jolla; W. Uhlmann, University of Michigan, Ann Arbor; L. Waterston, Maine Medical Center Research Institute, Portland; L. Wright, Medical College of Georgia, Athens. No compensation was received by these individuals in exchange for their participation beyond the NIH funding cited above.

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jalz.2014.10.014.

1. Systematic review: APOE genotyping in asymptomatic individuals for risk of Alzheimer’s disease (AD) has been controversial for some time, both within the AD community and as a paradigm for common complex risk assessment in the medical genetics community. We have searched PubMed and other sources for greater than 10 years for published research and opinions in this arena.

2. Interpretation: Over the past decade, there has been a reluctant appreciation that some individuals wish to know their APOE genotypes for AD risk assessment. Current expert-based recommendations for such disclosures emphasize conventional, time-intensive genetic counseling. To our knowledge, our research provides the only empirical data on more condensed protocols for APOE genotype disclosure.

3. Future directions: Larger scale studies on the impact of disclosing APOE genotype may more definitively answer the question of safety and benefit of this information.

References

[27] Bensend TA, Veach PM, Niendorf KB. What’s the harm? Genetic counselor perceptions of adverse effects of genetics service provision by non-genetics professionals. J Genet Couns 2013;:1–16.

A Randomized Non-inferiority Trial of Condensed Protocols for Genetic Risk Disclosure of Alzheimer’s Disease

SUPPLEMENTARY MATERIALS
Supplementary Figure 1. The 4 page educational brochure that replaced in-person education in the condensed protocols.

Understanding Your Risk of Alzheimer’s Disease

Alzheimer’s disease is a progressive brain disorder that ultimately impairs a person’s ability to carry out daily activities; it is the most common cause of memory and language problems (sometimes referred to as “senility” or “dementia”) among older people. Although much is known about the disease’s biology, and treatments are available for some of its symptoms, there is currently no cure or prevention for Alzheimer’s disease. An estimated four million Americans have Alzheimer’s disease—a number that is projected to grow to over 13 million by 2050.

Alzheimer’s Risk Factors

The general population’s risk of developing Alzheimer’s disease is about 10–15%. This means that for every group of 100 people, on average, 10–15 of them will develop Alzheimer’s disease at some point in their life. Some people have a higher or lower risk than the general population. One or more of the following factors can elevate a person’s Alzheimer’s disease risk above that of the general population:

- Getting older
- Being a woman
- Being African American
- Having a parent, brother, or sister with Alzheimer’s disease
- Inheriting a specific form of the APOE gene

However, it is important to remember that if you have one—or even all—of these characteristics, you still may never get Alzheimer’s disease.
Understanding Your Risk Assessment

You will be given an estimate of your risk of developing Alzheimer’s disease by the time you are 85 years old. Depending on your risk factors, you will be given a risk number between approximately 15% to 75%. Your risk estimate will also be shown on a graph, similar to that pictured below.

The characteristics taken into account in the risk assessment include your age, gender, race, APOE test result, and whether or not you have a parent, brother, or sister with Alzheimer’s disease.

We are still learning about many other genetic and non-genetic factors that are involved in the development of Alzheimer’s disease. As scientists learn more about what causes Alzheimer’s disease, this new information may alter your risk assessment.

There are six possible combinations of the three APOE forms. These combinations are called genotypes.
Alzheimer’s Disease and the APOE Gene

Inheriting a specific form of the APOE gene can increase the risk of getting Alzheimer’s disease. The role of the APOE gene in Alzheimer’s disease is still being studied. Some studies have shown that it may be related to other conditions in addition to Alzheimer’s disease.

We do know that the APOE gene comes in three different forms: E2, E3, and E4. Every person has two copies of the APOE gene—one inherited from each parent. Because there are three different forms of the APOE gene and there are two APOE genes in every person, an individual possesses one of six unique APOE combinations (pictured below).

If an individual has one or two copies of the E4 form of the APOE gene, it increases his or her risk of developing Alzheimer’s disease. However, this does not mean that he or she will definitely get Alzheimer’s disease.

APOE Genetic Testing

As part of your risk assessment, we provide APOE testing. There are three basic steps to APOE testing. First, you will meet with a genetic counselor to review any questions or concerns about having an Alzheimer’s disease risk assessment, including APOE testing. Next, you will provide a small blood sample for APOE testing. Finally, you will meet with a clinician to learn and discuss your test result and risk assessment. Test results are typically available within a few weeks of the blood draw.
Issues to Consider

You may want to consider several issues before having a risk assessment for Alzheimer’s disease. Your risk profile is only an interpretation based on your current knowledge and will not give you a simple “yes” or “no” answer, nor will it indicate at what age Alzheimer's disease may develop. There are no proven ways to prevent Alzheimer's disease from developing.

Risk assessment with APOE testing has some limitations:

- You may find it harder to cope with your concerns about developing Alzheimer's disease after having your risk assessment.
- Because the risk assessment is based on complex information, it is possible that you or your loved ones may misinterpret the results, causing undue stress or false reassurance about your chances of developing Alzheimer's disease.
- Confidentiality laws protect APOE test results generated for research purposes. However, if you tell others about your results, there is no guarantee that your results will remain confidential.
- Employers or insurance companies could ask you about your risk information and use it to deny insurance coverage or change your policy rates, although it is not a common practice.

There may also be some benefits to receiving your risk estimate:

- It may encourage you to stay abreast of new developments in Alzheimer’s disease treatment and prevention, and may motivate you to engage in activities that might help prevent or delay the onset of Alzheimer’s disease.
- It may satisfy your curiosity about your chances of developing the disease.
- You may use your risk assessment to help make long-term decisions.
- Receiving a lower risk estimate may reduce your anxiety about developing the disease.

Resources

Contact the following organizations to learn more about Alzheimer's disease.

Alzheimer’s Association
800-272-3900
alz.org

Alzheimer’s Disease Education & Referral Center (ADEAR), a service of the National Institute on Aging (NIA),
800-438-1122
alzheimers.org
Supplementary Table 1. Mean baseline (pre-disclosure) anxiety (BAI) and depression (CES-D) scores analyzed by pre-test education experience (i.e. Standard vs Condensed arms). Analyzes control for age, education, sex, and race. P values are reported for the test, using multiple linear regression, that mean scores for the combined condensed protocols are not equivalent to mean scores for the standard protocol.

<table>
<thead>
<tr>
<th>Pre-test Education</th>
<th>BAI score</th>
<th>CES-D score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est ± SE</td>
<td>Δ (95% CI)</td>
</tr>
<tr>
<td>ITT Analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended (n=115)</td>
<td>3.9 ± 0.5</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>3.8 ± 0.3</td>
<td>0.1 (-1.2 to 1.0)</td>
</tr>
<tr>
<td>Standard (n=228)</td>
<td>6.6 ± 0.5</td>
<td>0.7 (-0.9 to 2.3)</td>
</tr>
</tbody>
</table>
Supplemental Table 2. Anxiety, depression and test-related distress scores by randomization arm, stratified by outcome and time after APOE genotype disclosure, in models that include baseline scores as covariates where applicable (i.e., BAI and CES-D models). P values represent a one-sided non-inferiority test, using linear models, that scores on a specific condensed protocol are not more than 5 points higher than the reference protocol after adjusting for APOE result, age, sex, race, education and baseline score, where applicable. *

<table>
<thead>
<tr>
<th>Measure & time point</th>
<th>EP-GC (n=92)</th>
<th>CP-GC (n=93)</th>
<th>CP-MD (n=91)</th>
<th>CP-GC vs EP-GC (95% CI)</th>
<th>p</th>
<th>CP-MD vs EP-GC (95% CI)</th>
<th>p</th>
<th>CP-MD vs CP-GC (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 month outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAI†</td>
<td>3.2±0.5</td>
<td>3.8±0.5</td>
<td>3.6±0.5</td>
<td>0.6 (-0.6 to 1.9)</td>
<td><0.01</td>
<td>0.4 (-0.9 to 1.6)</td>
<td><0.01</td>
<td>-0.3 (-1.5 to 1.0)</td>
<td><0.01</td>
</tr>
<tr>
<td>CES-D‡</td>
<td>6.6±0.6</td>
<td>6.0±0.6</td>
<td>6.0±0.6</td>
<td>-0.7 (-2.2 to 0.9)</td>
<td><0.01</td>
<td>-0.8 (-2.4 to 0.9)</td>
<td><0.01</td>
<td>-0.1 (-1.7 to 1.5)</td>
<td><0.01</td>
</tr>
<tr>
<td>IESψ</td>
<td>3.7±0.8</td>
<td>3.6±0.8</td>
<td>5.6±0.8</td>
<td>-0.2 (-2.3 to 2.0)</td>
<td><0.01</td>
<td>1.9 (-0.3 to 4.0)</td>
<td><0.01</td>
<td>2.0 (-0.1 to 4.2)</td>
<td><0.01</td>
</tr>
<tr>
<td>6 month outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAI</td>
<td>3.5±0.4</td>
<td>3.3±0.4</td>
<td>4.0±0.4</td>
<td>-0.2 (-1.4 to 1.0)</td>
<td><0.01</td>
<td>0.5 (-0.8 to 1.7)</td>
<td><0.01</td>
<td>0.7 (-0.5 to 1.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>CES-D</td>
<td>6.8±0.6</td>
<td>6.2±0.6</td>
<td>7.0±0.6</td>
<td>-0.7 (-2.4 to 1.0)</td>
<td><0.01</td>
<td>0.2 (-1.6 to 1.9)</td>
<td><0.01</td>
<td>0.8 (-0.9 to 2.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>IES</td>
<td>4.4±0.9</td>
<td>4.2±0.9</td>
<td>7.2±0.9</td>
<td>-0.2 (-2.6 to 2.2)</td>
<td><0.01</td>
<td>2.8 (0.3 to 5.2)</td>
<td>0.04</td>
<td>3.0 (0.5 to 5.4)</td>
<td>0.05</td>
</tr>
<tr>
<td>6 week outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAI</td>
<td>2.8±0.4</td>
<td>3.8±0.4</td>
<td>3.9±0.4</td>
<td>0.9 (-0.2 to 2.0)</td>
<td><0.01</td>
<td>1.1 (0.0 to 2.2)</td>
<td><0.01</td>
<td>0.2 (-1.0 to 1.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>CES-D</td>
<td>6.3±0.6</td>
<td>6.2±0.6</td>
<td>6.9±0.6</td>
<td>-0.1 (-1.8 to 1.6)</td>
<td><0.01</td>
<td>0.6 (-1.1 to 2.3)</td>
<td><0.01</td>
<td>0.7 (-1.0 to 2.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>IES</td>
<td>3.6±0.9</td>
<td>5.6±0.8</td>
<td>8.4±0.9</td>
<td>2.0 (-0.3 to 4.4)</td>
<td><0.01</td>
<td>4.8 (2.4 to 7.2)</td>
<td>0.44</td>
<td>2.8 (0.4 to 5.1)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*Plus-minus values are means ± standard errors. CI are two-sided 95% confidence intervals. Scores were adjusted for APOE result, age, education, sex, and race. † Scores on the Beck Anxiety Inventory (BAI) range from 0 to 63, with higher scores indicating greater anxiety. ‡ Scores on the Center for Epidemiological Studies Depression Scale (CES-D) range from 0-60, with higher scores indicating greater depression. ψ Scores on the Impact of Event Scale (IES) range from 0 to 75, with higher scores indicating greater distress.